1
|
DeFronzo RA and Del Prato S: Insulin
resistance and diabetes mellitus. J Diabetes Complications.
10:243–245. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Boden G: Free fatty acids (FFA), a link
between obesity and insulin resistance. Front Biosci. 3:d169–d175.
1998. View Article : Google Scholar : PubMed/NCBI
|
3
|
Minamino T, Komuro I and Kitakaze M:
Endoplasmic reticulum stress as a therapeutic target in
cardiovascular disease. Circ Res. 107:1071–1082. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yuzefovych L, Wilson G and Rachek L:
Different effects of oleate vs. palmitate on mitochondrial
function, apoptosis, and insulin signaling in L6 skeletal muscle
cells: Role of oxidative stress. Am J Physiol Endocrinol Metab.
299:E1096–E1105. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dasu MR and Jialal I: Free fatty acids in
the presence of high glucose amplify monocyte inflammation via
Toll-like receptors. Am J Physiol Endocrinol Metab. 300:E145–E154.
2011. View Article : Google Scholar :
|
6
|
Jung JG, Choi SE, Hwang YJ, Lee SA, Kim
EK, Lee MS, Han SJ, Kim HJ, Kim DJ, Kang Y and Lee KW:
Supplementation of pyruvate prevents palmitate-induced impairment
of glucose uptake in C2 myotubes. Mol Cell Endocrinol. 345:79–87.
2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lee MS, Choi SE, Ha ES, An SY, Kim TH, Han
SJ, Kim HJ, Kim DJ, Kang Y and Lee KW: Fibroblast growth factor-21
protects human skeletal muscle myotubes from palmitate-induced
insulin resistance by inhibiting stress kinase and NF-kB.
Metabolism. 61:1142–1151. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nauck MA and Meier JJ: Incretin hormones:
Their role in health and disease. Diabetes Obes Metab. 20(Suppl 1):
S5–S21. 2018. View Article : Google Scholar
|
9
|
Acitores A, Gonzalez N, Sancho V, Valverde
I and Villanueva-Penacarrillo ML: Cell signalling of glucagon-like
peptide-1 action in rat skeletal muscle. J Endocrinol. 180:389–398.
2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
D'Alessio DA, Prigeon RL and Ensinck JW:
Enteral enhancement of glucose disposition by both
insulin-dependent and insulin-independent processes. A
physiological role of glucagon-like peptide I Diabetes.
44:1433–1437. 1995.
|
11
|
Giannocco G, Oliveira KC, Crajoinas RO,
Venturini G, Salles TA, Fonseca-Alaniz MH, Maciel RM and Girardi
AC: Dipeptidyl peptidase IV inhibition upregulates GLUT4
translocation and expression in heart and skeletal muscle of
spontaneously hypertensive rats. Eur J Pharmacol. 698:74–86. 2013.
View Article : Google Scholar
|
12
|
Banks AS, Kon N, Knight C, Matsumoto M,
Gutiérrez-Juárez R, Rossetti L, Gu W and Accili D: SirT1 gain of
function increases energy efficiency and prevents diabetes in mice.
Cell Metab. 8:333–341. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Feige JN, Lagouge M, Canto C, Strehle A,
Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ and Auwerx J:
Specific SIRT1 activation mimics low energy levels and protects
against diet-induced metabolic disorders by enhancing fat
oxidation. Cell Metab. 8:347–358. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gerhart-Hines Z, Dominy JE Jr, Blattler
SM, Jedrychowski MP, Banks AS, Lim JH, Chim H, Gygi SP and
Puigserver P: The cAMP/PKA pathway rapidly activates SIRT1 to
promote fatty acid oxidation independently of changes in NAD(+).
Mol Cell. 44:851–863. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lim JH, Gerhart-Hines Z, Dominy JE, Lee Y,
Kim S, Tabata M, Xiang YK and Puigserver P: Oleic acid stimulates
complete oxidation of fatty acids through protein kinase
A-dependent activation of SIRT1-PGC1α complex. J Biol Chem.
288:7117–7126. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu F, Li Z, Zheng X, Liu H, Liang H, Xu H,
Chen Z, Zeng K and Weng J: SIRT1 mediates the effect of GLP-1
receptor agonist exenatide on ameliorating hepatic steatosis.
Diabetes. 63:3637–3646. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee J, Hong SW, Chae SW, Kim DH, Choi JH,
Bae JC, Park SE, Rhee EJ, Park CY, Oh KW, et al: Exendin-4 improves
steato-hepatitis by increasing Sirt1 expression in high-fat
diet-induced obese C57BL/6J mice. PLoS One. 7:e313942012.
View Article : Google Scholar
|
18
|
Lee J, Hong SW, Park SE, Rhee EJ, Park CY,
Oh KW, Park SW and Lee WY: Exendin-4 attenuates endoplasmic
reticulum stress through a SIRT1-dependent mechanism. Cell Stress
Chaperones. 19:649–656. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bastien-Dionne PO, Valenti L, Kon N, Gu W
and Buteau J: Glucagon-like peptide 1 inhibits the sirtuin
deacetylase SirT1 to stimulate pancreatic β-cell mass expansion.
Diabetes. 60:3217–3222. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kharitonenkov A, Wroblewski VJ, Koester A,
Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB and Etgen
GJ: The metabolic state of diabetic monkeys is regulated by
fibroblast growth factor-21. Endocrinology. 148:774–781. 2007.
View Article : Google Scholar
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
22
|
Nemoto S, Fergusson MM and Finkel T: SIRT1
functionally interacts with the metabolic regulator and
transcriptional coacti-vator PGC-1{alpha}. J Biol Chem.
280:16456–16460. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Houtkooper RH, Canto C, Wanders RJ and
Auwerx J: The secret life of NAD+: An old metabolite controlling
new metabolic signaling pathways. Endocr Rev. 31:194–223. 2010.
View Article : Google Scholar :
|
24
|
Holz GG: Epac: A new cAMP-binding protein
in support of glucagon-like peptide-1 receptor-mediated signal
transduction in the pancreatic beta-cell. Diabetes. 53:5–13. 2004.
View Article : Google Scholar
|
25
|
Luque MA, Gonzalez N, Marquez L, Acitores
A, Redondo A, Morales M, Valverde I and Villanueva-Peñacarrillo ML:
Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human
myocytes. J Endocrinol. 173:465–473. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
D'Alessio DA, Kahn SE, Leusner CR and
Ensinck JW: Glucagon-like peptide 1 enhances glucose tolerance both
by stimulation of insulin release and by increasing
insulin-independent glucose disposal. J Clin Invest. 93:2263–2266.
1994. View Article : Google Scholar : PubMed/NCBI
|
27
|
Egan JM, Montrose-Rafizadeh C, Wang Y,
Bernier M and Roth J: Glucagon-like peptide-1(7-36) amide (GLP-1)
enhances insulin-stimulated glucose metabolism in 3T3-L1
adipocytes: One of several potential extrapancreatic sites of GLP-1
action. Endocrinology. 135:2070–2075. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Miki H, Namba M, Nishimura T, Mineo I,
Matsumura T, Miyagawa J, Nakajima H, Kuwajima M, Hanafusa T and
Matsuzawa Y: Glucagon-like peptide-1(7-36)amide enhances
insulin-stimulated glucose uptake and decreases intracellular cAMP
content in isolated rat adipocytes. Biochim Biophys Acta.
1312:132–136. 1996. View Article : Google Scholar : PubMed/NCBI
|
29
|
Green CJ, Henriksen TI, Pedersen BK and
Solomon TP: Glucagon like peptide-1-induced glucose metabolism in
differentiated human muscle satellite cells is attenuated by
hyperglycemia. PLoS One. 7:e442842012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Arnes L, Gonzalez N, Tornero-Esteban P,
Sancho V, Acitores A, Valverde I, Delgado E and
Villanueva-Peñacarrillo ML: Characteristics of GLP-1 and exendins
action upon glucose transport and metabolism in type 2 diabetic rat
skeletal muscle. Int J Mol Med. 22:127–132. 2008.PubMed/NCBI
|
31
|
Li Z, Ni CL, Yao Z, Chen LM and Niu WY:
Liraglutide enhances glucose transporter 4 translocation via
regulation of AMP-activated protein kinase signaling pathways in
mouse skeletal muscle cells. Metabolism. 63:1022–1030. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Sjøberg KA, Holst JJ, Rattigan S, Richter
EA and Kiens B: GLP-1 increases microvascular recruitment but not
glucose uptake in human and rat skeletal muscle. Am J Physiol
Endocrinol Metab. 306:E355–E362. 2014. View Article : Google Scholar :
|
33
|
Rodgers JT, Lerin C, Haas W, Gygi SP,
Spiegelman BM and Puigserver P: Nutrient control of glucose
homeostasis through a complex of PGC-1alpha and SIRT1. Nature.
434:113–118. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Yu J and Auwerx J: The role of sirtuins in
the control of metabolic homeostasis. Ann N Y Acad Sci. 1173(Suppl
1): E10–E19. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Quiñones M, Al-Massadi O, Fernø J and
Nogueiras R: Cross-talk between SIRT1 and endocrine factors:
Effects on energy homeo-stasis. Mol Cell Endocrinol. 397:42–50.
2014. View Article : Google Scholar
|
36
|
Li Z, Zhu Y, Li C, Tang Y, Jiang Z, Yang
M, Ni CL, Li D, Chen L and Niu W: Liraglutide ameliorates
palmitate-induced insulin resistance through inhibiting the IRS-1
serine phosphorylation in mouse skeletal muscle cells. J Endocrinol
Invest. 41:1097–1102. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gonzalez N, Acitores A, Sancho V, Valverde
I and Villanueva-Penacarrillo ML: Effect of GLP-1 on glucose
transport and its cell signalling in human myocytes. Regul Pept.
126:203–211. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Egan JM, Meneilly GS, Habener JF and Elahi
D: Glucagon-like peptide-1 augments insulin-mediated glucose uptake
in the obese state. J Clin Endocrinol Metab. 87:3768–3773. 2002.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zander M, Madsbad S, Madsen JL and Holst
JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic
control, insulin sensitivity, and beta-cell function in type 2
diabetes: A parallel-group study. Lancet. 359:824–830. 2002.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Seghieri M, Rebelos E, Gastaldelli A,
Astiarraga BD, Casolaro A, Barsotti E, Pocai A, Nauck M, Muscelli E
and Ferrannini E: Direct effect of GLP-1 infusion on endogenous
glucose production in humans. Diabetologia. 56:156–161. 2013.
View Article : Google Scholar
|
41
|
Sandhu H, Wiesenthal SR, MacDonald PE,
McCall RH, Tchipashvili V, Rashid S, Satkunarajah M, Irwin DM, Shi
ZQ, Brubaker PL, et al: Glucagon-like peptide 1 increases insulin
sensitivity in depancreatized dogs. Diabetes. 48:1045–1053. 1999.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang H, Egan JM, Wang Y, Moyes CD, Roth J,
Montrose MH and Montrose-Rafizadeh C: GLP-1 action in L6 myotubes
is via a receptor different from the pancreatic GLP-1 receptor. Am
J Physiol. 275:C675–C683. 1998. View Article : Google Scholar : PubMed/NCBI
|
43
|
Houtkooper RH, Pirinen E and Auwerx J:
Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol
Cell Biol. 13:225–238. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yonamine CY, Pinheiro-Machado E, Michalani
ML, Alves-Wagner AB, Esteves JV, Freitas HS and Machado UF:
Resveratrol improves glycemic control in Type 2 diabetic obese mice
by regulating glucose transporter expression in skeletal muscle and
liver. Molecules. 22:pii: E1180. 2017.PubMed/NCBI
|
45
|
Fehmann HC, Jiang J, Pitt D, Schweinfurth
J and Goke B: Ligand-induced regulation of glucagon-like peptide-I
receptor function and expression in insulin-secreting beta cells.
Pancreas. 13:273–282. 1996. View Article : Google Scholar : PubMed/NCBI
|
46
|
Liu L, Liu J, Wong WT, Tian XY, Lau CW,
Wang YX, Xu G, Pu Y, Zhu Z, Xu A, et al: Dipeptidyl peptidase 4
inhibitor sita-gliptin protects endothelial function in
hypertension through a glucagon-like peptide 1-dependent mechanism.
Hypertension. 60:833–841. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jo S, Chen J, Xu G, Grayson TB, Thielen LA
and Shalev A: miR-204 controls glucagon-like peptide 1 receptor
expression and agonist function. Diabetes. 67:256–264. 2018.
View Article : Google Scholar :
|
48
|
Kimura T, Obata A, Shimoda M, Okauchi S,
Hirukawa H, Kohara K, Kinoshita T, Nogami Y, Nakanishi S, Mune T,
et al: Decreased glucagon-like peptide 1 receptor expression in
endothelial and smooth muscle cells in diabetic db/db mice: TCF7L2
is a possible regulator of the vascular glucagon-like peptide 1
receptor. Diab Vasc Dis Res. 14:540–548. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Frescas D, Valenti L and Accili D: Nuclear
trapping of the fork-head transcription factor FoxO1 via
Sirt-dependent deacetylation promotes expression of glucogenetic
genes. J Biol Chem. 280:20589–20595. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bordone L, Motta MC, Picard F, Robinson A,
Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A,
et al: Sirt1 regulates insulin secretion by repressing UCP2 in
pancreatic beta cells. PLoS Biol. 4:e312006. View Article : Google Scholar
|
51
|
Lee JH, Song MY, Song EK, Kim EK, Moon WS,
Han MK, Park JW, Kwon KB and Park BH: Overexpression of SIRT1
protects pancreatic beta-cells against cytokine toxicity by
suppressing the nuclear factor-kappaB signaling pathway. Diabetes.
58:344–351. 2009. View Article : Google Scholar :
|
52
|
Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X
and Zhai Q: SIRT1 improves insulin sensitivity under
insulin-resistant conditions by repressing PTP1B. Cell Metab.
6:307–319. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Schenk S, McCurdy CE, Philp A, Chen MZ,
Holliday MJ, Bandyopadhyay GK, Osborn O, Baar K and Olefsky JM:
Sirt1 enhances skeletal muscle insulin sensitivity in mice during
caloric restriction. J Clin Invest. 121:4281–4288. 2011. View Article : Google Scholar : PubMed/NCBI
|