1
|
Wei EP, Christman CW, Kontos HA and
Povlishock JT: Effects of oxygen radicals on cerebral arterioles.
Am J Physiol. 248:H157–H162. 1985.PubMed/NCBI
|
2
|
Sies H: Oxidative stress: A concept in
redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Russell EG and Cotter TG: New insight into
the role of reactive oxygen species (ROS) in cellular
signal-transduction processes. Int Rev Cell Mol Biol. 319:221–254.
2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lushchak VI: Free radicals, reactive
oxygen species, oxidative stress and its classification. Chem Biol
Interact. 224:164–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kruk J, Kubasik-Kladna K and Aboul-Enein
HY: The role oxidative stress in the pathogenesis of eye diseases:
Current status and a dual role of physical activity. Mini Rev Med
Chem. 16:241–257. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ames A III: Energy requirements of CNS
cells as related to their function and to their vulnerability to
ischemia: A commentary based on studies on retina. Can J Physiol
Pharmacol. (70 Suppl): S158–S164. 1992. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guo X, Dason ES, Zanon-Moreno V, Jiang Q,
Nahirnyj A, Chan D, Flanagan JG and Sivak JM: PGC-1α signaling
coordinates susceptibility to metabolic and oxidative injury in the
inner retina. Am J Pathol. 184:1017–1029. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Moreno ML, Mérida S, Bosch-Morell F,
Miranda M and Villar VM: Autophagy dysfunction and oxidative
stress, two related mechanisms implicated in retinitis pigmentosa.
Front Physiol. 9:10082018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang K, Zhu X, Zhang K, Yao Y, Zhuang M,
Tan C, Zhou F and Zhu L: Puerarin inhibits amyloid β-induced NLRP3
inflammasome activation in retinal pigment epithelial cells via
suppressing ROS-dependent oxidative and endoplasmic reticulum
stresses. Exp Cell Res. 357:335–340. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Briyal S, Shepard C and Gulati A:
Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid
(Aβ) induced oxidative stress and cognitive impairment in normal
and diabetic rats. Pharmacol Biochem Behav. 120:65–72. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang R, Wang Q, Min L, Sui R, Li J and Liu
X: Monosialoanglioside improves memory deficits and relieves
oxidative stress in the hippocampus of rat model of Alzheimer's
disease. Neurol Sci. 34:1447–1451. 2013. View Article : Google Scholar
|
12
|
Yoshida T, Ohno-Matsui K, Ichinose S, Sato
T, Iwata N, Saido TC, Hisatomi T, Mochizuki M and Morita I: The
potential role of amyloid beta in the pathogenesis of age-related
macular degeneration. J Clin Invest. 115:2793–2800. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wilson JE: Hexokinases. Rev Physiol
Biochem Pharmacol. 126:65–198. 1995. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wilson JE: Isozymes of mammalian
hexokinase: Structure, subcellular localization and metabolic
function. J Exp Biol. 206:2049–2057. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ardehali H, Printz RL, Whitesell RR, May
JM and Granner DK: Functional interaction between the N- and
C-terminal halves of human hexokinase II. J Biol Chem.
274:15986–15989. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Robey RB and Hay N: Mitochondrial
hexokinases, novel mediators of the antiapoptotic effects of growth
factors and Akt. Oncogene. 25:4683–4696. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pedersen PL: Warburg, me and Hexokinase 2:
Multiple discoveries of key molecular events underlying one of
cancers' most common phenotypes, the 'Warburg Effect', i.e.,
elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr.
39:211–222. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Heikkinen S, Suppola S, Malkki M, Deeb SS,
Jänne J and Laakso M: Mouse hexokinase II gene: Structure, cDNA,
promoter analysis, and expression pattern. Mamm Genome. 11:91–96.
2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Roberts DJ, Tan-Sah VP, Smith JM and
Miyamoto S: Akt phosphorylates HK-II at Thr-473 and increases
mitochondrial HK-II association to protect cardiomyocytes. J Biol
Chem. 288:23798–23806. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Majewski N, Nogueira V, Bhaskar P, Coy PE,
Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB and Hay N:
Hexokinase-mitochondria interaction mediated by Akt is required to
inhibit apoptosis in the presence or absence of Bax and Bak. Mol
Cell. 16:819–830. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pastorino JG, Shulga N and Hoek JB:
Mitochondrial binding of hexokinase II inhibits Bax-induced
cytochrome c release and apoptosis. J Biol Chem. 277:7610–7618.
2002. View Article : Google Scholar
|
22
|
Das S, Steenbergen C and Murphy E: Does
the voltage dependent anion channel modulate cardiac
ischemia-reperfusion injury? Biochim Biophys Acta. 1818:1451–1456.
2012. View Article : Google Scholar :
|
23
|
Pasdois P, Parker JE and Halestrap AP:
Extent of mitochondrial hexokinase II dissociation during ischemia
correlates with mitochondrial cytochrome c release, reactive oxygen
species production, and infarct size on reperfusion. J Am Heart
Assoc. 2:e0056452012.PubMed/NCBI
|
24
|
Calmettes G, John SA, Weiss JN and Ribalet
B: Hexokinase-mitochondrial interactions regulate glucose
metabolism differentially in adult and neonatal cardiac myocytes. J
Gen Physiol. 142:425–436. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Samuni Y, Goldstein S, Dean OM and Berk M:
The chemistry and biological activities of N-acetylcysteine.
Biochim Biophys Acta. 1830:4117–4129. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rushworth GF and Megson IL: Existing and
potential therapeutic uses for N-acetylcysteine: The need for
conversion to intracellular glutathione for antioxidant benefits.
Pharmacol Ther. 141:150–159. 2014. View Article : Google Scholar
|
27
|
Garner DL and Thomas CA:
Organelle-specific probe JC-1 identifies membrane potential
differences in the mitochondrial function of bovine sperm. Mol
Reprod Dev. 53:222–229. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
29
|
Wert KJ, Lin JH and Tsang SH: General
pathophysiology in retinal degeneration. Dev Ophthalmol. 53:33–43.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Geerlings MJ, de Jong EK and den Hollander
AI: The complement system in age-related macular degeneration: A
review of rare genetic variants and implications for personalized
treatment. Mol Immunol. 84:65–76. 2017. View Article : Google Scholar :
|
31
|
Petit L and Punzo C: mTORC1 sustains
vision in retinitis pigmentosa. Oncotarget. 6:16786–16787. 2015.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Campochiaro PA, Strauss RW, Lu L, Hafiz G,
Wolfson Y, Shah SM, Sophie R, Mir TA and Scholl HP: Is there excess
oxidative stress and damage in eyes of patients with retinitis
pigmentosa? Antioxid Redox Signal. 23:643–648. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mitra RN, Conley SM and Naash MI:
Therapeutic approach of nanotechnology for oxidative stress induced
ocular neurodegenerative diseases. Adv Exp Med Biol. 854:463–469.
2016. View Article : Google Scholar
|
34
|
Li Y, Li J, Li S, Li Y, Wang X, Liu B, Fu
Q and Ma S: Curcumin attenuates glutamate neurotoxicity in the
hippocampus by suppression of ER stress-associated TXNIP/NLRP3
inflammasome activation in a manner dependent on AMPK. Toxicol Appl
Pharmacol. 286:53–63. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shimizu S, Ide T, Yanagida T and Tsujimoto
Y: Electrophysiological study of a novel large pore formed by Bax
and the voltage-dependent anion channel that is permeable to
cytochrome c. J Biol Chem. 275:12321–12325. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Banerjee J and Ghosh S: Phosphorylation of
rat brain mitochondrial voltage-dependent anion as a potential tool
to control leakage of cytochrome c. J Neurochem. 98:670–676. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sun L, Shukair S, Naik TJ, Moazed F and
Ardehali H: Glucose phosphorylation and mitochondrial binding are
required for the protective effects of hexokinases I and II. Mol
Cell Biol. 28:1007–1017. 2008. View Article : Google Scholar :
|
38
|
Chiara F, Castellaro D, Marin O,
Petronilli V, Brusilow WS, Juhaszova M, Sollott SJ, Forte M,
Bernardi P and Rasola A: Hexokinase II detachment from mitochondria
triggers apoptosis through the permeability transition pore
independent of voltage-dependent anion channels. PLoS One.
3:e18522008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mathupala SP, Ko YH and Pedersen PL:
Hexokinase II: Cancer's double-edged sword acting as both
facilitator and gatekeeper of malignancy when bound to
mitochondria. Oncogene. 25:4777–4786. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Halestrap AP, McStay GP and Clarke SJ: The
permeability transition pore complex: Another view. Biochimie.
84:153–166. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Woldetsadik AD, Vogel MC, Rabeh WM and
Magzoub M: Hexokinase II-derived cell-penetrating peptide targets
mitochondria and triggers apoptosis in cancer cells. FASEB J.
31:2168–2184. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Moreira PI, Santos MS, Moreno A, Rego AC
and Oliveira C: Effect of amyloid beta-peptide on permeability
transition pore: A comparative study. J Neurosci Res. 69:257–267.
2002. View Article : Google Scholar : PubMed/NCBI
|
43
|
Gottlieb RA: Mitochondria: Execution
central. FEBS Lett. 482:6–12. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Gottlieb E, Armour SM, Harris MH and
Thompson CB: Mitochondrial membrane potential regulates matrix
configuration and cytochrome c release during apoptosis. Cell Death
Differ. 10:709–717. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Birkinshaw RW and Czabotar PE: The BCL-2
family of proteins and mitochondrial outer membrane
permeabilisation. Semin Cell Dev Biol. 72:152–162. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lee SY, Usui S, Zafar AB, Oveson BC, Jo
YJ, Lu L, Masoudi S and Campochiaro PA: N-Acetylcysteine promotes
long-term survival of cones in a model of retinitis pigmentosa. J
Cell Physiol. 226:1843–1849. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
McCommis KS, Douglas DL, Krenz M and
Baines CP: Cardiac-specific hexokinase 2 overexpression attenuates
hypertrophy by increasing pentose phosphate pathway flux. J Am
Heart Assoc. 2:e0003552013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Corona JC, Gimenez-Cassina A, Lim F and
Diaz-Nido J: Hexokinase II gene transfer protects against
neurodegeneration in the rotenone and MPTP mouse models of
Parkinson's disease. J Neurosci Res. 88:1943–1950. 2010.PubMed/NCBI
|
49
|
Abeyrathna P and Su Y: The critical role
of Akt in cardiovascular function. Vascul Pharmacol. 74:38–48.
2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhuo B, Li Y, Li Z, Qin H, Sun Q, Zhang F,
Shen Y, Shi Y and Wang R: PI3K/Akt signaling mediated Hexokinase-2
expression inhibits cell apoptosis and promotes tumor growth in
pediatric osteosarcoma. Biochem Biophys Res Commun. 464:401–406.
2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hyun S, Kim MS, Song YS, Bak Y, Ham SY,
Lee DH, Hong J and Yoon DY: Peroxisome proliferator-activated
receptor-gamma agonist 4-O-methylhonokiol induces apoptosis by
triggering the intrinsic apoptosis pathway and inhibiting the
PI3K/Akt survival pathway in SiHa human cervical cancer cells. J
Microbiol Biotechnol. 25:334–342. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sun D, Sawada A, Nakashima M, Kobayashi T,
Ogawa O and Matsui Y: MK2206 potentiates cisplatin-induced
cytotoxicity and apoptosis through an interaction of inactivated
Akt signaling pathway. Urol Oncol. 33:111.e17–e26. 2015. View Article : Google Scholar
|
53
|
Duan WR, Garner DS, Williams SD,
Funckes-Shippy CL, Spath IS and Blomme EA: Comparison of
immunohistochemistry for activated caspase-3 and cleaved
cytokeratin 18 with the TUNEL method for quantification of
apoptosis in histological sections of PC-3 subcutaneous xenografts.
J Pathol. 199:221–228. 2003. View Article : Google Scholar : PubMed/NCBI
|
54
|
Liu YQ, Liu YF, Ma XM, Xiao YD, Wang YB,
Zhang MZ, Cheng AX, Wang TT, Li JL, Zhao PX, et al: Hydrogen-rich
saline attenuates skin ischemia/reperfusion induced apoptosis via
regulating Bax/Bcl-2 ratio and ASK-1/JNK pathway. J Plast Reconstr
Aesthet Surg. 68:e147–e156. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Liang S, Sun K, Wang Y, Dong S, Wang C,
Liu L and Wu Y: Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS
death receptor pathway in apoptosis induced by zinc oxide
nanoparticles in human aortic endothelial cells and the protective
effect by alpha-lipoic acid. Chem Biol Interact. 258:40–51. 2016.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Gottlob K, Majewski N, Kennedy S, Kandel
E, Robey RB and Hay N: Inhibition of early apoptotic events by
Akt/PKB is dependent on the first committed step of glycolysis and
mitochondrial hexokinase. Genes Dev. 15:1406–1418. 2001. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lobanova EG and Kondrat'eva EV:
Measurement of mitochondrial membrane potential in leukocyte
suspension by fluorescent spectroscopy. Bull Exp Biol Med.
157:288–290. 2014. View Article : Google Scholar : PubMed/NCBI
|
58
|
Tian Q and Zang YH: Antiproliferative and
apoptotic effects of the ethanolic herbal extract of Achillea
falcata in human cervical cancer cells are mediated via cell cycle
arrest and mitochondrial membrane potential loss. J BUON.
20:1487–1496. 2015.
|
59
|
Lu X, Wang C and Liu B: The role of
Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and
pathogen challenge in the clam Meretrix meretrix. Fish Shellfish
Immunol. 42:58–65. 2015. View Article : Google Scholar
|