1
|
Guo LL, Wang DS, Xu YY and Cui KG: Effects
of IL-1β on hippocampus cell apoptosis and learning ability of
vascular dementia rats. Eur Rev Med Pharmacol Sci. 22:6042–6048.
2018.PubMed/NCBI
|
2
|
Yang JW, Wang XR, Zhang M, Xiao LY, Zhu W,
Ji CS and Liu CZ: Acupuncture as a multifunctional neuroprotective
therapy ameliorates cognitive impairment in a rat model of vascular
dementia: A quantitative iTRAQ proteomics study. CNS Neurosci Ther.
24:1264–1274. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang HY, Liu Y, Xie JC, Liu NN and Tian X:
Effects of repetitive transcranial magnetic stimulation on synaptic
plasticity and apoptosis in vascular dementia rats. Behav Brain
Res. 281:149–155. 2015. View Article : Google Scholar
|
4
|
Farkas E and Luiten PG: Cerebral
microvascular pathology in aging and Alzheimer's disease. Prog
Neurobiol. 64:575–611. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Damodaran T, Müller CP and Hassan Z:
Chronic cerebral hypoperfusion-induced memory impairment and
hippocampal long-term potentiation deficits are improved by
cholinergic stimulation in rats. Pharmacol Rep. 71:443–448. 2019.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Waldmeier PC: Prospects for antiapoptotic
drug therapy of neurodegenerative diseases. Prog
Neuropsychopharmacol Biol Psychiatry. 27:303–321. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jinglong T, Weijuan G, Jun L, Tao Q,
Hongbo Z and Shasha L: The molecular and electrophysiological
mechanism of buyanghuanwu decoction in learning and memory ability
of vascular dementia rats. Brain Res Bull. 99:13–18. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Scheff SW, Neltner JH and Nelson PT: Is
synaptic loss a unique hallmark of Alzheimer's disease? Biochem
Pharmacol. 88:517–528. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kalaria RN: The pathology and
pathophysiology of vascular dementia. Neuropharmacology.
134:226–239. 2018. View Article : Google Scholar
|
10
|
Ren Z, Yu J, Wu Z, Si W, Li X, Liu Y, Zhou
J, Deng R and Chen D: MicroRNA-210-5p contributes to cognitive
impairment in early vascular dementia rat model through targeting
Snap25. Front Mol Neurosci. 11:3882018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Terry RD, Masliah E, Salmon DP, Butters N,
DeTeresa R, Hill R, Hansen LA and Katzman R: Physical basis of
cognitive alterations in Alzheimer's disease: Synapse loss is the
major correlate of cognitive impairment. Ann Neurol. 30:572–580.
1991. View Article : Google Scholar : PubMed/NCBI
|
12
|
Blennow K, Bogdanovic N, Alafuzoff I,
Ekman R and Davidsson P: Synaptic pathology in Alzheimer's disease:
Relation to severity of dementia, but not to senile plaques,
neurofibrillary tangles, or the ApoE4 allele. J Neural Transm
(Vienna). 103:603–618. 1996. View Article : Google Scholar
|
13
|
Guo Y, Zhao Y, Nan Y, Wang X, Chen Y and
Wang S: (-)-Epigallocatechin-3-gallate ameliorates memory
impairment and rescues the abnormal synaptic protein levels in the
frontal cortex and hippocampus in a mouse model of Alzheimer's
disease. Neuroreport. 28:590–597. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guarnieri FC, Pozzi D, Raimondi A, Fesce
R, Valente MM, Delvecchio VS, Van Esch H, Matteoli M, Benfenati F,
D'Adamo P and Valtorta F: A novel SYN1 missense mutation in
non-syndromic X-linked intellectual disability affects synaptic
vesicle life cycle, clustering and mobility. Hum Mol Genet.
26:4699–4714. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Batista AFR, Martinez JC and Hengst U:
Intra-axonal synthesis of SNAP25 is required for the formation of
presynaptic terminals. Cell Rep. 20:3085–3098. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fassio A, Patry L, Congia S, Onofri F,
Piton A, Gauthier J, Pozzi D, Messa M, Defranchi E, Fadda M, et al:
SYN1 loss-of-function mutations in autism and partial epilepsy
cause impaired synaptic function. Hum Mol Genet. 20:2297–2307.
2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Shupliakov O, Haucke V and Pechstein A:
How synapsin I may cluster synaptic vesicles. Semin Cell Dev Biol.
22:393–399. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sinclair LI, Tayler HM and Love S:
Synaptic protein levels altered in vascular dementia. Neuropathol
Appl Neurobiol. 41:533–543. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Gallart-Palau X, Serra A, Qian J, Chen CP,
Kalaria RN and Sze SK: Temporal lobe proteins implicated in
synaptic failure exhibit differential expression and deamidation in
vascular dementia. Neurochem Int. 80:87–98. 2015. View Article : Google Scholar
|
20
|
Rodenas-Cuadrado PM, Mengede J, Baas L,
Devanna P, Schmid TA, Yartsev M, Firzlaff U and Vernes SC: Mapping
the distribution of language related genes FoxP1, FoxP2, and
CntnaP2 in the brains of vocal learning bat species. J Comp Neurol.
526:1235–1266. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chiu YC, Li MY, Liu YH, Ding JY, Yu JY and
Wang TW: Foxp2 regulates neuronal differentiation and neuronal
subtype specification. Dev Neurobiol. 74:723–738. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vernes SC, Spiteri E, Nicod J, Groszer M,
Taylor JM, Davies KE, Geschwind DH and Fisher SE: High-throughput
analysis of promoter occupancy reveals direct neural targets of
FOXP2, a gene mutated in speech and language disorders. Am J Hum
Genet. 81:1232–1250. 2007. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Konopka G, Bomar JM, Winden K, Coppola G,
Jonsson ZO, Gao F, Peng S, Preuss TM, Wohlschlegel JA and Geschwind
DH: Human-specific transcriptional regulation of CNS development
genes by FOXP2. Nature. 462:213–217. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Spiteri E, Konopka G, Coppola G, Bomar J,
Oldham M, Ou J, Vernes SC, Fisher SE, Ren B and Geschwind DH:
Identification of the transcriptional targets of FOXP2, a gene
linked to speech and language, in developing human brain. Am J Hum
Genet. 81:1144–1157. 2007. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Vernes SC, Oliver PL, Spiteri E, Lockstone
HE, Puliyadi R, Taylor JM, Ho J, Mombereau C, Brewer A, Lowy E, et
al: Foxp2 regulates gene networks implicated in neurite outgrowth
in the developing brain. PLoS Genet. 7:pp. e10021452011, View Article : Google Scholar : PubMed/NCBI
|
26
|
Fu L, Shi Z, Luo G, Tu W, Wang X, Fang Z
and Li X: Multiple microRNAs regulate human FOXP2 gene expression
by targeting sequences in its 3' untranslated region. Mol Brain.
7:712014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Higuchi Y, Soga T and Parhar IS: Potential
roles of microRNAs in the regulation of monoamine oxidase a in the
brain. Front Mol Neurosci. 11:3392018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang D, Wang X, Liu X, Jiang L, Yang G,
Shi X, Zhang C and Piao F: Inhibition of miR-219 alleviates
arsenic-induced learning and memory impairments and synaptic damage
through up-regulating CaMKII in the hippocampus. Neurochem Res.
43:948–958. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Edbauer D, Neilson JR, Foster KA, Wang CF,
Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA and Sheng M:
Regulation of synaptic structure and function by FMRP-associated
microRNAs miR-125b and miR-132. Neuron. 65:373–384. 2010.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wayman GA, Davare M, Ando H, Fortin D,
Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman
RH and Impey S: An activity-regulated microRNA controls dendritic
plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA.
105:9093–9098. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
McCann C, Holohan EE, Das S, Dervan A,
Larkin A, Lee JA, Rodrigues V, Parker R and Ramaswami M: The
Ataxin-2 protein is required for microRNA function and
synapse-specific long-term olfactory habituation. Proc Natl Acad
Sci USA. 108:E655–E662. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schratt GM, Tuebing F, Nigh EA, Kane CG,
Sabatini ME, Kiebler M and Greenberg ME: A brain-specific microRNA
regulates dendritic spine development. Nature. 439:283–289. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bicker S, Lackinger M, Weiß K and Schratt
G: MicroRNA-132, -134, and -138: A microRNA troika rules in
neuronal dendrites. Cell Mol Life Sci. 71:3987–4005. 2014.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Yu H, Fan C, Yang L, Yu S, Song Q, Wang P
and Mao X: Ginsenoside Rg1 prevents chronic stress-induced
depression-like behaviors and neuronal structural plasticity in
rats. Cell Physiol Biochem. 48:2470–2482. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
36
|
Liu C, Guo Y, Zhao F, Qin H, Lu H, Fang L,
Wang J and Min W: Potential mechanisms mediating the protective
effects of a peptide from walnut (Juglans mandshurica Maxim.)
against hydrogen peroxide induced neurotoxicity in PC12 cells. Food
Funct. 10:3491–3501. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Niu XL, Jiang X, Xu GD, Zheng GM, Tang ZP,
Yin N, Li XQ, Yang YY and Lv PY: DL-3-n-butylphthalide alleviates
vascular cognitive impairment by regulating endoplasmic reticulum
stress and the Shh/Ptch1 signaling-pathway in rats. J Cell Physiol.
234:12604–12614. 2019. View Article : Google Scholar
|
38
|
Komatani A, Yamaguchi K, Sugai Y,
Takanashi T, Kera M, Shinohara M and Kawakatsu S: Assessment of
demented patients by dynamic SPECT of inhaled xenon-133. J Nucl
Med. 29:1621–1626. 1988.PubMed/NCBI
|
39
|
Ohnishi T, Hoshi H, Nagamachi S, Jinnouchi
S, Flores LG II, Futami S and Watanabe K: High-resolution SPECT to
assess hippocampal perfusion in neuropsychiatric diseases. J Nucl
Med. 36:1163–1169. 1995.PubMed/NCBI
|
40
|
Tsuchiya M, Sako K, Yura S and Yonemasu Y:
Local cerebral glucose utilisation following acute and chronic
bilateral carotid artery ligation in Wistar rats: Relation to
changes in local cerebral blood flow. Exp Brain Res. 95:1–7. 1993.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Prabhakar P, Chandra SR and Christopher R:
Circulating microRNAs as potential biomarkers for the
identification of vascular dementia due to cerebral small vessel
disease. Age Ageing. 46:861–864. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Baek D, Villén J, Shin C, Camargo FD, Gygi
SP and Bartel DP: The impact of microRNAs on protein output.
Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
McGowan H, Mirabella VR, Hamod A,
Karakhanyan A, Mlynaryk N, Moore JC, Tischfield JA, Hart RP and
Pang ZP: Hsa-let-7c miRNA regulates synaptic and neuronal function
in human neurons. Front Synaptic Neurosci. 10:192018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Prada I, Gabrielli M, Turola E, Iorio A,
D'Arrigo G, Parolisi R, De Luca M, Pacifici M, Bastoni M, Lombardi
M, et al: Glia-to-neuron transfer of miRNAs via extracellular
vesicles: A new mechanism underlying inflammation-induced synaptic
alterations. Acta Neuropathol. 135:529–550. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang X, Liu D, Huang HZ, Wang ZH, Hou TY,
Yang X, Pang P, Wei N, Zhou YF, Dupras MJ, et al: A novel
microRNA-124/PTPN1 signal pathway mediates synaptic and memory
deficits in Alzheimer's disease. Biol Psychiatry. 83:395–405. 2018.
View Article : Google Scholar
|
46
|
Cohen JE, Lee PR, Chen S, Li W and Fields
RD: MicroRNA regulation of homeostatic synaptic plasticity. Proc
Natl Acad Sci USA. 108:11650–11655. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
D'Hooge R and De Deyn PP: Applications of
the Morris water maze in the study of learning and memory. Brain
Res Brain Res Rev. 36:60–90. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhu Y, Zhang Q, Zhang W, Li N, Dai Y, Tu
J, Yang F, Brann DW and Wang R: Protective effect of 17β-estradiol
upon hippo-campal spine density and cognitive function in an animal
model of vascular dementia. Sci Rep. 7:426602017. View Article : Google Scholar
|
49
|
Estruch SB, Graham SA, Quevedo M, Vino A,
Dekkers DHW, Deriziotis P, Sollis E, Demmers J, Poot RA and Fisher
SE: Proteomic analysis of FOXP proteins reveals interactions
between cortical transcription factors associated with
neurodevelopmental disorders. Hum Mol Genet. 27:1212–1227. 2018.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Hachigian LJ, Carmona V, Fenster RJ,
Kulicke R, Heilbut A, Sittler A, Pereira de Almeida L, Mesirov JP,
Gao F, Kolaczyk ED and Heiman M: Control of huntington's
disease-associated phenotypes by the striatum-enriched
transcription factor Foxp2. Cell Rep. 21:2688–2695. 2017.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Ferland RJ, Cherry TJ, Preware PO,
Morrisey EE and Walsh CA: Characterization of Foxp2 and Foxp1 mRNA
and protein in the developing and mature brain. J Comp Neurol.
460:266–279. 2003. View Article : Google Scholar : PubMed/NCBI
|
52
|
Hisaoka T, Nakamura Y, Senba E and
Morikawa Y: The fork-head transcription factors, Foxp1 and Foxp2,
identify different subpopulations of projection neurons in the
mouse cerebral cortex. Neuroscience. 166:551–563. 2010. View Article : Google Scholar
|
53
|
Groszer M, Keays DA, Deacon RM, de Bono
JP, Prasad- Mulcare S, Gaub S, Baum MG, French CA, Nicod J,
Coventry JA, et al: Impaired synaptic plasticity and motor learning
in mice with a point mutation implicated in human speech deficits.
Curr Biol. 18:354–362. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kang HJ, Voleti B, Hajszan T, Rajkowska G,
Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr
M, et al: Decreased expression of synapse-related genes and loss of
synapses in major depressive disorder. Nat Med. 18:1413–1417. 2012.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Park HJ, Kim SK, Kang WS, Chung JH and Kim
JW: Increased activation of synapsin 1 and mitogen-activated
protein kinases/extracellular signal-regulated kinase in the
amygdala of maternal separation rats. CNS Neurosci Ther.
20:172–181. 2014. View Article : Google Scholar
|