1
|
Cahill TJ and Kharbanda RK: Heart failure
after myocardial infarction in the era of primary percutaneous
coronary intervention: Mechanisms, incidence and identification of
patients at risk. World J Cardiol. 9:407–415. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv
F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3
substrate mediating ischemia- and oxidative stress-induced
myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
He S, Huang S and Shen Z: Biomarkers for
the detection of necroptosis. Cell Mol Life Sci. 73:2177–2181.
2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Luedde M, Lutz M, Carter N, Sosna J,
Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F,
et al: RIP3, a kinase promoting necroptotic cell death, mediates
adverse remodelling after myocardial infarction. Cardiovasc Res.
103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oerlemans MI, Liu J, Arslan F, den Ouden
K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of
RIP1-dependent necrosis prevents adverse cardiac remodeling after
myocardial ischemia-reperfusion in vivo. Basic Res Cardiol.
107:2702012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tian XF, Yang SW and Zhou YJ: Autophagy,
dysglycemia and myocardial infarction. Ijc Metab Endocr. 14:40–44.
2017. View Article : Google Scholar
|
7
|
Nakai A, Yamaguchi O, Takeda T, Higuchi Y,
Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et
al: The role of autophagy in cardiomyocytes in the basal state and
in response to hemodynamic stress. Nat Med. 13:619–624. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sciarretta S, Zhai PY, Shao D, Maejima Y,
Robbins J, Volpe M, Condorelli G and Sadoshima J: Rheb is a
critical regulator of autophagy during myocardial ischemia:
Pathophysiological implications in obesity and metabolic syndrome.
Circulation. 125:1134–1166. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sengupta A, Molkentin JD, Paik JH, DePinho
RA and Yutzey KE: FoxO transcription factors promote cardiomyocyte
survival upon induction of oxidative stress. J Biol Chem.
9:7468–7478. 2011. View Article : Google Scholar
|
10
|
Goodall ML, Cramer SD and Thorburn A:
Autophagy complexes cell death by necroptosis. Oncotarget.
7:50818–50819. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ogasawara M, Yano T, Tanno M, Abe K,
Ishikawa S, Miki T, Kuno A, Tobisawa T, Muratsubaki S, Ohno K, et
al: Suppression of autophagic flux contributes to cardiomyocyte
death by activation of necroptotic pathways. J Mol Cell Cardiol.
108:203–213. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nikoletopoulou V, Markaki M, Palikaras K
and Tavernarakis N: Crosstalk between apoptosis, necrosis and
autophagy. Biochim Biophys Acta. 1833.3448–3459. 2013.
|
13
|
Rana SV, Pal R, Vaiphei K, Sharma SK and
Ola RP: Garlic in health and disease. Nutr Res Rev. 24:60–71. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chan JY, Yuen AC, Chan RY and Chan SW: A
review of the cardiovascular benefits and antioxidant properties of
allicin. Phytother Res. 27:637–646. 2013. View Article : Google Scholar
|
15
|
Quintero-Fabián S, Ortuño-Sahagún D,
Vázquez-Carrera M and López-Roa RI: Alliin, a garlic (Allium
sativum) compound, prevents LPS-induced inflammation in 3T3-L1
adipocytes. Mediators Inflamm. 2013.381815:2013.
|
16
|
Augusti KT and Sheela CG: Antiperoxide
effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in
diabetic rats. Experientia. 52:115–120. 1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sangeetha T and Darlin Quine S: Preventive
effect of S-allyl cysteine sulfoxide (alliin) on cardiac marker
enzymes and lipids in isoproterenol-induced myocardial injury. J
Pharm Pharmacol. 58:617–623. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhao R, Xie E, Yang X and Gong B: Alliin
alleviates myocardial ischemia-reperfusion injury by promoting
autophagy. Biochem Biophys Res Commun. 512:236–243. 2019.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Gao E, Lei YH, Shang X, Huang ZM, Zuo L,
Boucher M, Fan Q, Chuprun JK, Ma XL and Koch WJ: A novel and
efficient model of coronary artery ligation and myocardial
infarction in the mouse. Circ Res. 107:1445–1453. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sun MY, Ma DS, Zhao S, Wang L, Ma CY and
Bai Y: Salidroside mitigates hypoxia/reoxygenation injury by
alleviating endoplasmic reticulum stress-induced apoptosis in H9c2
cardiomyocytes. Mol Med Rep. 18:3760–3768. 2018.PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
22
|
Banerjee I, Fuseler JW, Intwala AR and
Baudino TA: IL-6 loss causes ventricular dysfunction, fibrosis,
reduced capillary density, and dramatically alters the cell
populations of the developing and adult heart. Am J Physiol Heart
Circ Physiol. 296:H1694–H1704. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene Ontology: Tool for the unification of biology. The Gene
Ontology Consortium Nat Genet. 25:25–29. 2000.
|
24
|
The Gene Ontology: Consortium: The Gene
Ontology Resource: 20 years and still GOing strong. Nucleic Acids
Res. 47:D330–D338. 2019. View Article : Google Scholar
|
25
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar
|
26
|
Kanehisa M, Sato Y, Furumichi M, Morishima
K and Tanabe M: New approach for understanding genome variations in
KEGG. Nucleic Acids Res. 47:D590–D595. 2019. View Article : Google Scholar :
|
27
|
Kanehisa M: Toward understanding the
origin and evolution of cellular organisms. Protein Sci. Aug
22–2019.Epub ahead of print. View
Article : Google Scholar : PubMed/NCBI
|
28
|
R Core Team: R: A language and environment
for statistical computing. R Foundation for Statistical Computing.
2018.
|
29
|
Yu GC, Wang LG, Han YY and He QY:
clusterProfiler: An R package for comparing biological themes among
gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Vandenabeele P, Declercq W, Van Herreweghe
F and Vanden Berghe T: The role of the kinases RIP1 and RIP3 in
TNF-induced necrosis. Sci Signal. 3:re42010. View Article : Google Scholar : PubMed/NCBI
|
31
|
He C and Klionsky DJ: Regulation
mechanisms and signaling pathways of autophagy. Annu Rev Genet.
43:67–93. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang YL, Guo XY, He W, Chen RJ and Zhuang
R: Effects of alliin on LPS-induced acute lung injury by activating
PPARgamma. Microb Pathog. 110:375–379. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Konstantinidis K, Whelan RS and Kitsis RN:
Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc
Biol. 32:1552–1562. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sabbah HN: Apoptotic cell death in heart
failure. Cardiovasc Res. 45:704–712. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Briasoulis A, Androulakis E, Christophides
T and Tousoulis D: The role of inflammation and cell death in the
pathogenesis, progression and treatment of heart failure. Heart
Fail Rev. 21:169–176. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Moe GW and Marín-García J: Role of cell
death in the progression of heart failure. Heart Fail Rev.
21:157–167. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kourounakis PN and Rekka EA: Effect on
active oxygen species of alliin and Allium sativum (garlic) powder.
Res Commun Chem Pathol Pharmacol. 74:249–252. 1991.PubMed/NCBI
|
38
|
Salman H, Bergman M, Bessler H, Punsky I
and Djaldetti M: Effect of a garlic derivative (alliin) on
peripheral blood cell immune responses. Int J Immunopharmacol.
21:589–597. 1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hanson B: Necroptosis: A new way of dying?
Cancer Biol Ther. 17:899–910. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Smith CC and Yellon DM: Necroptosis,
necrostatins and tissue injury J Cell Mol Med. 15:1797–1806.
2011.
|
41
|
Sun L, Wang H, Wang Z, He S, Chen S, Liao
D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase
domain-like protein mediates necrosis signaling downstream of RIP3
kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhao J, Jitkaew S, Cai ZY, Choksi S, Li Q,
Luo J and Liu ZG: Mixed lineage kinase domain-like is a key
receptor interacting protein 3 downstream component of TNF-induced
necrosis. Proc Natl Acad Sci USA. 109:5322–5327. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Guo XY, Yin HF, Li L, Chen Y, Li J, Doan
J, Steinmetz R and Liu Q: Cardioprotective role of tumor necrosis
factor receptor-associated factor 2 by suppressing apoptosis and
necroptosis. Circulation. 136:729–742. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ryter SW, Mizumura K and Choi AM: The
impact of autophagy on cell death modalities. International journal
of cell biology. 2014:5026762014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Anding AL and Baehrecke EH: Cleaning
house: Selective autophagy of organelles. Dev Cell. 41:10–22. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Wu X, He L, Chen F, He X, Cai Y, Zhang G,
Yi Q, He M and Luo J: Impaired autophagy contributes to adverse
cardiac remod-eling in acute myocardial infarction. PLoS One.
9:e1128912014. View Article : Google Scholar
|
47
|
Kaplan O and Demircan G: Relationship of
autophagy and apop-tosis with total occlusion of coronary arteries.
Med Sci Monit. 24:6984–6988. 2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kanamori H, Takemura G, Goto K, Maruyama
R, Tsujimoto A, Ogino A, Takeyama T, Kawaguchi T, Watanabe T,
Fujiwara T, et al: The role of autophagy emerging in postinfarction
cardiac remodelling. Cardiovasc Res. 91:330–339. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wu J, Wu JJ, Yang LJ, Wei LX and Zou DJ:
Rosiglitazone protects against palmitate-induced pancreatic
beta-cell death by activation of autophagy via 5′-AMP-activated
protein kinase modulation. Endocrine. 44:87–98. 2013. View Article : Google Scholar
|
50
|
Vasheghani F, Zhang Y, Li YH, Blati M,
Fahmi H, Lussier B, Roughley P, Lagares D, Endisha H, Saffar B, et
al: PPARγ deficiency results in severe, accelerated osteoarthritis
associated with aberrant mTOR signalling in the articular
cartilage. Ann Rheum Dis. 74:569–578. 2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yue TL, Bao WK, Gu JL, Cui J, Tao L, Ma
XL, Ohlstein EH and Jucker BM: Rosiglitazone treatment in Zucker
diabetic fatty rats is associated with ameliorated cardiac insulin
resistance and protection from ischemia/reperfusion-induced
myocardial injury. Diabetes. 54:554–562. 2005. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nakano Y, Matoba T, Tokutome M, Funamoto
D, Katsuki S, Ikeda G, Nagaoka K, Ishikita A, Nakano K, Koga J, et
al: Nanoparticle-mediated delivery of irbesartan induces
cardio-protection from myocardial ischemia-reperfusion injury by
antagonizing monocyte-mediated inflammation. Sci Rep. 6:296012016.
View Article : Google Scholar
|
53
|
Kim YJ, Park KJ, Song JK, Shim TJ, Islam
KN, Bae JW, Kim SM, Lee SY, Hwang KK, Kim DW, et al: The PPARγ
agonist protects cardiomyocytes from oxidative stress and apoptosis
via thiore-doxin overexpression. Biosci Biotechnol Biochem.
76:2181–2187. 2012. View Article : Google Scholar
|
54
|
Taniguchi Y, Ooie T, Takahashi N,
Shinohara T, Nakagawa M, Yonemochi H, Hara M, Yoshimatsu H and
Saikawa T: Pioglitazone but not glibenclamide improves cardiac
expression of heat shock protein 72 and tolerance against
ischemia/reper-fusion injury in the heredity insulin-resistant rat.
Diabetes. 55:2371–2378. 2006. View Article : Google Scholar : PubMed/NCBI
|