1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
D'Oronzo S, Stucci S, Tucci M and
Silvestris F: Cancer treatment-induced bone loss (CTIBL):
Pathogenesis and clinical implications. Cancer Treat Rev.
41:798–808. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Fornetti J, Welm AL and Stewart SA:
Understanding the bone in cancer metastasis. J Bone Miner Res.
33:2099–2113. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Baxter NN, Habermann EB, Tepper JE, Durham
SB and Virnig BA: Risk of pelvic fractures in older women following
pelvic irradiation. JAMA. 294:2587–2593. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Elliott SP, Jarosek SL, Alanee SR, Konety
BR, Dusenbery KE and Virnig BA: Three-dimensional external beam
radiotherapy for prostate cancer increases the risk of hip
fracture. Cancer. 117:4557–4565. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Body JJ, Terpos E, Tombal B, Hadji P, Arif
A, Young A, Aapro M and Coleman R: Bone health in the elderly
cancer patient: A SIOG position paper. Cancer Treat Rev. 51:46–53.
2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Handforth C, D'Oronzo S, Coleman R and
Brown J: Cancer treatment and bone health. Calcif Tissue Int.
102:251–264. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Willey JS, Lloyd SA, Nelson GA and Bateman
TA: Ionizing radiation and bone loss: Space exploration and
clinical therapy applications. Clin Rev Bone Miner Metab. 9:54–62.
2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sparks RB, Crowe EA, Wong FC, Toohey RE
and Siegel JA: Radiation dose distributions in normal tissue
adjacent to tumors containing (131)I or (90)Y: The potential for
toxicity. J Nucl Med. 43:1110–1114. 2002.PubMed/NCBI
|
10
|
Aoki M, Sato M, Hirose K, Akimoto H,
Kawaguchi H, Hatayama Y, Ono S and Takai Y: Radiation-induced rib
fracture after stereo-tactic body radiotherapy with a total dose of
54-56 Gy given in 9-7 fractions for patients with peripheral lung
tumor: Impact of maximum dose and fraction size. Radiat Oncol.
10:992015. View Article : Google Scholar
|
11
|
Oest ME, Policastro CG, Mann KA, Zimmerman
ND and Damron TA: Longitudinal effects of single hindlimb radiation
therapy on bone strength and morphology at local and contra-lateral
sites. J Bone Miner Res. 33:99–112. 2018. View Article : Google Scholar
|
12
|
Wright LE, Buijs JT, Kim HS, Coats LE,
Scheidler AM, John SK, She Y, Murthy S, Ma N, Chin-Sinex HJ, et al:
Single-limb irradiation induces local and systemic bone loss in a
murine model. J Bone Miner Res. 30:1268–1279. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang J, Zheng L, Wang Z, Pei H, Hu W, Nie
J, Shang P, Li B, Hei TK and Zhou G: Lowering iron level protects
against bone loss in focally irradiated and contralateral femurs
through distinct mechanisms. Bone. 120:50–60. 2019. View Article : Google Scholar
|
14
|
Oest ME, Franken V, Kuchera T, Strauss J
and Damron TA: Long-term loss of osteoclasts and unopposed cortical
mineral apposition following limited field irradiation. J Orthop
Res. 33:334–342. 2015. View Article : Google Scholar :
|
15
|
Sun W, Zhao C, Li Y, Wang L, Nie G, Peng
J, Wang A, Zhang P, Tian W, Li Q, et al: Osteoclast-derived
microRNA-containing exosomes selectively inhibit osteoblast
activity. Cell Discov. 2:160152016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bazire L, Xu H, Foy JP, Amessis M,
Malhaire C, Cao K, De La Rochefordiere A and Kirova YM: Pelvic
insufficiency fracture (PIF) incidence in patients treated with
intensity-modulated radiation therapy (IMRT) for gynaecological or
anal cancer: Single-institution experience and review of the
literature. Br J Radiol. 90:201608852017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Uezono H, Tsujino K, Moriki K, Nagano F,
Ota Y, Sasaki R and Soejima T: Pelvic insufficiency fracture after
definitive radiotherapy for uterine cervical cancer: Retrospective
analysis of risk factors. J Radiat Res. 54:1102–1109. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wernle JD, Damron TA, Allen MJ and Mann
KA: Local irradiation alters bone morphology and increases bone
fragility in a mouse model. J Biomech. 43:2738–2746. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Rana T, Schultz MA, Freeman ML and Biswas
S: Loss of Nrf2 accelerates ionizing radiation-induced bone loss by
upregulating RANKL. Free Radic Biol Med. 53:2298–2307. 2012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Hui SK, Fairchild GR, Kidder LS, Sharma M,
Bhattacharya M, Jackson S, Le C, Petryk A, Islam MS and Yee D: The
influence of therapeutic radiation on the patterns of bone
remodeling in ovary-intact and ovariectomized mice. Calcif Tissue
Int. 92:372–384. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Willey JS, Lloyd SA, Robbins ME, Bourland
JD, Smith-Sielicki H, Bowman LC, Norrdin RW and Bateman TA: Early
increase in osteoclast number in mice after whole-body irradiation
with 2 Gy X rays. Radiat Res. 170:388–392. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kondo H, Searby ND, Mojarrab R, Phillips
J, Alwood J, Yumoto K, Almeida EA, Limoli CL and Globus RK:
Total-body irradiation of postpubertal mice with (137)Cs acutely
compromises the microarchitecture of cancellous bone and increases
osteoclasts. Radiat Res. 171:283–289. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lucas PA, Aubineau-Lanièce I, Lourenço V,
Vermesse D and Cutarella D: Using LiF:Mg, Cu, P TLDs to estimate
the absorbed dose to water in liquid water around an 192Ir
brachytherapy source. Med Phys. 41:0117112014. View Article : Google Scholar
|
24
|
Fartaria MJ, Reis C, Pereira J, Pereira
MF, Cardoso JV, Santos LM, Oliveira C, Holovey V, Pascoal A and
Alves JG: Assessment of the mean glandular dose using LiF:Mg, Ti,
LiF:Mg, Cu, P, Li2B4O7:Mn and
Li2B4O7:Cu TL detectors in radiation fields. Phys Med Biol.
61:6384–6399. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
26
|
Bernier J, Hall EJ and Giaccia A:
Radiation oncology: A century of achievements. Nat Rev Cancer.
4:737–747. 2004. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Jia D, Gaddy D, Suva LJ and Corry PM:
Rapid loss of bone mass and strength in mice after abdominal
irradiation. Radiat Res. 176:624–635. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu X, Li R, Zhou Y, Zou Q, Ding Q, Wang J,
Jin W, Hua G and Gao J: Dysregulated systemic lymphocytes affect
the balance of osteogenic/adipogenic differentiation of bone
mesenchymal stem cells after local irradiation. Stem Cell Res Ther.
8:712017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bonewald LF: The role of the osteocyte in
bone and nonbone disease. Endocrinol Metab Clin North Am. 46:1–18.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Willey JS, Livingston EW, Robbins ME,
Bourland JD, Tirado-Lee L, Smith-Sielicki H and Bateman TA:
Risedronate prevents early radiation-induced osteoporosis in mice
at multiple skeletal locations. Bone. 46:101–111. 2010. View Article : Google Scholar :
|
31
|
Alwood JS, Shahnazari M, Chicana B,
Schreurs AS, Kumar A, Bartolini A, Shirazi-Fard Y and Globus RK:
Ionizing radiation stimulates expression of pro-osteoclastogenic
genes in marrow and skeletal tissue. J Interferon Cytokine Res.
35:480–487. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ren L, Song ZJ, Cai QW, Chen RX, Zou Y, Fu
Q and Ma YY: Adipose mesenchymal stem cell-derived exosomes
ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis
and osteocyte-mediated osteoclastogenesis in vitro. Biochem Biophys
Res Commun. 508:138–144. 2019. View Article : Google Scholar
|