1
|
Antoni S, Ferlay J, Soerjomataram I, Znaor
A, Jemal A and Bray F: Bladder cancer incidence and mortality: A
global overview and recent trends. Eur Urol. 71:96–108. 2017.
View Article : Google Scholar
|
2
|
Zhang J, Pavlova NN and Thompson C: Cancer
cell metabolism: The essential role of the nonessential amino acid,
glutamine. EMBO J. 36:1302–1315. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Daye D and Wellen KE: Metabolic
reprogramming in cancer: Unraveling the role of glutamine in
tumorigenesis. Semin Cell Dev Biol. 23:362–369. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
DeBerardinis RJ, Mancuso A, Daikhin E,
Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic
glycolysis: Transformed cells can engage in glutamine metabolism
that exceeds the requirement for protein and nucleotide synthesis.
Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Son J, Lyssiotis CA, Ying H, Wang X, Hua
S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, et
al: Glutamine supports pancreatic cancer growth through a
KRAS-regulated metabolic pathway. Nature. 496:101–105. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Weinberg F, Hamanaka R, Wheaton WW,
Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger
GR and Chandel NS: Mitochondrial metabolism and ROS generation are
essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA.
107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rajagopalan KN and DeBerardinis RJ: Role
of glutamine in cancer: Therapeutic and imaging implications. J
Nucl Med. 52:1005–1008. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Matés JM, Pérez-Gómez C, Núñez de Castro
I, Asenjo M and Márquez J: Glutamine and its relationship with
intracellular redox status, oxidative stress and cell
proliferation/death. Int J Biochem Cell Biol. 34:439–458. 2002.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Ratnikov B, Aza-Blanc P, Ronai ZA, Smith
JW, Osterman AL and Scott DA: Glutamate and asparagine cataplerosis
underlie glutamine addiction in melanoma. Oncotarget. 6:7379–7389.
2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shanware NP, Bray K, Eng CH, Wang F,
Follettie M, Myers J, Fantin VR and Abraham RT: Glutamine
deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nat
Commun. 5:49002014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wise DR and Thompson CB: Glutamine
addiction: A new therapeutic target in cancer. Trends Biochem Sci.
35:427–433. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Le A, Lane AN, Hamaker M, Bose S, Gouw A,
Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, et al:
Glucose-independent gluta-mine metabolism via TCA cycling for
proliferation and survival in B cells. Cell Metab. 15:110–121.
2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cacace A, Sboarina M, Vazeille T and
Sonveaux P: Glutamine activates STAT3 to control cancer cell
proliferation independently of glutamine metabolism. Oncogene.
36:2074–2084. 2017. View Article : Google Scholar :
|
14
|
Fukada T, Hibi M, Yamanaka Y,
Takahashi-Tezuka M, Fujitani Y, Yamaguchi T, Nakajima K and Hirano
T: Two signals are necessary for cell proliferation induced by a
cytokine receptor gp130: Involvement of STAT3 in anti-apoptosis.
Immunity. 5:449–460. 1996. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang Y, Du XL, Wang CJ, Lin DC, Ruan X,
Feng YB, Huo YQ, Peng H, Cui JL, Zhang TT, et al: Reciprocal
activation between PLK1 and Stat3 contributes to survival and
proliferation of esophageal cancer cells. Gastroenterology.
142:521–530. 2012. View Article : Google Scholar
|
16
|
Mandal PK, Ren Z, Chen X, Xiong C and
McMurray JS: Structure-affinity relationships of glutamine mimics
incorporated into phosphopeptides targeted to the SH2 domain of
signal transducer and activator of transcription 3. J Med Chem.
52:6126–6141. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fabrício F, de Oliveira CP, Rockenbach L,
Mendes FB, Bergamin L, Jandrey EH, Edelweiss MI, Guterres SS,
Pohlmann AR and Battastini AM: Pharmacological improvement and
preclinical evaluation of methotrexate-loaded lipid-core
nanocapsules in a glioblastoma model. J Biomed Nanotechnol.
11:1808–1818. 2015. View Article : Google Scholar
|
18
|
Castaneda JM, Hua R, Miyata H, Oji A, Guo
Y, Cheng Y, Zhou T, Guo X, Cui Y, Shen B, et al: TCTE1 is a
conserved component of the dynein regulatory complex and is
required for motility and metabolism in mouse spermatozoa. Proc
Natl Acad Sci USA. 114:E5370–E5378. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen W, Shen X, Hu Y, Xu K, Ran Q, Yu Y,
Dai L, Yuan Z, Huang L, Shen T and Cai K: Surface functionalization
of titanium implants with chitosan-catechol conjugate for
suppression of ROS-induced cells damage and improvement of
osteogenesis. Biomaterials. 114:82–96. 2017. View Article : Google Scholar
|
20
|
Dietrich F, Figueiró F, Filippi-Chiela EC,
Cappellari AR, Rockenbach L, Tremblay L, de Paula PB, Roesler R,
Filho AB, Sévigny J, et al: Ecto-5'-nucleotidase/CD73 contributes
to the radiosensitivity of T24 human bladder cancer cell line. J
Cancer Res Clin Oncol. 144:469–482. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar
|
22
|
Rockenbach L, Bavaresco L, Fernandes
Farias P, Cappellari AR, Barrios CH, Bueno Morrone F and Oliveira
Battastini AM: Alterations in the extracellular catabolism of
nucleotides are involved in the antiproliferative effect of
quercetin in human bladder cancer T24 cells. Urol Oncol.
31:1204–1211. 2013. View Article : Google Scholar
|
23
|
Lea MA, Altayyar M and desBordes C:
Inhibition of growth of bladder cancer cells by
3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one in combination with
other compounds affecting glucose metabolism. Anticancer Res.
35:5889–5899. 2015.PubMed/NCBI
|
24
|
Saqcena M, Mukhopadhyay S, Hosny C,
Alhamed A, Chatterjee A and Foster DA: Blocking anaplerotic entry
of glutamine into the TCA cycle sensitizes K-Ras mutant cancer
cells to cytotoxic drugs. Oncogene. 34:2672–2680. 2015. View Article : Google Scholar
|
25
|
Gaglio D, Soldati C, Vanoni M, Alberghina
L and Chiaradonna F: Glutamine deprivation induces abortive s-phase
rescued by deoxyribonucleotides in k-ras transformed fibroblasts.
PLoS One. 4:e47152009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Saqcena M, Patel D, Menon D, Mukhopadhyay
S and Foster DA: Apoptotic effects of high-dose rapamycin occur in
S-phase of the cell cycle. Cell Cycle. 14:2285–2292. 2015.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Fan J, Kamphorst JJ, Mathew R, Chung MK,
White E, Shlomi T and Rabinowitz JD: Glutamine-driven oxidative
phosphorylation is a major ATP source in transformed mammalian
cells in both normoxia and hypoxia. Mol Syst Biol. 9:7122013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang L, Moss T, Mangala LS, Marini J, Zhao
H, Wahlig S, Armaiz-Pena G, Jiang D, Achreja A, Win J, et al:
Metabolic shifts toward glutamine regulate tumor growth, invasion
and bioenergetics in ovarian cancer. Mol Syst Biol. 10:7282014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Guo L, Zhou B, Liu Z, Xu Y, Lu H, Xia M,
Guo E, Shan W, Chen G and Wang C: Blockage of glutaminolysis
enhances the sensitivity of ovarian cancer cells to PI3K/mTOR
inhibition involvement of STAT3 signaling. Tumour Biol.
37:11007–11015. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Santoni M, Conti A, Piva F, Massari F,
Ciccarese C, Burattini L, Cheng L, Lopez-Beltran A, Scarpelli M,
Santini D, et al: Role of STAT3 pathway in genitourinary tumors.
Future Sci. 1:FSO152015.
|
31
|
Zhang B, Lu Z, Hou Y, Hu J and Wang C: The
effects of STAT3 and survivin silencing on the growth of human
bladder carcinoma cells. Tumour Biol. 35:5401–5407. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu F, Chen Y, Li Y, Ju J, Wang Z and Yan
D: RNA-interference-mediated Cdc42 silencing down-regulates
phosphorylation of STAT3 and suppresses growth in human
bladder-cancer cells. Biotechnol Appl Biochem. 49:121–128. 2008.
View Article : Google Scholar
|
33
|
Tsujita Y, Horiguchi A, Tasaki S, Isono M,
Asano T, Ito K, Asano T, Mayumi Y and Kushibiki T: STAT3 inhibition
by WP1066 suppresses the growth and invasiveness of bladder cancer
cells. Oncol Rep. 38:2197–2204. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen RJ, Ho YS, Guo HR and Wang YJ: Rapid
activation of Stat3 and ERK1/2 by nicotine modulates cell
proliferation in human bladder cancer cells. Toxicol Sci.
104:283–293. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wise DR, DeBerardinis RJ, Mancuso A, Sayed
N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, McMahon
SB and Thompson CB: Myc regulates a transcriptional program that
stimulates mitochondrial glutaminolysis and leads to glutamine
addiction. Proc Natl Acad Sci USA. 105:18782–18787. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Kiuchi N, Nakajima K, Ichiba M, Fukada T,
Narimatsu M, Mizuno K, Hibi M and Hirano T: STAT3 is required for
the gp130-mediated full activation of the c-myc gene. J Exp Med.
189:63–73. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bajpai R, Matulis SM, Wei C, Nooka AK, Von
Hollen HE, Lonial S, Boise LH and Shanmugam M: Targeting glutamine
metabolism in multiple myeloma enhances BIM binding to BCL-2
eliciting synthetic lethality to venetoclax. Oncogene.
35:3955–3964. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Huang Z, Zhou W, Li Y, Cao M, Wang T, Ma
Y, Guo Q, Wang X, Zhang C, Zhang C, et al: Novel hybrid molecule
overcomes the limited response of solid tumours to HDAC inhibitors
via suppressing JAK1-STAT3-BCL2 signalling. Theranostics.
8:4995–5011. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Demaria M, Giorgi C, Lebiedzinska M,
Esposito G, D'Angeli L, Bartoli A, Gough DJ, Turkson J, Levy DE,
Watson CJ, et al: A STAT3-mediated metabolic switch is involved in
tumour transformation and STAT3 addiction. Aging (Albany NY).
2:823–842. 2010. View Article : Google Scholar
|
40
|
Poli V and Camporeale A: STAT3-mediated
metabolic repro-graming in cellular transformation and implications
for drug resistance. Front Oncol. 5:1212015. View Article : Google Scholar
|
41
|
Tan Y, Huang N, Zhang X, Hu J, Cheng S, Pi
L and Cheng Y: KIAA0247 suppresses the proliferation, angiogenesis
and promote apoptosis of human glioma through inactivation of the
AKT and Stat3 signaling pathway. Oncotarget. 7:87100–87113. 2016.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang X, Qiu W, Zhang G, Xu S, Gao Q and
Yang Z: MicroRNA-204 targets JAK2 in breast cancer and induces cell
apoptosis through the STAT3/BCl-2/survivin pathway. Int J Clin Exp
Pathol. 8:5017–5025. 2015.PubMed/NCBI
|
43
|
Sun Q, Lu NN and Feng L: Apigetrin
inhibits gastric cancer progression through inducing apoptosis and
regulating ROS-modulated STAT3/JAK2 pathway. Biochem Biophys Res
Commun. 498:164–170. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cai N, Zhou W, Ye LL, Chen J, Liang QN,
Chang G and Chen JJ: The STAT3 inhibitor pimozide impedes cell
proliferation and induces ROS generation in human osteosarcoma by
suppressing catalase expression. Am J Transl Res. 9:3853–3866.
2017.PubMed/NCBI
|
45
|
Cetinbas N, Daugaard M, Mullen AR, Hajee
S, Rotblat B, Lopez A, Li A, DeBerardinis RJ and Sorensen PH: Loss
of the tumor suppressor Hace1 leads to ROS-dependent glutamine
addiction. Oncogene. 34:4005–4010. 2015. View Article : Google Scholar :
|
46
|
Mukhopadhyay S, Saqcena M and Foster DA:
Synthetic lethality in KRas-driven cancer cells created by
glutamine deprivation. Oncoscience. 2:807–808. 2015.PubMed/NCBI
|
47
|
Ahmad I, Patel R, Liu Y, Singh LB, Taketo
MM, Wu XR, Leung HY and Sansom OJ: Ras mutation cooperates with
β-catenin activation to drive bladder tumourigenesis. Cell Death
Dis. 2:e1242011. View Article : Google Scholar
|
48
|
Zhang Z, Duan Q, Zhao H, Liu T, Wu H, Shen
Q, Wang C and Yin T: Gemcitabine treatment promotes pancreatic
cancer stemness through the Nox/ROS/NF-κB/STAT3 signaling cascade.
Cancer Lett. 382:53–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Jacobs BL, Lee CT and Montie JE: Bladder
cancer in 2010: How far have we come? CA Cancer J Clin. 60:244–272.
2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kotwal S, Choudhury A, Johnston C, Paul
AB, Whelan P and Kiltie AE: Similar treatment outcomes for radical
cystectomy and radical radiotherapy in invasive bladder cancer
treated at a United Kingdom specialist treatment center. Int J
Radiat Oncol Biol Phys. 70:456–463. 2008. View Article : Google Scholar
|
51
|
Russell CM, Lebastchi AH, Borza T, Spratt
DE and Morgan TM: The role of transurethral resection in trimodal
therapy for muscle-invasive bladder cancer. Bladder Cancer.
2:381–394. 2016. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kulkarni GS, Hermanns T, Wei Y, Bhindi B,
Satkunasivam R, Athanasopoulos P, Bostrom PJ, Kuk C, Li K,
Templeton AJ, et al: Propensity score analysis of radical
cystectomy versus bladder-sparing tri-modal therapy in the setting
of a multidisciplinary bladder cancer clinic. J Clin Oncol.
35:2299–2305. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Rödel C, Grabenbauer GG, Kühn R,
Papadopoulos T, Dunst J, Meyer M, Schrott KM and Sauer R:
Combined-modality treatment and selective organ preservation in
invasive bladder cancer: Long-term results. J Clin Oncol.
20:3061–3071. 2002. View Article : Google Scholar : PubMed/NCBI
|
54
|
James ND, Hussain SA, Hall E, Jenkins P,
Tremlett J, Rawlings C, Crundwell M, Sizer B, Sreenivasan T,
Hendron C, et al: Radiotherapy with or without chemotherapy in
muscle-invasive bladder cancer. N Engl J Med. 366:1477–1488. 2012.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Park JC, Citrin DE, Agarwal PK and Apolo
AB: Multi-modal management of muscle-invasive bladder cancer. Curr
Probl Cancer. 38:80–108. 2014. View Article : Google Scholar : PubMed/NCBI
|
56
|
Chen RC, Shipley WU, Efstathiou JA and
Zietman AL: Trimodality bladder preservation therapy for
muscle-invasive bladder cancer. J Natl Compr Cancer Netw.
11:952–960. 2013. View Article : Google Scholar
|
57
|
Shrivastava S, Mansure JJ, Almajed W, Cury
F, Ferbeyre G, Popovic M, Seuntjens J and Kassouf W: The role of
HMGB1 in radioresistance of bladder cancer. Mol Cancer Ther.
15:471–479. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Wang JB, Erickson JW, Fuji R, Ramachandran
S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV and
Cerione RA: Targeting mitochondrial glutaminase activity inhibits
oncogenic transformation. Cancer Cell. 18:207–219. 2010. View Article : Google Scholar : PubMed/NCBI
|
59
|
Gross MI, Demo SD, Dennison JB, Chen L,
Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, et
al: Antitumor activity of the glutaminase inhibitor CB-839 in
triple-negative breast cancer. Mol Cancer Ther. 13:890–901. 2014.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor
RS, Altman BJ, Hsieh AL, Gouw AM, Thomas AG, Gao P, et al: Targeted
inhibition of tumor-specific glutaminase diminishes cell-autonomous
tumorigenesis. J Clin Invest. 125:2293–2306. 2015. View Article : Google Scholar : PubMed/NCBI
|
61
|
Stalnecker CA, Ulrich SM, Li Y,
Ramachandran S, McBrayer MK, DeBerardinis RJ, Cerione RA and
Erickson JW: Mechanism by which a recently discovered allosteric
inhibitor blocks glutamine metabolism in transformed cells. Proc
Natl Acad Sci USA. 112:394–399. 2015. View Article : Google Scholar
|