1
|
Testa U, Pelosi E and Castelli G:
Colorectal cancer: Genetic abnormalities, tumor progression, tumor
heterogeneity, clonal evolution and tumor-initiating cells. Med Sci
(Basel). 6:E312018.
|
2
|
Okugawa Y, Grady WM and Goel A: Epigenetic
alterations in colorectal cancer: Emerging biomarkers.
Gastroenterology. 149:1204–1225.e12. 2015. View Article : Google Scholar :
|
3
|
Yaghoubi N, Soltani A, Ghazvini K,
Hassanian SM and Hashemy SI: PD-1/PD-L1 blockade as a novel
treatment for colorectal cancer. Biomed Pharmacother. 110:312–318.
2019. View Article : Google Scholar
|
4
|
Marmol I, Sánchez-de-Diego C, Pradilla
Dieste A, Cerrada E and Rodriguez Yoldi MJ: Colorectal carcinoma: A
general overview and future perspectives in colorectal cancer. Int
J Mol Sci. 18:E1972017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lingel A, Ehlers E, Wang Q, Cao M, Wood C,
Lin R and Zhang L: Kaposi's sarcoma-associated herpesvirus reduces
cellular myeloid differentiation primary-response gene 88 (MyD88)
expression via modulation of its RNA. J Virol. 90:180–188. 2016.
View Article : Google Scholar :
|
6
|
Feng Y, Zou L, Chen C, Li D and Chao W:
Role of cardiac- and myeloid-MyD88 signaling in endotoxin shock: A
study with tissue-specific deletion models. Anesthesiology.
121:1258–1269. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang H, Li M, Hung CY, Sinha M, Lee LM,
Wiesner DL, LeBert V, Lerksuthirat T, Galles K, Suresh M, et al:
MyD88 shapes vaccine immunity by extrinsically regulating survival
of CD4+ T cells during the contraction phase. PLoS
Pathog. 12:e10057872016. View Article : Google Scholar
|
8
|
Xu X, Yin Y, Tang J, Xie Y, Han Z, Zhang
X, Liu Q, Qin X, Huang X and Sun B: Long non-coding RNA Myd88
promotes growth and metastasis in hepatocellular carcinoma via
regulating Myd88 expression through H3K27 modification. Cell Death
Dis. 8:e31242017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Syeda S, Patel AK, Lee T and Hackam AS:
Reduced photoreceptor death and improved retinal function during
retinal degeneration in mice lacking innate immunity adaptor
protein MyD88. Exp Neurol. 267:1–12. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
d'Adhemar CJ, Spillane CD, Gallagher MF,
Bates M, Costello KM, Barry-O'Crowley J, Haley K, Kernan N, Murphy
C, Smyth PC, et al: The MyD88+ phenotype is an adverse prognostic
factor in epithelial ovarian cancer. PLoS One. 9:e1008162014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou X, Ramke M, Chintakuntlawar AV, Lee
JY, Rajaiya J and Chodosh J: Role of MyD88 in adenovirus keratitis.
Immunol Cell Biol. 95:108–116. 2017. View Article : Google Scholar
|
12
|
Di Padova F, Quesniaux VFJ and Ryffel B:
MyD88 as a therapeutic target for inflammatory lung diseases.
Expert Opin Ther Targets. 22:401–408. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Reins RY, Courson J, Lema C and Redfern
RL: MyD88 contribution to ocular surface homeostasis. PLoS One.
12:e01821532017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu G, Zheng W, Huang Y, Hua J, Yang S and
Ye J: Expression of MyD88 in cancer tissue of patients with
colorectal cancer and clinical significancer. Journal of Jilin
University (Medicine Edition). 44:1047–1051. 2018.
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
16
|
Yan F, Guan J, Peng Y and Zheng X: MyD88
NEDDylation negatively regulates MyD88-dependent NF-κB signaling
through antagonizing its ubiquitination. Biochem Biophys Res
Commun. 482:632–637. 2017. View Article : Google Scholar
|
17
|
Tanishima M, Takashima S, Honda A, Yasuda
D, Tanikawa T, Ishii S and MaruYama T: Identification of optineurin
as an interleukin-1 receptor-associated kinase 1-binding protein
and its role in regulation of MyD88-dependent signaling. J Biol
Chem. 292:17250–17257. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang L, Yu K, Zhang X and Yu S: Dual
functional roles of the MyD88 signaling in colorectal cancer
development. Biomed Pharmacother. 107:177–184. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Klimosch SN, Försti A, Eckert J, Knezevic
J, Bevier M, von Schönfels W, Heits N, Walter J, Hinz S, Lascorz J,
et al: Functional TLR5 genetic variants affect human colorectal
cancer survival. Cancer Res. 73:7232–7242. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ikebe M, Kitaura Y, Nakamura M, Tanaka H,
Yamasaki A, Nagai S, Wada J, Yanai K, Koga K, Sato N, et al:
Lipopolysaccharide (LPS) increases the invasive ability of
pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J
Surg Oncol. 100:725–731. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang EL, Qian ZR, Nakasono M, Tanahashi T,
Yoshimoto K, Bando Y, Kudo E, Shimada M and Sano T: High expression
of toll-like receptor 4/myeloid differentiation factor 88 signals
correlates with poor prognosis in colorectal cancer. Br J Cancer.
102:908–915. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Rakoff-Nahoum S and Medzhitov R:
Regulation of spontaneous intestinal tumorigenesis through the
adaptor protein MyD88. Science. 317:124–127. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chang CM, Chia VM, Gunter MJ, Zanetti KA,
Ryan BM, Goodman JE, Harris CC, Weissfeld J, Huang WY, Chanock S,
et al: Innate immunity gene polymorphisms and the risk of
colorectal neoplasia. Carcinogenesis. 34:2512–2520. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Schiechl G, Bauer B, Fuss I, Lang SA,
Moser C, Ruemmele P, Rose-John S, Neurath MF, Geissler EK, Schlitt
HJ, et al: Tumor development in murine ulcerative colitis depends
on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low)
macrophages. J Clin Invest. 121:1692–1708. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Galardi S, Mercatelli N, Farace MG and
Ciafre SA: NF-κB and c-Jun induce the expression of the oncogenic
miR-221 and miR-222 in prostate carcinoma and glioblastoma cells.
Nucleic Acids Res. 39:3892–3902. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen X, Yang X, Liu T, Guan M, Feng X,
Dong W, Chu X, Liu J, Tian X, Ci X, et al: Kaempferol regulates
MAPKs and NF-κB signaling pathways to attenuate LPS-induced acute
lung injury in mice. Int Immunopharmacol. 14:209–216. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Park JW, Yoon HJ, Kang WY, Cho S, Seong
SJ, Lee HW, Yoon YR and Kim HJ: G protein-coupled receptor 84
controls osteoclastogenesis through inhibition of NF-κB and MAPK
signaling pathways. J Cell Physiol. 233:1481–1489. 2018. View Article : Google Scholar
|
28
|
Zheng Y, Fang W, Fan S, Liao W, Xiong Y,
Liao S, Li Y, Xiao S and Liu J: Neurotropin inhibits
neuroinflammation via suppressing NF-κB and MAPKs signaling
pathways in lipopoly-saccharide-stimulated BV2 cells. J Pharmacol
Sci. 136:242–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pan JX: LncRNA H19 promotes
atherosclerosis by regulating MAPK and NF-κB signaling pathway. Eur
Rev Med Pharmacol Sci. 21:322–328. 2017.PubMed/NCBI
|
30
|
Parola C, Salogni L, Vaira X, Scutera S,
Somma P, Salvi V, Musso T, Tabbia G, Bardessono M, Pasquali C, et
al: Selective activation of human dendritic cells by OM-85 through
a NF-κB and MAPK dependent pathway. PLoS One. 8:e828672013.
View Article : Google Scholar
|