1
|
Shaw JE, Sicree RA and Zimmet PZ: Global
estimates of the prevalence of diabetes for 2010-2030. Diabetes Res
Clin Pract. 87:4–14. 2010. View Article : Google Scholar
|
2
|
Sabatino A, Regolisti G, Cosola C,
Gesualdo L and Fiaccadori E: Intestinal microbiota in type 2
diabetes and chronic kidney disease. Curr Diab Rep. 17:162017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Jaja-Chimedza A, Zhang L, Wolff K, Graf
BL, Kuhn P, Moskal K, Carmouche R, Newman S, Salbaum JM and Raskin
I: A dietary isothiocyanate-enriched moringa (moringa oleifera)
seed extract improves glucose tolerance in a high-fat-diet mouse
model and modulates the gut microbiome. J Funct Foods. 47:376–385.
2018. View Article : Google Scholar
|
4
|
Koh GY and Rowling MJ: Resistant starch as
a novel dietary strategy to maintain kidney health in diabetes
mellitus. Nutr Rev. 75:350–360. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cummings JH, Pomare EW, Branch WJ, Naylor
CP and Macfarlane GT: Short chain fatty acids in human large
intestine, portal, hepatic and venous blood. Gut. 28:1221–1227.
1987. View Article : Google Scholar : PubMed/NCBI
|
6
|
Andrade-Oliveira V, Amano MT, Correa-Costa
M, Castoldi A, Felizardo RJ, de Almeida DC, Bassi EJ, Moraes-Vieira
PM, Hiyane MI, Rodas AC, et al: Gut bacteria products prevent AKI
induced by ischemia-reperfusion. J Am Soc Nephrol. 26:1877–1888.
2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Machado RA, Constantino Lde S, Tomasi CD,
Rojas HA, Vuolo FS, Vitto MF, Cesconetto PA, de Souza CT, Ritter C
and Dal-Pizzol F: Sodium butyrate decreases the activation of NF-κB
reducing inflammation and oxidative damage in the kidney of rats
subjected to contrast-induced nephropathy. Nephrol Dial Transplant.
27:3136–3140. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu YH, Gao CL, Guo HL, Zhang WQ, Huang W,
Tang SS, Gan WJ, Xu Y, Zhou H and Zhu Q: Sodium butyrate
supplementation ameliorates diabetic inflammation in db/db mice. J
Endocrinol. 238:231–244. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Guo Y, Xiao Z, Wang YN, Wang Y, Yao W,
Liao S, Yu B, Zhang J, Zhang Y, Zheng B, et al: Sodium butyrate
ameliorates streptozotocin-induced type 1 diabetes in mice by
inhibiting the HMGB1 expression. Front Endocrinol (Lausanne).
9:6302018. View Article : Google Scholar
|
10
|
Khan S and Jena G: Sodium butyrate, a HDAC
inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis,
apoptosis and DNA damage in the kidney of juvenile diabetic rats.
Food Chem Toxicol. 73:127–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dong W, Jia Y, Liu X, Zhang H, Li T, Huang
W, Chen X, Wang F, Sun W and Wu H: Sodium butyrate activates NRF2
to ameliorate diabetic nephropathy possibly via inhibition of HDAC.
J Endocrinol. 232:71–83. 2017. View Article : Google Scholar
|
12
|
Xiao L, Zhu X, Yang S, Liu F, Zhou Z, Zhan
M, Xie P, Zhang D, Li J, Song P, et al: Rap1 ameliorates renal
tubular injury in diabetic nephropathy. Diabetes. 63:1366–1380.
2014. View Article : Google Scholar :
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
14
|
Aranda A, Sequedo L, Tolosa L, Quintas G,
Burello E, Castell JV and Gombau L: Dichloro-dihydro-fluorescein
diacetate (DCFH-DA) assay: A quantitative method for oxidative
stress assessment of nanoparticle-treated cells. Toxicol In Vitro.
27:954–963. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Niu Y, DesMarais TL, Tong Z, Yao Y and
Costa M: Oxidative stress alters global histone modification and
DNA methylation. Free Radic Biol Med. 82:22–28. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Miura K, Taura K, Kodama Y, Schnabl B and
Brenner DA: Hepatitis C virus-induced oxidative stress suppresses
hepcidin expression through increased histone deacetylase activity.
Hepatology. 48:1420–1429. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tong Y, Chuan J, Bai L, Shi J, Zhong L,
Duan X and Zhu Y: The protective effect of shikonin on renal
tubular epithelial cell injury induced by high glucose. Biomed
Pharmacother. 98:701–708. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Allen DA, Harwood S, Varagunam M, Raftery
MJ and Yaqoob MM: High glucose-induced oxidative stress causes
apoptosis in proximal tubular epithelial cells and is mediated by
multiple caspases. FASEB J. 17:908–910. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu H, Shi Y, Deng X, Su Y, Du C, Wei J,
Ren Y, Wu M, Hou Y and Duan H: Inhibition of c-Src/p38 MAPK pathway
ameliorates renal tubular epithelial cells apoptosis in db/db mice.
Mol Cell Endocrinol. 417:27–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tan J, McKenzie C, Potamitis M, Thorburn
AN, Mackay CR and Macia L: The role of short-chain fatty acids in
health and disease. Adv Immunol. 121:91–119. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lazarova DL and Bordonaro M: Vimentin,
colon cancer progression and resistance to butyrate and other
HDACis. J Cell Mol Med. 20:989–993. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chang P, Bhatti UF, Williams AM, Dennahy
IS, Liu B, Li Y and Alam HB: Inhibition of histone deacetylase 6
attenuates intestinal inflammation and apoptosis in a rodent model
of hemorrhagic shock. J Trauma Acute Care Surg. 86:874–880. 2019.
View Article : Google Scholar
|
23
|
Manea SA, Antonescu ML, Fenyo IM, Raicu M,
Simionescu M and Manea A: Epigenetic regulation of vascular NADPH
oxidase expression and reactive oxygen species production by
histone deacetylase-dependent mechanisms in experimental diabetes.
Redox Biol. 16:332–343. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Besançon A, Goncalves T, Valette F,
Dahllöf MS, Mandrup-Poulsen T, Chatenoud L and You S: Oral histone
deacetylase inhibitor synergises with T cell targeted immunotherapy
to preserve beta cell metabolic function and induce stable
remission of new-onset autoimmune diabetes in NOD mice.
Diabetologia. 61:389–398. 2018. View Article : Google Scholar
|
25
|
Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H
and Lee HB: Histone deacetylase-2 is a key regulator of diabetes-
and transforming growth factor-beta1-induced renal injury. Am J
Physiol Renal Physiol. 297:F729–F739. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ma T, Huang C, Xu Q, Yang Y, Liu Y, Meng
X, Li J, Ye M and Liang H: Suppression of BMP-7 by histone
deacetylase 2 promoted apoptosis of renal tubular epithelial cells
in acute kidney injury. Cell Death Dis. 8:e31392017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Davie JR: Inhibition of histone
deacetylase activity by butyrate. J Nutr. 133(Suppl 7):
2485S–2493S. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kim DS, Kwon JE, Lee SH, Kim EK, Ryu JG,
Jung KA, Choi JW, Park MJ, Moon YM, Park SH, et al: Attenuation of
rheumatoid inflammation by sodium butyrate through reciprocal
targeting of HDAC2 in osteoclasts and HDAC8 in T cells. Front
Immunol. 9:15252018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Singh P and Thakur MK: Histone deacetylase
2 inhibition attenuates downregulation of hippocampal plasticity
gene expression during aging. Mol Neurobiol. 55:2432–2442. 2018.
View Article : Google Scholar
|
30
|
Zhou D, Chen YW, Zhao ZH, Yang RX, Xin FZ,
Liu XL, Pan Q, Zhou H and Fan JG: Sodium butyrate reduces high-fat
diet-induced non-alcoholic steatohepatitis through upregulation of
hepatic GLP-1R expression. Exp Mol Med. 50:1572018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Aguilar EC, dos Santos LC, Leonel AJ, de
Oliveira JS, Santos EA, Navia-Pelaez JM, da Silva JF, Mendes BP,
Capettini LS, Teixeira LG, et al: Oral butyrate reduces oxidative
stress in atherosclerotic lesion sites by a mechanism involving
NADPH oxidase down-regulation in endothelial cells. J Nutr Biochem.
34:99–105. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Glueck B, Han Y and Cresci GAM: Tributyrin
supplementation protects immune responses and vasculature and
reduces oxidative stress in the proximal colon of mice exposed to
chronic-binge ethanol feeding. J Immunol Res. 2018:96719192018.
View Article : Google Scholar : PubMed/NCBI
|