Polyamines: The possible missing link between mental disorders and epilepsy (Review)
- Authors:
- Giulia Baroli
- Jonathan Reinoso Sanchez
- Enzo Agostinelli
- Paolo Mariottini
- Manuela Cervelli
-
Affiliations: Department of Science, University of Rome ‘Roma Tre’, I‑00146 Rome, Italy, Department of Biochemical Sciences ‘Rossi Fanelli’, University of Rome ‘La Sapienza’, I‑00185 Rome, Italy - Published online on: November 11, 2019 https://doi.org/10.3892/ijmm.2019.4401
- Pages: 3-9
This article is mentioned in:
Abstract
Thomas T and Thomas TJ: Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 58:244–258. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rea G, Bocedi A and Cervelli M: Question: What is the biological function of the polyamines? IUBMB Life. 56:167–169. 2004.PubMed/NCBI | |
Wallace HM, Fraser AV and Hughes A: A perspective of poly-amine metabolism. Biochem J. 376:1–14. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li G, Regunathan S and Reis DJ: Agmatine is synthesized by a mitochondrial arginine decarboxylase in rat brain. Ann N Y Acad Sci. 763:325–329. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sastre M, Regunathan S, Galea E and Reis DJ: Agmatinase activity in rat brain: A metabolic pathway for the degradation of agmatine. J Neurochem. 67:1761–1765. 1996. View Article : Google Scholar : PubMed/NCBI | |
Moretti M, Matheus FC, de Oliveira PA, Neis VB, Ben J, Walz R, Rodrigues AL and Prediger RD: Role of agmatine in neurode-generative diseases and epilepsy. Front Biosci (Elite Ed). 6:341–359. 2014. View Article : Google Scholar | |
Cervelli M, Angelucci E, Stano P, Leboffe L, Federico R, Antonini G, Mariottini P and Polticelli F: The Glu216/Ser218 pocket is a major determinant of spermine oxidase substrate specificity. Biochem J. 461:453–459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cervelli M, Bellavia G, Fratini E, Amendola R, Polticelli F, Barba M, Federico R, Signore F, Gucciardo G, Grillo R, et al: Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm. BMC Cancer. 10:5552010. View Article : Google Scholar : PubMed/NCBI | |
Cervelli M, Angelucci E, Germani F, Amendola R and Mariottini P: Inflammation, carcinogenesis and neurodegeneration studies in transgenic animal models for polyamine research. Amino Acids. 46:521–530. 2014. View Article : Google Scholar | |
Casero RA Jr, Murray Stewart T and Pegg AE: Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat Rev Cancer. 18:681–695. 2018. View Article : Google Scholar : PubMed/NCBI | |
Amendola R, Cervelli M, Fratini E, Polticelli F, Sallustio DE and Mariottini P: Spermine metabolism and anticancer therapy. Curr Cancer Drug Targets. 9:118–130. 2009. View Article : Google Scholar : PubMed/NCBI | |
Polticelli F, Salvi D, Mariottini P, Amendola R and Cervelli M: Molecular evolution of the polyamine oxidase gene family in Metazoa. BMC Evol Biol. 12:902012. View Article : Google Scholar : PubMed/NCBI | |
Cervelli M, Salvi D, Polticelli F, Amendola R and Mariottini P: Structure-function relationships in the evolutionary framework of spermine oxidase. J Mol Evol. 76:365–370. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tavladoraki P, Cervelli M, Antonangeli F, Minervini G, Stano P, Federico R, Mariottini P and Polticelli F: Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization. Amino Acids. 40:1115–1126. 2011. View Article : Google Scholar | |
Cervelli M, Polticelli F, Federico R and Mariottini P: Heterologous expression and characterization of mouse spermine oxidase. J Biol Chem. 278:5271–5276. 2003. View Article : Google Scholar | |
Cervelli M, Amendola R, Polticelli F and Mariottini P: Spermine oxidase: Ten years after. Amino Acids. 42:441–450. 2012. View Article : Google Scholar | |
Poulin R, Casero RA and Soulet D: Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids. 42:711–723. 2012. View Article : Google Scholar | |
Abdulhussein AA and Wallace HM: Polyamines and membrane transporters. Amino Acids. 46:655–660. 2014. View Article : Google Scholar | |
Seiler N and Atanassov CL: The natural polyamines and the immune system. Prog Drug Res. 43:87–141. 1994.PubMed/NCBI | |
Mastrantonio R, Cervelli M, Pietropaoli S, Mariottini P, Colasanti M and Persichini T: HIV-Tat induces the Nrf2/ARE pathway through NMDA receptor-elicited spermine oxidase activation in human neuroblastoma cells. PLoS One. 11:e01498022016. View Article : Google Scholar : PubMed/NCBI | |
Igarashi K, Uemura T and Kashiwagi K: Acrolein: An effective biomarker for tissue damage produced from polyamines. Methods Mol Biol. 1694:459–468. 2018. View Article : Google Scholar | |
Pietropaoli S, Leonetti A, Cervetto C, Venturini A, Mastrantonio R, Baroli G, Persichini T, Colasanti M, Maura G, Marcoli M, et al: Glutamate excitotoxicity linked to spermine oxidase overexpression. Mol Neurobiol. 55:7259–7270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Leonetti A, Baroli G, Fratini E, Pietropaoli S, Marcoli M, Mariottini P and Cervelli M: Epileptic seizures and oxidative stress in a mouse model overexpressing spermine oxidase. Amino Acids. Jun 13–2019.Epub ahead of print. View Article : Google Scholar | |
Skatchkova SN, Antonovb SM and Eatona MJ: Glia and glial polyamines. Role in brain function in health and disease. Biochemistry (Moscow) Suppl Ser A Membr Cell Biol. 10:73–98. 2016. View Article : Google Scholar | |
Oliver D, Baukrowitz T and Fakler B: Polyamines as gating molecules of inward-rectifier K+ channels. Eur J Biochem. 267:5824–5829. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li J, Doyle KM and Tatlisumak T: Polyamines in the brain: Distribution, biological interactions, and their potential therapeutic role in brain ischaemia. Curr Med Chem. 14:1807–1813. 2007. View Article : Google Scholar : PubMed/NCBI | |
Williams K: Interactions of polyamines with ion channels. Biochem J. 325:289–297. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pegg AE: Functions of polyamines in mammals. J Biol Chem. 291:14904–14912. 2016. View Article : Google Scholar : PubMed/NCBI | |
Williams K, Dawson VL, Romano C, Dichter MA and Molinoff PB: Characterization of polyamines having agonist, antagonist, and inverse agonist effects at the polyamine recognition site of the NMDA receptor. Neuron. 5:199–208. 1990. View Article : Google Scholar : PubMed/NCBI | |
Elsayed M and Magistretti PJ: A new outlook on mental illnesses: Glial involvement beyond the glue. Front Cell Neurosci. 9:4682015. View Article : Google Scholar | |
Sayers J: The world health report 2001-Mental health: New understanding, new hope. Bull World Health Organ. 79:10852001. | |
Merikangas KR, Nakamura EF and Kessler RC: Epidemiology of mental disorders in children and adolescents. Dialogues Clin Neurosci. 11:7–20. 2009.PubMed/NCBI | |
Kamal R, Cox C and Rousseau D: Kaiser Family Foundation: Costs and outcomes of mental health and substance use disorders in the US. JAMA. 318:4152017. View Article : Google Scholar | |
Mkrtchian A, Aylward J, Dayan P, Roiser JP and Robinson OJ: Modeling avoidance in mood and anxiety disorders using reinforcement learning. Biol Psychiatry. 82:532–539. 2017. View Article : Google Scholar : PubMed/NCBI | |
Benarous X, Consoli A, Cohen D, Renaud J, Lahaye H and Guilé JM: Suicidal behaviors and irritability in children and adolescents: A systematic review of the nature and mechanisms of the association. Eur Child Adolesc Psychiatry. 28:667–683. 2019. View Article : Google Scholar | |
Ferrúa CP, Giorgi R, da Rosa LC, do Amaral CC, Ghisleni GC, Pinheiro RT and Nedel F: MicroRNAs expressed in depression and their associated pathways: A systematic review and a bioin-formatics analysis. J Chem Neuroanat. 100:1016502019. View Article : Google Scholar | |
Furuyashiki T and Kitaoka S: Neural mechanisms underlying adaptive and maladaptive consequences of stress: Roles of dopaminergic and inflammatory responses. Psychiatry Clin Neurosci. Jun 19–2019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Sun LH, Yang W, Cui RJ and Xu SB: The role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol. 10:5152019. View Article : Google Scholar : PubMed/NCBI | |
Peirce JM and Alviña K: The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res. May 29–2019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Schildkraut JS: The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am J Psychiatry. 122:509–522. 1965. View Article : Google Scholar : PubMed/NCBI | |
Whitaker-Azmitia PM: Serotonin and brain development: Role in human developmental diseases. Brain Res Bull. 56:479–485. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhao J, Fan X and Guo W: Dysfunction in serotonergic and noradrenergic systems and somatic symptoms in psychiatric disorders. Front Psychiatry. 10:2862019. View Article : Google Scholar : PubMed/NCBI | |
Fiori LM, Wanner B, Jomphe V, Croteau J, Vitaro F, Tremblay RE, Bureau A and Turecki G: Association of polyaminergic loci with anxiety, mood disorders, and attempted suicide. PLoS One. 5:e151462010. View Article : Google Scholar : PubMed/NCBI | |
Andrews RC: The side effects of antimalarial drugs indicates a polyamine involvement in both schizophrenia and depression. Med Hypotheses. 18:11–18. 1985. View Article : Google Scholar : PubMed/NCBI | |
Fiori LM and Turecki G: Implication of the polyamine system in mental disorders. J Psychiatry Neurosci. 33:102–110. 2008.PubMed/NCBI | |
Das I, de Belleroche J, Essali MA, Richardson-Andrews RC and Hirsch SR: Blood polyamine in schizophrenia. Schizophr Res. 2:1461989. View Article : Google Scholar | |
Meltzer HY, Arora RC, Jackman H, Pscheidt G and Smith MD: Platelet monoamine oxidase and plasma amine oxidase in psychiatric patients. Schizophr Bull. 6:213–219. 1980. View Article : Google Scholar : PubMed/NCBI | |
Baron M, Asnis L, Gruen R and Levitt M: Plasma amine oxidase and genetic vulnerability to schizophrenia. Arch Gen Psychiatry. 40:275–279. 1983. View Article : Google Scholar : PubMed/NCBI | |
Dahel KA, Al-Saffar NM and Flayeh KA: Polyamine oxidase activity in sera of depressed and schizophrenic patients after ECT treatment. Neurochem Res. 26:415–418. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bernstein HG, Grecksch G, Becker A, Höllt V and Bogerts B: Cellular changes in rat brain areas associated with neonatal hippocampal damage. Neuroreport. 10:2307–2311. 1999. View Article : Google Scholar : PubMed/NCBI | |
Middleton FA, Mirnics K, Pierri JN, Lewis DA and Levitt P: Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 22:2718–2729. 2002. View Article : Google Scholar : PubMed/NCBI | |
He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, Adamski J, Kahn R, Li Y, Illig T, et al: Schizophrenia shows a unique metabolomics signature in plasma. Trans Psychiatry. 2:e1492012. View Article : Google Scholar | |
Liu P, Jing Y, Collie ND, Dean B, Bilkey DK and Zhang H: Altered brain arginine metabolism in schizophrenia. Trans Psychiatry. 6:e8712016. View Article : Google Scholar | |
Genedani S, Saltini S, Benelli A, Filaferro M and Bertolini A: Influence of SAMe on the modifications of brain polyamine levels in an animal model of depression. Neuroreport. 12:3939–3942. 2001. View Article : Google Scholar : PubMed/NCBI | |
Reis DJ and Regunathan S: Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 21:187–193. 2000. View Article : Google Scholar : PubMed/NCBI | |
Askalany AR, Yamakura T, Petrenko AB, Kohno T, Sakimura K and Baba H: Effect of agmatine on heteromeric N-methyl-D-aspartate receptor channels. Neurosci Res. 52:387–392. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gross JA and Turecki G: Suicide and the polyamine system. CNS Neurol Disord Drug Targets. 12:980–988. 2013. View Article : Google Scholar : PubMed/NCBI | |
Turecki G: Polyamines and suicide risk. Mol Psychiatry. 18:1242–1243. 2013. View Article : Google Scholar : PubMed/NCBI | |
Naseer MI, Ullah I, Al-Qahtani MH, Karim S, Ullah N, Ansari SA, Kim MO and Bibi F: Decreased GABABR expression and increased neuronal cell death in developing rat brain after PTZ-induced seizure. Neurol Sci. 34:497–503. 2013. View Article : Google Scholar | |
Hauser WA and Kurland RT: The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia. 16:1–66. 1975. View Article : Google Scholar : PubMed/NCBI | |
Genton P and Bureau M: Epilepsy with myoclonic absences. CNS Drugs. 20:911–916. 2006. View Article : Google Scholar : PubMed/NCBI | |
Téllez-Zenteno JF and Hernández-Ronquillo L: A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat. 2012:6308532012.PubMed/NCBI | |
Halmekytö M, Alhonen L, Wahlfors J, Sinervirta R, Eloranta T and Jänne J: Characterization of a transgenic mouse line over-expressing the human ornithine decarboxylase gene. Biochem J. 278:895–898. 1991. View Article : Google Scholar : PubMed/NCBI | |
Halonen T, Sivenius J, Miettinen R, Halmekytö M, Kauppinen R, Sinervirta R, Alakuijala L, Alhonen L, MacDonald E and Jänne J: Elevated seizure threshold and impaired spatial learning in transgenic mice with putrescine overproduction in the brain. Eur J Neurosci. 5:1233–1239. 1993. View Article : Google Scholar : PubMed/NCBI | |
Lukkarinen JA, Kauppinen RA, Gröhn OH, Oja JM, Sinervirta R, Järvinen A, Alhonen LI and Jänne J: Neuroprotective role of ornithine decarboxylase activation in transient focal cerebral ischaemia: A study using ornithine decarboxylase-overexpressing transgenic rats. Eur J Neurosci. 10:2046–2055. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pietilä M, Alhonen L, Halmekytö M, Kanter P, Jänne J and Porter CW: Activation of polyamine catabolism profoundly alters tissue polyamine pools and affects hair growth and female fertility in transgenic mice overexpressing spermidine/spermine N1-acetyltransferase. J Biol Chem. 272:18746–18751. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kaasinen K, Koistinaho J, Alhonen L and Jänne J: Overexpression of spermidine/spermine N-acetyltransferase in transgenic mice protects the animals from kainate-induced toxicity. Eur J Neurosci. 12:540–548. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kaasinen SK, Gröhn OH, Keinänen TA, Alhonen L and Jänne J: Overexpression of spermidine/spermine N1-acetyltransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice. Exp Neurol. 183:645–652. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kaasinen SK, Oksman M, Alhonen L, Tanila H and Jänne J: Spermidine/spermine N1-acetyltransferase overexpression in mice induces hypoactivity and spatial learning impairment. Pharmacol Biochem Behav. 78:35–45. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cervelli M, Bellavia G, D'Amelio M, Cavallucci V, Moreno S, Berger J, Nardacci R, Marcoli M, Maura G, Piacentini M, et al: A new transgenic mouse model for studying the neurotoxicity of spermine oxidase dosage in the response to excitotoxic injury. PLoS One. 8:e648102013. View Article : Google Scholar : PubMed/NCBI | |
Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, Berretta N, Mercuri N, D'Amelio M, Maura G, et al: Astrocyte-dependent vulnerability to excitotoxicity in spermine oxidase-overexpressing mouse. Neuromolecular Med. 18:50–68. 2016. View Article : Google Scholar | |
Alhonen L, Uimari A, Pietilä M, Hyvönen MT, Pirinen E and Keinänen TA: Transgenic animals modelling polyamine metabolism-related diseases. Essays Biochem. 46:125–144. 2009. View Article : Google Scholar | |
Fleidervish IA, Libman L, Katz E and Gutnick MJ: Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. Proc Natl Acad Sci USA. 105:18994–18999. 2008. View Article : Google Scholar | |
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ and Dingledine R: Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev. 62:405–496. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jänne J, Alhonen L, Pietilä M and Keinänen TA: Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem. 271:877–894. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chapouthier G and Venault P: A pharmacological link between epilepsy and anxiety? Trends Pharmacol Sci. 22:491–493. 2001. View Article : Google Scholar : PubMed/NCBI | |
Harden CL and Goldstein MA: Mood disorders in patients with epilepsy: Epidemiology and management. CNS Drugs. 16:291–302. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kanner AM: Epilepsy and mood disorders. Epilepsia. 48:20–22. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stahl SM: Brainstorms: Symptoms and circuits, part 2: Anxiety disorders. J Clin Psychiatry. 64:1408–1409. 2003. View Article : Google Scholar | |
Jackson MJ and Turkington D: Depression and anxiety in epilepsy. J Neurol Neurosurg Psychiatry. 76(Suppl 1): i45–i47. 2005. View Article : Google Scholar : PubMed/NCBI | |
Aroniadou-Anderjaska V, Qashu F and Braga MF: Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: Implications for epilepsy and anxiety disorders. Amino Acids. 32:305–315. 2007. View Article : Google Scholar | |
Hamid H, Ettinger AB and Mula M: Anxiety symptoms in epilepsy: Salient issues for future research. Epilepsy Behav. 22:63–68. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gaitatzis A, Carroll K, Majeed A and W Sander J: The epidemiology of the comorbidity of epilepsy in the general population. Epilepsia. 45:1613–1622. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rogawski MA and Löscher W: The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med. 10:685–692. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pitkänen A and Sutula TP: Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 1:173–181. 2002. View Article : Google Scholar | |
Mula M, Pini S and Cassano GB: The role of anticonvulsant drugs in anxiety disorders: A critical review of the evidence. J Clin Psychopharmacol. 27:263–272. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hitiris N, Mohanraj R, Norrie J, Sills GJ and Brodie MJ: Predictors of pharmacoresistant epilepsy. Epilepsy Res. 75:192–196. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kanner AM: Psychiatric issues in epilepsy: The complex relation of mood, anxiety disorders, and epilepsy. Epilepsy Behav. 15:83–87. 2009. View Article : Google Scholar : PubMed/NCBI | |
Theodore WH: Does serotonin play a role in epilepsy? Epilepsy Curr. 3:173–177. 2003. View Article : Google Scholar | |
Richerson GB: Serotonin: The anti-sudden death amine? Epilepsy Curr. 13:241–244. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maia GH, Soares JI, Almeida SG, Leite JM, Baptista HX, Lukoyanova AN, Brazete CS and Lukoyanov NV: Altered serotonin innervation in the rat epileptic brain. Brain Res Bull. 152:95–106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jobe PC and Browning RA: The serotonergic and noradrenergic effects of antidepressant drugs are anticonvulsant, not proconvulsant. Epilepsy Behav. 7:602–619. 2005. View Article : Google Scholar : PubMed/NCBI |