1
|
GBD 2013 Mortality and Causes of Death
Collaborators: Global, regional, and national age-sex specific
all-cause and cause-specific mortality for 240 causes of death,
1990-2013: A systematic analysis for the global burden of disease
study 2013. Lancet. 385:117–171. 2015. View Article : Google Scholar :
|
2
|
GBD 2017 Causes of Death Collaborators:
Global, regional, and national age-sex-specific mortality for 282
causes of death in 195 countries and territories, 1980-2017: A
systematic analysis for the global burden of disease study 2017.
Lancet. 392:1736–1788. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Braunwald E: Heart failure. JACC Heart
Fail. 1:1–20. 2013. View Article : Google Scholar
|
4
|
Shimizu I and Minamino T: Physiological
and pathological cardiac hypertrophy. J Mol Cell Cardiol.
97:245–262. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang QJ, Tran TAT, Wang M, Ranek MJ,
Kokkonen-Simon KM, Gao J, Luo X, Tan W, Kyrychenko V, Liao L, et
al: Histone lysine dimethyl-demethylase KDM3A controls pathological
cardiac hypertrophy and fibrosis. Nat Commun. 9:52302018.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Savic-Radojevic A, Pljesa-Ercegovac M,
Matic M, Simic D, Radovanovic S and Simic T: Novel biomarkers of
heart failure. Adv Clin Chem. 79:93–152. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang S, Yin Z, Dai FF, Wang H, Zhou MJ,
Yang MH, Zhang SF, Fu ZF, Mei YW, Zang MX and Xue L: miR-29a
attenuates cardiac hypertrophy through inhibition of PPARδ
expression. J Cell Physiol. 234:13252–13262. 2019. View Article : Google Scholar
|
8
|
Salisbury SA, Forrest HS, Cruse WB and
Kennard O: A novel coenzyme from bacterial primary alcohol
dehydrogenases. Nature. 280:843–844. 1979. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lu J, Chen S, Shen M, He Q, Zhang Y, Shi
Y, Ding F and Zhang Q: Mitochondrial regulation by pyrroloquinoline
quinone prevents rotenone-induced neurotoxicity in Parkinson's
disease models. Neurosci Lett. 687:104–110. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Steinberg FM, Gershwin ME and Rucker RB:
Dietary pyrroloquinoline quinone: Growth and immune response in
BALB/c mice. J Nutr. 124:744–753. 1994. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jonscher KR, Stewart MS, Alfonso-Garcia A,
DeFelice BC, Wang XX, Luo Y, Levi M, Heerwagen MJ, Janssen RC, de
la Houssaye BA, et al: Early PQQ supplementation has persistent
long-term protective effects on developmental programming of
hepatic lipotoxicity and inflammation in obese mice. FASEB J.
31:1434–1448. 2017. View Article : Google Scholar :
|
12
|
Liu Z, Sun C, Tao R, Xu X, Xu L, Cheng H,
Wang Y and Zhang D: Pyrroloquinoline quinone decelerates rheumatoid
arthritis progression by inhibiting inflammatory responses and
joint destruction via modulating NF-κB and MAPK pathways.
Inflammation. 39:248–256. 2016. View Article : Google Scholar
|
13
|
Wu R, Pan J, Shen M and Xing C: Apoptotic
effect of pyrrolo-quinoline quinone on chondrosarcoma cells through
activation of the mitochondrial caspase-dependent and
caspase-independent pathways. Oncol Rep. 40:1614–1620.
2018.PubMed/NCBI
|
14
|
Misra HS, Rajpurohit YS and Khairnar NP:
Pyrroloquinoline-quinone and its versatile roles in biological
processes. J Biosci. 37:313–325. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu BQ, Simonis U, Cecchini G, Zhou HZ, Li
L, Teerlink JR and Karliner JS: Comparison of pyrroloquinoline
quinone and/or metoprolol on myocardial infarct size and
mitochondrial damage in a rat model of ischemia/reperfusion injury.
J Cardiovasc Pharmacol Ther. 11:119–128. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Stites T, Storms D, Bauerly K, Mah J,
Harris C, Fascetti A, Rogers Q, Tchaparian E, Satre M and Rucker
RB: Pyrroloquinoline quinone modulates mitochondrial quantity and
function in mice. J Nutr. 136:390–396. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhu B, Zhou H, Teerlink JR and Karliner
JS: Pyrroloquinoline quinone (PQQ) decreases myocardial infarct
size and improves cardiac function in rat models of ischemia and
ischemia/reper-fusion. Cardiovasc Drugs Ther. 18:421–431. 2004.
View Article : Google Scholar
|
18
|
Bauerly K, Harris C, Chowanadisai W,
Graham J, Havel PJ, Tchaparian E, Satre M, Karliner JS and Rucker
RB: Altering pyrroloquinoline quinone nutritional status modulates
mitochondrial, lipid, and energy metabolism in rats. PLoS One.
6:e217792011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nehra S, Bhardwaj V, Bansal A,
Chattopadhyay P and Saraswat D: Nanocurcumin-pyrroloquinoline
formulation prevents hypertrophy-induced pathological damage by
relieving mitochondrial stress in cardiomyocytes under hypoxic
conditions. Exp Mol Med. 49:e4042017. View Article : Google Scholar
|
20
|
Nehra S, Bhardwaj V, Bansal A and Saraswat
D: Combinatorial therapy of exercise-preconditioning and
nanocurcumin formulation supplementation improves cardiac
adaptation under hypobaric hypoxia. J Basic Clin Physiol Pharmacol.
28:443–453. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xu F, Yu H, Liu J and Cheng L:
Pyrroloquinoline quinone inhibits oxygen/glucose
deprivation-induced apoptosis by activating the PI3K/AKT pathway in
cardiomyocytes. Mol Cell Biochem. 386:107–115. 2014. View Article : Google Scholar
|
22
|
Gong W, Duan Q, Cai Z, Chen C, Ni L, Yan
M, Wang X, Cianflone K and Wang DW: Chronic inhibition of
cGMP-specific phosphodiesterase 5 suppresses endoplasmic reticulum
stress in heart failure. Br J Pharmacol. 170:1396–1409. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Facundo HDTF, Brainard RE, Caldas FRL and
Lucas AMB: Mitochondria and cardiac hypertrophy. Adv Exp Med Biol.
982:203–226. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lyon RC, Zanella F, Omens JH and Sheikh F:
Mechanotransduction in cardiac hypertrophy and failure. Circ Res.
116:1462–1476. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Garcia-Redondo AB, Aguado A, Briones AM
and Salaices M: NADPH oxidases and vascular remodeling in
cardiovascular diseases. Pharmacol Res. 114:110–120. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen F, Wang H, Zhao J, Yan J, Meng H,
Zhan H, Chen L and Yuan L: Grape seed proanthocyanidin inhibits
monocro-taline-induced pulmonary arterial hypertension via
attenuating inflammation: In vivo and in vitro studies. J Nutr
Biochem. 67:72–77. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Han Q, Liu Q, Zhang H, Lu M, Wang H, Tang
F and Zhang Y: Simvastatin improves cardiac hypertrophy in diabetic
rats by attenuation of oxidative stress and inflammation induced by
calpain-1-mediated activation of nuclear factor-κB (NF-κB). Med Sci
Monit. 25:1232–1241. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shi R, Wei Z, Zhu D, Fu N, Wang C, Yin S,
Liang Y, Xing J, Wang X and Wang Y: Baicalein attenuates
monocrotaline-induced pulmonary arterial hypertension by inhibiting
vascular remodeling in rats. Pulm Pharmacol Ther. 48:124–135. 2018.
View Article : Google Scholar
|
29
|
Zhang C, Wang F, Zhang Y, Kang Y, Wang H,
Si M, Su L, Xin X, Xue F, Hao F, et al: Celecoxib prevents pressure
overload-induced cardiac hypertrophy and dysfunction by inhibiting
inflammation, apoptosis and oxidative stress. J Cell Mol Med.
20:116–127. 2016. View Article : Google Scholar
|
30
|
Li Y, Xia J, Jiang N, Xian Y, Ju H, Wei Y
and Zhang X: Corin protects H2O2-induced
apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes.
Biomed Pharmacother. 97:594–599. 2018. View Article : Google Scholar
|
31
|
Guo Z, Lu J, Li J, Wang P, Li Z, Zhong Y,
Guo K, Wang J, Ye J and Liu P: JMJD3 inhibition protects against
isoproterenol-induced cardiac hypertrophy by suppressing β-MHC
expression. Mol Cell Endocrinol. 477:1–14. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sasaki CY, Barberi TJ, Ghosh P and Longo
DL: Phosphorylation of RelA/p65 on serine 536 defines an
I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem.
280:34538–34547. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Davidson M, Nesti C, Palenzuela L, Walker
WF, Hernandez E, Protas L, Hirano M and Isaac ND: Novel cell lines
derived from adult human ventricular cardiomyocytes. J Mol Cell
Cardiol. 39:133–147. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
National Institutes of Health: Guide for
the care and use of laboratory animals. 8th eidition. National
research council (US) committee for the update of the guide for the
care and use of laboratory animals Washington (DC): National
Academies Press (US); 2011
|
35
|
Yoshida T, Yamashita M, Horimai C and
Hayashi M: Kruppel-like factor 4 protein regulates
isoproterenol-induced cardiac hypertrophy by modulating myocardin
expression and activity. J Biol Chem. 289:26107–26118. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Li C, Huang D, Tang J, Chen M, Lu Q, Li H,
Zhang M, Xu B and Mao J: ClC-3 chloride channel is involved in
isoprenaline-induced cardiac hypertrophy. Gene. 642:335–342. 2018.
View Article : Google Scholar
|
37
|
Ren J, Zhang N, Liao H, Chen S, Xu L, Li
J, Yang Z, Deng W and Tang Q: Caffeic acid phenethyl ester
attenuates pathological cardiac hypertrophy by regulation of
MEK/ERK signaling pathway in vivo and vitro. Life Sci. 181:53–61.
2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sato H, Suzuki JI, Aoyama N, Watanabe R,
Kaneko M, Shiheido Y, Yoshida A, Wakayama K, Kumagai H, Ikeda Y, et
al: A periodontal pathogen porphyromonas gingivalis deteriorates
isoproterenol-induced myocardial remodeling in mice. Hypertens Res.
40:35–40. 2017. View Article : Google Scholar
|
39
|
Lucas AMB, de Lacerda Alexandre JV, Araújo
MTS, David CEB, Viana YIP, Coelho BN, Caldas FRL, Varela ALN,
Kowaltowski AJ and Facundo HT: Diazoxide modulates cardiac
hypertrophy by targeting H2O2 generation and mitochondrial
superoxide dismutase activity. Curr Mol Pharmacol. Jul 23–2019.Epub
ahead of print. PubMed/NCBI
|
40
|
Gong D, Geng C, Jiang L, Aoki Y, Nakano M
and Zhong L: Effect of pyrroloquinoline quinone on neuropathic pain
following chronic constriction injury of the sciatic nerve in rats.
Eur J Pharmacol. 697:53–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Xiao Y, Yang Z, Wu QQ, Jiang XH, Yuan Y,
Chang W, Bian ZY, Zhu JX and Tang QZ: Cucurbitacin B protects
against pressure overload induced cardiac hypertrophy. J Cell
Biochem. 118:3899–3910. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
43
|
Kim B: Western blot techniques. Methods
Mol Biol. 1606:133–139. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Elefantova K, Lakatos B, Kubickova J,
Sulova Z and Breier A: Detection of the mitochondrial membrane
potential by the cationic dye JC-1 in L1210 cells with massive
overexpression of the plasma membrane ABCB1 drug transporter. Int J
Mol Sci. 19:pii: E1985. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li D, Ye Y, Lin S, Deng L, Fan X, Zhang Y,
Deng X, Li Y, Yan H and Ma Y: Evaluation of deoxynivalenol-induced
toxic effects on DF-1 cells in vitro: Cell-cycle arrest, oxidative
stress, and apoptosis. Environ Toxicol Pharmacol. 37:141–149. 2014.
View Article : Google Scholar
|
46
|
Xia W, Zhuang L and Hou M: Role of
lincRNA-p21 in the protective effect of macrophage inhibition
factor against hypoxia/serum deprivation-induced apoptosis in
mesenchymal stem cells. Int J Mol Med. 42:2175–2184.
2018.PubMed/NCBI
|
47
|
Althurwi HN, Tse MM, Abdelhamid G, Zordoky
BN, Hammock BD and El-Kadi AO: Soluble epoxide hydrolase inhibitor,
TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br
J Pharmacol. 168:1794–1807. 2013. View Article : Google Scholar :
|
48
|
Rothschild DE, McDaniel DK, Ringel-Scaia
VM and Allen IC: Modulating inflammation through the negative
regulation of NF-κB signaling. J Leukoc Biol. Feb 1–2018.Epub ahead
of print. View Article : Google Scholar
|
49
|
Zeng MY, Miralda I, Armstrong CL, Uriarte
SM and Bagaitkar J: The roles of NADPH oxidase in modulating
neutrophil effector responses. Mol Oral Microbiol. 34:27–38. 2019.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Singh AK, Pandey SK and Naresh Kumar G:
Pyrroloquinoline quinone-secreting probiotic Escherichia coli
Nissle 1917 ameliorates ethanol-induced oxidative damage and
hyperlip-idemia in rats. Alcohol Clin Exp Res. 38:2127–2137. 2014.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Lu H, Shen J, Song X, Ge J, Cai R, Dai A
and Jiang Z: Protective effect of pyrroloquinoline quinone (PQQ) in
rat model of intra-cerebral hemorrhage. Cell Mol Neurobiol.
35:921–930. 2015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhou XQ, Yao ZW, Peng Y, Mao SS, Xu D, Qin
XF and Zhang RJ: PQQ ameliorates D-galactose induced cognitive
impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt
signaling pathway in mouse. Sci Rep. 8:88942018. View Article : Google Scholar
|
53
|
Mitchell P: Coupling of phosphorylation to
electron and hydrogen transfer by a chemi-osmotic type of
mechanism. Nature. 191:144–148. 1961. View Article : Google Scholar : PubMed/NCBI
|
54
|
Chen LB: Mitochondrial membrane potential
in living cells. Annu Rev Cell Biol. 4:155–181. 1988. View Article : Google Scholar : PubMed/NCBI
|
55
|
Sakamuru S, Attene-Ramos MS and Xia M:
Mitochondrial membrane potential assay. Methods Mol Biol.
1473:17–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Mohamed TMA, Ang YS, Radzinsky E, Zhou P,
Huang Y, Elfenbein A, Foley A, Magnitsky S and Srivastava D:
Regulation of cell cycle to stimulate adult cardiomyocyte
proliferation and cardiac regeneration. Cell. 173:104–116.e12.
2018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Foglia MJ and Poss KD: Building and
re-building the heart by cardiomyocyte proliferation. Development.
143:729–740. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kasahara T and Kato T: Nutritional
biochemistry: A new redox-cofactor vitamin for mammals. Nature.
422:8322003. View Article : Google Scholar : PubMed/NCBI
|
59
|
Bishop A, Gallop PM and Karnovsky ML:
Pyrroloquinoline quinone: A novel vitamin? Nutr Rev. 56:287–293.
1998. View Article : Google Scholar : PubMed/NCBI
|
60
|
Yang C, Yu L, Kong L, Ma R, Zhang J, Zhu
Q, Zhu J and Hao D: Pyrroloquinoline quinone (PQQ) inhibits
lipopolysaccharide induced inflammation in part via downregulated
NF-κB and p38/JNK activation in microglial and attenuates microglia
activation in lipopolysaccharide treatment mice. PLoS One.
9:e1095022014. View Article : Google Scholar
|
61
|
Hong HQ, Lu J, Fang XL, Zhang YH, Cai Y,
Yuan J, Liu PQ and Ye JT: G3BP2 is involved in
isoproterenol-induced cardiac hypertrophy through activating the
NF-κB signaling pathway. Acta Pharmacol Sin. 39:184–194. 2018.
View Article : Google Scholar
|
62
|
Song SB, Jang SY, Kang HT, Wei B, Jeoun
UW, Yoon GS and Hwang ES: Modulation of mitochondrial membrane
potential and ROS generation by nicotinamide in a manner
independent of SIRT1 and mitophagy. Mol Cells. 40:503–514.
2017.PubMed/NCBI
|
63
|
Ortiz-Avila O, Esquivel-Martinez M,
Olmos-Orizaba BE, Saavedra-Molina A, Rodriguez-Orozco AR and
Cortés-Rojo C: Avocado oil improves mitochondrial function and
decreases oxidative stress in brain of diabetic rats. J Diabetes
Res. 2015:4857592015. View Article : Google Scholar : PubMed/NCBI
|
64
|
Chikando A, Boyman L, Khairallah R,
Williams GSB, Kettlewell S, Ward CW, Smith G, Kao J and Lderer WJ:
ROS and mitochondrial membrane potential dependent modulation of
calcium signaling in the heart. Biophys J. 104:3612013. View Article : Google Scholar
|
65
|
Yan B, Sun Y and Wang J: Depletion of ubiA
prenyltransferase domain containing 1 expression promotes
angiotensin II-induced hypertrophic response in AC16 human
myocardial cells via modulating the expression levels of coenzyme
Q10 and endothelial nitric oxide synthase. Mol Med Rep.
16:6910–6915. 2017. View Article : Google Scholar : PubMed/NCBI
|
66
|
Zhang W, Zhang Y, Ding K, Zhang H, Zhao Q,
Liu Z and Xu Y: Involvement of JNK1/2-NF-κBp65 in the regulation of
HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human
AC16 cardiomyocytes. Biomed Pharmacother. 106:1063–1071. 2018.
View Article : Google Scholar : PubMed/NCBI
|