1
|
Barzilai N, Cuervo AM and Austad S: Aging
as a biological target for prevention and therapy. JAMA.
320:1321–1322. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fang EF, Scheibye-Knudsen M, Jahn HJ, Li
J, Ling L, Guo H, Zhu X, Preedy V, Lu H, Bohr VA, et al: A research
agenda for aging in China in the 21st century. Ageing Res Rev.
24:197–205. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan
J and Yankner BA: Gene regulation and DNA damage in the ageing
human brain. Nature. 429:883–891. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dhar Malhotra J, Chen C, Rivolta I, Abriel
H, Malhotra R, Mattei LN, Brosius FC, Kass RS and Isom LL:
Characterization of sodium channel alpha- and beta-subunits in rat
and mouse cardiac myocytes. Circulation. 103:1303–1310. 2001.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Hao C, Yanbin X, Jia L, Ping D and Wang
TJ: The expression and changes of SCN2B mrna in frontal lobe and
hippocampus of senescence-accelerated mouse. Chin J Neuroanat.
23:662–665. 2007.
|
6
|
XiYang YB, Wang YC, Zhao Y, Ru J, Lu BT,
Zhang YN, Wang NC, Hu WY, Liu J, Yang JW, et al: Sodium channel
voltage-gated beta 2 plays a vital role in brain aging associated
with synaptic plasticity and expression of COX5A and FGF-2. Mol
Neurobiol. 53:955–967. 2016. View Article : Google Scholar
|
7
|
Hu T, Xiao Z, Mao R, Chen B, Lu MN, Tong
J, Mei R, Li SS, Xiao ZC, Zhang LF and Xiyang YB: Navβ2 knockdown
improves cognition in APP/PS1 mice by partially inhibiting seizures
and APP amyloid processing. Oncotarget. 8:99284–99295. 2017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Kadakkuzha BM, Akhmedov K, Capo TR,
Carvalloza AC, Fallahi M and Puthanveettil SV: Age-associated
bidirectional modulation of gene expression in single identified
R15 neuron of Aplysia. BMC Genomics. 14:8802013. View Article : Google Scholar : PubMed/NCBI
|
9
|
French L, Ma T, Oh H, Tseng GC and Sibille
E: Age-related gene expression in the frontal cortex suggests
synaptic function changes in specific inhibitory neuron subtypes.
Front Aging Neurosci. 9:1622017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang ZB, Tan YX, Zhao Q, Xiong LL, Liu J,
Xu FF, Xu Y, Bobrovskaya L, Zhou XF and Wang TH: miRNA-7a-2-3p
inhibits neuronal apoptosis in oxygen-glucose deprivation (OGD)
model. Front Neurosci. 13:162019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nohata N, Sone Y, Hanazawa T, Fuse M,
Kikkawa N, Yoshino H, Chiyomaru T, Kawakami K, Enokida H, Nakagawa
M, et al: miR-1 as a tumor suppressive microRNA targeting TAGLN2 in
head and neck squamous cell carcinoma. Oncotarget. 2:29–42. 2011.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Fabian MR and Sonenberg N: The mechanics
of miRNA-mediated gene silencing: A look under the hood of miRISC.
Nat Struct Mol Biol. 19:586–593. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Son YH, Ka S, Kim AY and Kim JB:
Regulation of adipocyte differentiation via MicroRNAs. Endocrinol
Metab (Seoul). 29:122–135. 2014. View Article : Google Scholar
|
15
|
Saraiva C, Esteves M and Bernardino L:
MicroRNA: Basic concepts and implications for regeneration and
repair of neuro-degenerative diseases. Biochem Pharmacol.
141:118–131. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin Y, Liang X, Yao Y, Xiao H, Shi Y and
Yang J: Osthole attenuates APP-induced Alzheimer's disease through
up-regulating miRNA-101a-3p. Life Sci. 225:117–131. 2019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang M, Qin L and Tang B: MicroRNAs in
Alzheimer's disease. Front Genet. 10:1532019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu W, Liu C, Yin B and Peng XZ: Functions
of miR-9 and miR-9* during Aging in SAMP8 mice and their possible
mechanisms. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 37:253–258.
2015.PubMed/NCBI
|
19
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US); Washington, DC: 2011
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
21
|
Shen Q, Wang Y, Dimos JT, Fasano CA,
Phoenix TN, Lemischka IR, Ivanova NB, Stifani S, Morrisey EE and
Temple S: The timing of cortical neurogenesis is encoded within
lineages of individual progenitor cells. Nat Neurosci. 9:743–751.
2006. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang F, Qian X, Qin C, Lin Y, Wu H, Chang
L, Luo C and Zhu D: Phosphofructokinase-1 negatively regulates
neurogenesis from neural stem cells. Neurosci Bull. 32:205–216.
2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Agarwal V, Bell GW, Nam J and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:2015. View Article : Google Scholar
|
24
|
García DM, Baek D, Shin C, Bell GW,
Grimson A and Bartel DP: Weak seed-pairing stability and high
target-site abundance decrease the proficiency of lsy-6 and other
microRNAs. Nat Struct Mol Biol. 18:1139–1146. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar :
|
26
|
Grimson A, Farh KK, Johnston WK,
Garrett-Engele P, Lim LP and Bartel DP: MicroRNA targeting
specificity in mammals: Determinants beyond seed pairing. Molecular
Cell. 27:91–105. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
John B, Enright AJ, Aravin A, Tuschl T,
Sander C and Marks DS: Human MicroRNA targets. PLoS Biol.
2:e3632004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Paraskevopoulou MD, Georgakilas G,
Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C,
Dalamagas T and Hatzigeorgiou AG: DIANA-microT web server v5.0:
Service integration into miRNA functional analysis workflows.
Nucleic Acids Res. 41(Web Server Issue): W169–W173. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Reczko M, Maragkakis M, Alexiou P, Grosse
I and Hatzigeorgiou AG: Functional microRNA targets in protein
coding sequences. Bioinformatics. 28:771–776. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Krek A, Grün D, Poy MN, Wolf R, Rosenberg
L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M
and Rajewsky N: Combinatorial microRNA target predictions. Nat
Genet. 37:495–500. 2005. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Wang WX, Wilfred BR, Hu Y, Stromberg AJ
and Nelson PT: Anti-Argonaute RIP-Chip shows that miRNA
transfections alter global patterns of mRNA recruitment to
microribonucleoprotein complexes. RNA. 16:394–404. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang WX, Wilfred BR, Baldwin DA, Isett RB,
Ren N, Stromberg A and Nelson PT: Focus on RNA isolation: Obtaining
RNA for microRNA (miRNA) expression profiling analyses of neural
tissue. Biochim Biophys Acta. 1779:749–757. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nelson PT, De Planell-Saguer M, Lamprinaki
S, Kiriakidou M, Zhang P, O'Doherty U and Mourelatos Z: A novel
monoclonal antibody against human Argonaute proteins reveals
unexpected characteristics of miRNAs in human blood cells. RNA.
13:1787–1792. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ashburner M, Ball CA, Blake JA, Botstein
D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT,
et al: Gene ontology: Tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
The Gene Ontology Consortium: The gene
ontology resource: 20 years and still GOing strong. Nucleic Acids
Res. 47(D1): D330–D338. 2019. View Article : Google Scholar :
|
37
|
Zhu KP, Zhang CL, Ma XL, Hu JP, Cai T and
Zhang L: Analyzing the interactions of mRNAs and ncRNAs to predict
competing endogenous RNA networks in osteosarcoma chemo-resistance.
Mol Ther. 27:518–530. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lai J, Wang H, Pan Z and Su F: A novel
six-microRNA-based model to improve prognosis prediction of breast
cancer. Aging (Albany NY). 11:649–662. 2019. View Article : Google Scholar
|
39
|
Lee WJ, Moon J, Jeon D, Shin YW, Yoo JS,
Park DK, Lee ST, Jung KH, Park KI, Jung KY, et al: Possible
epigenetic regulatory effect of dysregulated circular RNAs in
Alzheimer's disease model. Sci Rep. 9:119562019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hu T, Chang YF, Xiao Z, Mao R, Tong J,
Chen B, Liu GC, Hong Y, Chen HL, Kong SY, et al: miR-1 inhibits
progression of high-risk papillomavirus-associated human cervical
cancer by targeting G6PD. Oncotarget. 7:86103–86116. 2016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Ebert MS, Neilson JR and Sharp PA:
MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian
cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bhalala OG, Pan L, Sahni V, McGuire TL,
Gruner K, Tourtellotte WG and Kessler JA: microRNA-21 regulates
astrocytic response following spinal cord injury. J Neurosci.
32:17935–17947. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hu T, Lu MN, Chen B, Tong J, Mao R, Li SS,
Dai P, Tan YX and Xiyang YB: Electro-acupuncture-induced
neuroprotection is associated with activation of the IGF-1/PI3K/Akt
pathway following adjacent dorsal root ganglionectomies in rats.
Int J Mol Med. 43:807–820. 2019.
|
44
|
Li D, Ke Y, Zhan R, Liu C, Zhao M, Zeng A,
Shi X, Ji L, Cheng S, Pan B, et al: Trimethylamine-N-oxide promotes
brain aging and cognitive impairment in mice. Aging Cell.
17:e127682018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Akiguchi I, Pallàs M, Budka H, Akiyama H,
Ueno M, Han J, Yagi H, Nishikawa T, Chiba Y, Sugiyama H, et al:
SAMP8 mice as a neuropathological model of accelerated brain aging
and dementia: Toshio Takeda's legacy and future directions.
Neuropathology. 37:293–305. 2017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Manich G, Mercader C, del Valle J,
Duran-Vilaregut J, Camins A, Pallàs M, Vilaplana J and Pelegrí C:
Characterization of amyloid-β granules in the hippocampus of SAMP8
mice. J Alzheimers Dis. 25:535–546. 2011. View Article : Google Scholar
|
47
|
Tormo E, Ballester S, Adam-Artigues A,
Burgués O, Alonso E, Bermejo B, Menéndez S, Zazo S, Madoz-Gúrpide
J, Rovira A, et al: The miRNA-449 family mediates doxorubicin
resistance in triple-negative breast cancer by regulating cell
cycle factors. Sci Rep. 9:53162019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li F, Liang J and Bai L: MicroRNA-449a
functions as a tumor suppressor in pancreatic cancer by the
epigenetic regulation of ATDC expression. Biomed Pharmacother.
103:782–789. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen J, Zhou J, Chen X, Yang B, Wang D,
Yang P, He X and Li H: miRNA-449a is downregulated in osteosarcoma
and promotes cell apoptosis by targeting BCL2. Tumour Biol.
36:8221–8229. 2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sarma NJ, Tiriveedhi V, Crippin JS,
Chapman WC and Mohanakumar T: Hepatitis C virus-induced changes in
microRNA 107 (miRNA-107) and miRNA-449a modulate CCL2 by targeting
the interleukin-6 receptor complex in hepatitis. J Virol.
88:3733–3743. 2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Muth M, Hussein K, Jacobi C, Kreipe H and
Bock O: Hypoxia-induced down-regulation of microRNA-449a/b impairs
control over targeted SERPINE1 (PAI-1) mRNA-a mechanism involved in
SERPINE1 (PAI-1) overexpression. J Transl Med. 9:242011. View Article : Google Scholar
|
52
|
Lize M, Pilarski S and Dobbelstein M:
E2F1-inducible microRNA 449a/b suppresses cell proliferation and
promotes apoptosis. Cell Death Differ. 17:452–458. 2010. View Article : Google Scholar
|
53
|
Feng M and Yu Q: miR-449 regulates
CDK-Rb-E2F1 through an auto-regulatory feedback circuit. Cell
Cycle. 9:213–214. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ma LP, Li N, He XJ and Zhang Q: miR-449b
and miR-34c on inducing down-regulation of cell cycle-related
proteins and cycle arrests in SKOV3-ipl cell, an ovarian cancer
cell line. Beijing Da Xue Xue Bao Yi Xue Ban. 43:129–133. 2011.In
Chinese. PubMed/NCBI
|
55
|
Buurman R, Gürlevik E, Schäffer V, Eilers
M, Sandbothe M, Kreipe H, Wilkens L, Schlegelberger B, Kühnel F and
Skawran B: Histone deacetylases activate hepatocyte growth factor
signaling by repressing microRNA-449 in hepatocellular carcinoma
cells. Gastroenterology. 143:811–820.e15. 2012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yang B, Dai JX, Pan YB, Ma YB and Chu SH:
Identification of biomarkers and construction of a microRNA-mRNA
regulatory network for ependymoma using integrated bioinformatics
analysis. Oncol Lett. 18:6079–6089. 2019.PubMed/NCBI
|
57
|
Lim AC and Qi RZ: Cyclin-dependent kinases
in neural development and degeneration. J Alzheimers Dis.
5:329–335. 2003. View Article : Google Scholar : PubMed/NCBI
|
58
|
Wright JW and Harding JW: The brain
hepatocyte growth Factor/c-Met receptor system: A new target for
the treatment of Alzheimer's disease. J Alzheimers Dis.
45:985–1000. 2015. View Article : Google Scholar : PubMed/NCBI
|
59
|
Hamasaki H, Honda H, Suzuki SO, Hokama M,
Kiyohara Y, Nakabeppu Y and Iwaki T: Down-regulation of MET in
hippocampal neurons of Alzheimer's disease brains. Neuropathology.
34:284–290. 2014. View Article : Google Scholar : PubMed/NCBI
|
60
|
Gautam V, D'Avanzo C, Berezovska O, Tanzi
RE and Kovacs DM: Synaptotagmins interact with APP and promote Aβ
generation. Mol Neurodegener. 10:312015. View Article : Google Scholar
|
61
|
Kuzuya A, Zoltowska KM, Post KL, Arimon M,
Li X, Svirsky S, Maesako M, Muzikansky A, Gautam V, Kovacs D, et
al: Identification of the novel activity-driven interaction between
synaptotagmin 1 and presenilin 1 links calcium, synapse, and
amyloid beta. BMC Biol. 14:252016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Davidsson P, Jahn R, Bergquist J, Ekman R
and Blennow K: Synaptotagmin, a synaptic vesicle protein, is
present in human cerebrospinal fluid: A new biochemical marker for
synaptic pathology in Alzheimer disease? Mol Chem Neuropathol.
27:195–210. 1996. View Article : Google Scholar : PubMed/NCBI
|
63
|
Isom LL: The role of sodium channels in
cell adhesion. Front Biosci. 7:12–23. 2002. View Article : Google Scholar : PubMed/NCBI
|
64
|
Kim DY, Ingano LA, Carey BW, Pettingell WH
and Kovacs DM: Presenilin/gamma-secretase-mediated cleavage of the
voltage-gated sodium channel beta2-subunit regulates cell adhesion
and migration. J Biol Chem. 280:23251–23261. 2005. View Article : Google Scholar : PubMed/NCBI
|
65
|
Pertin M, Ji RR, Berta T, Powell AJ,
Karchewski L, Tate SN, Isom LL, Woolf CJ, Gilliard N, Spahn DR and
Decosterd I: Upregulation of the voltage-gated sodium channel beta2
subunit in neuropathic pain models: Characterization of expression
in injured and non-injured primary sensory neurons. J Neurosci.
25:10970–10980. 2005. View Article : Google Scholar : PubMed/NCBI
|
66
|
Lopez-Santiago LF, Pertin M, Morisod X,
Chen C, Hong S, Wiley J, Decosterd I and Isom LL: Sodium channel
beta2 subunits regulate tetrodotoxin-sensitive sodium channels in
small dorsal root ganglion neurons and modulate the response to
pain. J Neurosci. 26:7984–7994. 2006. View Article : Google Scholar : PubMed/NCBI
|
67
|
Bao Y, Willis BC, Frasier CR,
Lopez-Santiago LF, Lin X, Ramos-Mondragón R, Auerbach DS, Chen C,
Wang Z, Anumonwo J, et al: Scn2b deletion in mice results in
ventricular and atrial arrhythmias. Circ Arrhythm Electrophysiol.
9:pii: e003923. 2016. View Article : Google Scholar : PubMed/NCBI
|
68
|
Riuró H, Beltran-Alvarez P, Tarradas A,
Selga E, Campuzano O, Vergés M, Pagans S, Iglesias A, Brugada J,
Brugada P, et al: A missense mutation in the sodium channel β2
subunit reveals SCN2B as a new candidate gene for Brugada syndrome.
Hum Mutat. 34:961–966. 2013. View Article : Google Scholar
|
69
|
Wang JW, Shi XY, Kurahashi H, Hwang SK,
Ishii A, Higurashi N, Kaneko S and Hirose S; Epilepsy Genetic Study
Group Japan: Prevalence of SCN1A mutations in children with
suspected Dravet syndrome and intractable childhood epilepsy.
Epilepsy Res. 102:195–200. 2012. View Article : Google Scholar : PubMed/NCBI
|
70
|
O'Malley HA, Shreiner AB, Chen GH,
Huffnagle GB and Isom LL: Loss of Na+ channel beta2
subunits is neuroprotective in a mouse model of multiple sclerosis.
Mol Cell Neurosci. 40:143–155. 2009. View Article : Google Scholar
|
71
|
Jansson KH, Castillo DG, Morris JW, Boggs
ME, Czymmek KJ, Adams EL, Schramm LP and Sikes RA: Identification
of beta-2 as a key cell adhesion molecule in PCa cell neurotropic
behavior: A novel ex vivo and biophysical approach. PLoS One.
9:e984082014. View Article : Google Scholar : PubMed/NCBI
|
72
|
Huth T, Schmidt-Neuenfeldt K, Rittger A,
Saftig P, Reiss K and Alzheimer C: Non-proteolytic effect of
beta-site APP-cleaving enzyme 1 (BACE1) on sodium channel function.
Neurobiol Dis. 33:282–289. 2009. View Article : Google Scholar
|