Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review)
- Authors:
- Kaijie Zhang
- Miaomiao Li
- Li Yin
- Guosheng Fu
- Zhenjie Liu
-
Affiliations: Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China - Published online on: February 20, 2020 https://doi.org/10.3892/ijmm.2020.4507
- Pages: 1275-1293
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV and Orekhov AN: Thrombospondins: A role in cardiovascular disease. Int J Mol Sci. 18:E15402017. View Article : Google Scholar : PubMed/NCBI | |
Bornstein P: Thrombospondins as matricellular modulators of cell function. J Clin Invest. 107:929–934. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bornstein P: Thrombospondins: Structure and regulation of expression. FASEB J. 6:3290–3299. 1992. View Article : Google Scholar : PubMed/NCBI | |
Resovi A, Pinessi D, Chiorino G and Taraboletti G: Current understanding of the thrombospondin-1 interactome. Matrix Biol. 37:83–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
Anilkumar N, Annis DS, Mosher DF and Adams JC: Trimeric assembly of the C-terminal region of thrombospondin-1 or thrombospondin-2 is necessary for cell spreading and fascin spike organisation. J Cell Sci. 115:2357–2366. 2002.PubMed/NCBI | |
Yu H, Tyrrell D, Cashel J, Guo NH, Vogel T, Sipes JM, Lam L, Fillit HM, Hartman J, Mendelovitz S, et al: Specificities of heparin-binding sites from the amino-terminus and type 1 repeats of thrombospondin-1. Arch Biochem Biophys. 374:13–23. 2000. View Article : Google Scholar : PubMed/NCBI | |
Elzie CA and Murphy-Ullrich JE: The N-terminus of thrombospondin: The domain stands apart. Int J Biochem Cell Biol. 36:1090–1101. 2004. View Article : Google Scholar : PubMed/NCBI | |
Feitsma K, Hausser H, Robenek H, Kresse H and Vischer P: Interaction of thrombospondin-1 and heparan sulfate from endothelial cells. Structural requirements of heparan sulfate. J Biol Chem. 275:9396–9402. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsova SA, Day AJ, Mahoney DJ, Rugg MS, Mosher DF and Roberts DD: The N-terminal module of thrombospondin-1 interacts with the link domain of TSG-6 and enhances its covalent association with the heavy chains of inter-alpha-trypsin inhibitor. J Biol Chem. 280:30899–30908. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yan Q, Murphy-Ullrich JE and Song Y: Structural insight into the role of thrombospondin-1 binding to calreticulin in calreticulin-induced focal adhesion disassembly. Biochemistry. 49:3685–3694. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsova SA, Issa P, Perruccio EM, Zeng B, Sipes JM, Ward Y, Seyfried NT, Fielder HL, Day AJ, Wight TN and Roberts DD: Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. J Cell Sci. 119:4499–4509. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sweetwyne MT, Pallero MA, Lu A, Van Duyn Graham L and Murphy-Ullrich JE: The calreticulin-binding sequence of thrombospondin 1 regulates collagen expression and organization during tissue remodeling. Am J Pathol. 177:1710–1724. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Murphy-Ullrich JE and Song Y: Molecular insight into the effect of lipid bilayer environments on thrombospondin-1 and calreticulin interactions. Biochemistry. 53:6309–6322. 2014. View Article : Google Scholar : PubMed/NCBI | |
Orr AW, Pallero MA, Xiong WC and Murphy-Ullrich JE: Thrombospondin induces RhoA inactivation through FAK-dependent signaling to stimulate focal adhesion disassembly. J Biol Chem. 279:48983–48992. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ndishabandi D, Duquette C, Billah GE, Reyes M, Duquette M, Lawler J and Kazerounian S: Thrombospondin-1 modulates actin filament remodeling and cell motility in mouse mammary tumor cells in vitro. Discoveries (Craiova). 2:e312014. View Article : Google Scholar | |
Chandrasekaran L, He CZ, Al-Barazi H, Krutzsch HC, Iruela-Arispe ML and Roberts DD: Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol Biol Cell. 11:2885–2900. 2000. View Article : Google Scholar : PubMed/NCBI | |
Furrer J, Luy B, Basrur V, Roberts DD and Barchi JJ Jr: Conformational analysis of an alpha3beta1 integrin-binding peptide from thrombospondin-1: Implications for antiangiogenic drug design. J Med Chem. 49:6324–6333. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brittain JE, Han J, Ataga KI, Orringer EP and Parise LV: Mechanism of CD47-induced alpha4beta1 integrin activation and adhesion in sickle reticulocytes. J Biol Chem. 279:42393–42402. 2004. View Article : Google Scholar : PubMed/NCBI | |
Calzada MJ, Sipes JM, Krutzsch HC, Yurchenco PD, Annis DS, Mosher DF and Roberts DD: Recognition of the N-terminal modules of thrombospondin-1 and thrombospondin-2 by alpha-6beta1 integrin. J Biol Chem. 278:40679–40687. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bein K and Simons M: Thrombospondin type 1 repeats interact with matrix metalloproteinase 2. Regulation of metalloproteinase activity. J Biol Chem. 275:32167–32173. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lee T, Esemuede N, Sumpio BE and Gahtan V: Thrombospondin-1 induces matrix metalloproteinase-2 activation in vascular smooth muscle cells. J Vasc Surg. 38:147–154. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J and Iruela-Arispe ML: Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA. 98:12485–12490. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zeng T, Yuan J, Gan J, Liu Y, Shi L, Lu Z, Xue Y, Xiong R, Huang M, Yang Z, et al: Thrombospondin 1 is increased in the aorta and plasma of patients with acute aortic dissection. Can J Cardiol. 35:42–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA and Bouck NP: CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 138:707–717. 1997. View Article : Google Scholar : PubMed/NCBI | |
Silverstein RL and Febbraio M: CD36-TSP-HRGP interactions in the regulation of angiogenesis. Curr Pharm Des. 13:3559–3567. 2007. View Article : Google Scholar | |
Simantov R, Febbraio M and Silverstein RL: The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol. 24:27–34. 2005. View Article : Google Scholar : PubMed/NCBI | |
Crombie R and Silverstein R: Lysosomal integral membrane protein II binds thrombospondin-1. Structure-function homology with the cell adhesion molecule CD36 defines a conserved recognition motif. J Biol Chem. 273:4855–4863. 1998. View Article : Google Scholar : PubMed/NCBI | |
Calzada MJ, Annis DS, Zeng B, Marcinkiewicz C, Banas B, Lawler J, Mosher DF and Roberts DD: Identification of novel beta1 integrin binding sites in the type 1 and type 2 repeats of thrombospondin-1. J Biol Chem. 279:41734–41743. 2004. View Article : Google Scholar : PubMed/NCBI | |
Goel HL, Moro L, Murphy-Ullrich JE, Hsieh CC, Wu CL, Jiang Z and Languino LR: Beta1 integrin cytoplasmic variants differentially regulate expression of the antiangiogenic extracellular matrix protein thrombospondin 1. Cancer Res. 69:5374–5382. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ahamed J, Janczak CA, Wittkowski KM and Coller BS: In vitro and in vivo evidence that thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of platelet-derived TGF-beta1. PLoS One. 4:e66082009. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Mickael C, Kassa B, Gebreab L, Robinson JC, Koyanagi DE, Sanders L, Barthel L, Meadows C, Fox D, et al: TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nat Commun. 8:154942017. View Article : Google Scholar | |
McGillicuddy FC, O’Toole D, Hickey JA, Gallagher WM, Dawson KA and Keenan AK: TGF-beta1-induced thrombospondin-1 expression through the p38 MAPK pathway is abolished by fluvastatin in human coronary artery smooth muscle cells. Vascul Pharmacol. 44:469–475. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Mernaugh RL, Friedman DB, Weller R, Tsuboi N, Yamashita H, Quaranta V and Takahashi T: Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. Proc Natl Acad Sci USA. 109:1985–1990. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Sumarriva K, Kim R, Jiang R, Brantley-Sieders DM, Chen J, Mernaugh RL and Takahashi T: Determination of the CD148-interacting region in thrombospondin-1. PLoS One. 11:e01549162016. View Article : Google Scholar : PubMed/NCBI | |
Garg P, Yang S, Liu A, Pallero MA, Buchsbaum DJ, Mosher DF, Murphy-Ullrich JE and Goldblum SE: Thrombospondin-1 opens the paracellular pathway in pulmonary microvascular endothelia through EGFR/ErbB2 activation. Am J Physiol Lung Cell Mol Physiol. 301:L79–L90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rusnati M, Borsotti P, Moroni E, Foglieni C, Chiodelli P, Carminati L, Pinessi D, Annis DS, Paiardi G, Bugatti A, et al: The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis. 22:133–144. 2019. View Article : Google Scholar | |
Kvansakul M, Adams JC and Hohenester E: Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J. 23:1223–1233. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Agarwal R, Singh A and Bhatnagar S: Calcium-induced conformational changes of Thrombospondin-1 signature domain: Implications for vascular disease. J Recept Signal Transduct Res. 37:239–251. 2017. View Article : Google Scholar | |
Joo SJ: Mechanisms of platelet activation and integrin αIIβ3. Korean Circ J. 42:295–301. 2012. View Article : Google Scholar : PubMed/NCBI | |
Freyberg MA, Kaiser D, Graf R, Buttenbender J and Friedl P: Proatherogenic flow conditions initiate endothelial apoptosis via thrombospondin-1 and the integrin-associated protein. Biochem Biophys Res Commun. 286:141–149. 2001. View Article : Google Scholar : PubMed/NCBI | |
Freyberg MA, Kaiser D, Graf R, Vischer P and Friedl P: Integrin-associated protein and thrombospondin-1 as endothelial mechanosensitive death mediators. Biochem Biophys Res Commun. 271:584–588. 2000. View Article : Google Scholar : PubMed/NCBI | |
McDonald JF, Dimitry JM and Frazier WA: An amyloid-like C-terminal domain of thrombospondin-1 displays CD47 agonist activity requiring both VVM motifs. Biochemistry. 42:10001–10011. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rath GM, Schneider C, Dedieu S, Rothhut B, Soula-Rothhut M, Ghoneim C, Sid B, Morjani H, El Btaouri H and Martiny L: The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. Biochim Biophys Acta. 1763:1125–1134. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pimanda JE, Annis DS, Raftery M, Mosher DF, Chesterman CN and Hogg PJ: The von Willebrand factor-reducing activity of thrombospondin-1 is located in the calcium-binding/C-terminal sequence and requires a free thiol at position 974. Blood. 100:2832–2838. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schultz-Cherry S, Chen H, Mosher DF, Misenheimer TM, Krutzsch HC, Roberts DD and Murphy-Ullrich JE: Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem. 270:7304–7310. 1995. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Sottile J, Strickland DK and Mosher DF: Binding and degradation of thrombospondin-1 mediated through heparan sulphate proteoglycans and low-density-lipoprotein receptor-related protein: Localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem J. 318:959–963. 1996. View Article : Google Scholar : PubMed/NCBI | |
Befekadu R, Christiansen K, Larsson A and Grenegard M: Increased plasma cathepsin S and trombospondin-1 in patients with acute ST segment elevation myocardial infarction. Cardiol J. 26:385–393. 2019. View Article : Google Scholar | |
Kaiser R, Grotemeyer K, Kalsch T, Graber S, Wilkens H and Elmas E: Decreased TSP-1 following percutaneous coronary intervention is associated with major adverse cardiac events in ST-elevation myocardial infarction. Clin Hemorheol Microcirc. 54:59–73. 2013. View Article : Google Scholar | |
Sezaki S, Hirohata S, Iwabu A, Nakamura K, Toeda K, Miyoshi T, Yamawaki H, Demircan K, Kusachi S, Shiratori Y, et al: Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion. Exp Biol Med (Maywood). 230:621–630. 2005. View Article : Google Scholar | |
Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J and Entman ML: Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 111:2935–2942. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jugdutt BI: Ventricular remodeling after infarction and the extracellular collagen matrix: When is enough enough? Circulation. 108:1395–1403. 2003. View Article : Google Scholar : PubMed/NCBI | |
van Oorschot AA, Smits AM, Pardali E, Doevendans PA and Goumans MJ: Low oxygen tension positively influences cardiomyocyte progenitor cell function. J Cell Mol Med. 15:2723–2734. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ashokkumar M, Anbarasan C, Saibabu R, Kuram S, Raman SC and Cherian KM: An association study of thrombospondin 1 and 2 SNPs with coronary artery disease and myocardial infarction among South Indians. Thromb Res. 128:e49–e53. 2011. View Article : Google Scholar : PubMed/NCBI | |
Koch W, Hoppmann P, de Waha A, Schomig A and Kastrati A: Polymorphisms in thrombospondin genes and myocardial infarction: A case-control study and a meta-analysis of available evidence. Hum Mol Genet. 17:1120–1126. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang XJ, Wei CY, Li WB, Zhang LL, Zhou Y, Wang ZH, Tang MX, Zhang W, Zhang Y and Zhong M: Association between single nucleotide polymorphisms in thrombospondins genes and coronary artery disease: A meta-analysis. Thromb Res. 136:45–51. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zwicker JI, Peyvandi F, Palla R, Lombardi R, Canciani MT, Cairo A, Ardissino D, Bernardinelli L, Bauer KA, Lawler J and Mannucci P: The thrombospondin-1 N700S polymorphism is associated with early myocardial infarction without altering von Willebrand factor multimer size. Blood. 108:1280–1283. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Huang J, Chen J, Zhao J, Ge D, Yang W and Gu D: Genetic association analysis of myocardial infarction with thrombospondin-1 N700S variant in a Chinese population. Thromb Res. 113:181–186. 2004. View Article : Google Scholar : PubMed/NCBI | |
Abdelmonem NA, Turky NO, Hashad IM, Abdel Rahman MF, El-Etriby A and Gad MZ: Association of thrombospondin-1 (N700S) and thrombospondin-4 (A387P) gene polymorphisms with the incidence of acute myocardial infarction in egyptians. Curr Pharm Biotechnol. 18:1078–1087. 2017. View Article : Google Scholar | |
Stenina OI, Ustinov V, Krukovets I, Marinic T, Topol EJ and Plow EF: Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites. FASEB J. 19:1893–1895. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Dobaczewski M, Gonzalez-Quesada C, Chen W, Biernacka A, Li N, Lee DW and Frangogiannis NG: Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension. 58:902–911. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Quesada C, Cavalera M, Biernacka A, Kong P, Lee DW, Saxena A, Frunza O, Dobaczewski M, Shinde A and Frangogiannis NG: Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ Res. 113:1331–1344. 2013. View Article : Google Scholar : PubMed/NCBI | |
Swinnen M, Vanhoutte D, Van Almen GC, Hamdani N, Schellings MW, D’hooge J, Van der Velden J, Weaver MS, Sage EH, Bornstein P, et al: Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation. 120:1585–1597. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Almen GC, Swinnen M, Carai P, Verhesen W, Cleutjens JP, D’hooge J, Verheyen FK, Pinto YM, Schroen B, Carmeliet P and Heymans S: Absence of thrombospondin-2 increases cardiomyocyte damage and matrix disruption in doxorubicin-induced cardiomyopathy. J Mol Cell Cardiol. 51:318–328. 2011. View Article : Google Scholar : PubMed/NCBI | |
Papageorgiou AP, Swinnen M, Vanhoutte D, VandenDriessche T, Chuah M, Lindner D, Verhesen W, de Vries B, D’hooge J, Lutgens E, et al: Thrombospondin-2 prevents cardiac injury and dysfunction in viral myocarditis through the activation of regulatory T-cells. Cardiovasc Res. 94:115–124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schroen B, Heymans S, Sharma U, Blankesteijn WM, Pokharel S, Cleutjens JP, Porter JG, Evelo CT, Duisters R, van Leeuwen RE, et al: Thrombospondin-2 is essential for myocardial matrix integrity: Increased expression identifies failure-prone cardiac hypertrophy. Circ Res. 95:515–522. 2004. View Article : Google Scholar : PubMed/NCBI | |
Batlle M, Perez-Villa F, Lazaro A, García-Pras E, Vallejos I, Sionis A, Castel MA and Roig E: Decreased expression of thrombospondin-1 in failing hearts may favor ventricular remodeling. Transplant Proc. 41:2231–2233. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vila V, Martinez-Sales V, Almenar L, Lazaro IS, Villa P and Reganon E: Inflammation, endothelial dysfunction and angiogenesis markers in chronic heart failure patients. Int J Cardiol. 130:276–277. 2008. View Article : Google Scholar | |
Sharifi-Sanjani M, Shoushtari AH, Quiroz M, Baust J, Sestito SF, Mosher M, Ross M, McTiernan CF, St Croix CM, Bilonick RA, et al: Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J Am Heart Assoc. 3:e0006702014. View Article : Google Scholar | |
van Almen GC, Verhesen W, van Leeuwen RE, van de Vrie M, Eurlings C, Schellings MW, Swinnen M, Cleutjens JP, van Zandvoort MA, Heymans S and Schroen B: MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell. 10:769–779. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vila V, Sales VM, Almenar L, Lazaro IS, Villa P and Reganon E: Effect of oral anticoagulant therapy on thrombospondin-1 and von Willebrand factor in patients with stable heart failure. Thromb Res. 121:611–615. 2008. View Article : Google Scholar | |
Berezin AE, Kremzer AA and Samura TA: Circulating thrombospondine-2 in patients with moderate-to-severe chronic heart failure due to coronary artery disease. J Biomed Res. Mar 2–2015.[Epub ahead of print]. PubMed/NCBI | |
Kimura Y, Izumiya Y, Hanatani S, Yamamoto E, Kusaka H, Tokitsu T, Takashio S, Sakamoto K, Tsujita K, Tanaka T, et al: High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction. Heart Vessels. 31:52–59. 2016. View Article : Google Scholar | |
Hanatani S, Izumiya Y, Takashio S, Kimura Y, Araki S, Rokutanda T, Tsujita K, Yamamoto E, Tanaka T, Yamamuro M, et al: Circulating thrombospondin-2 reflects disease severity and predicts outcome of heart failure with reduced ejection fraction. Circ J. 78:903–910. 2014. View Article : Google Scholar : PubMed/NCBI | |
Freeman RV and Otto CM: Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies. Circulation. 111:3316–3326. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pohjolainen V, Mustonen E, Taskinen P, Näpänkangas J, Leskinen H, Ohukainen P, Peltonen T, Aro J, Juvonen T, Satta J, et al: Increased thrombospondin-2 in human fibrosclerotic and stenotic aortic valves. Atherosclerosis. 220:66–71. 2012. View Article : Google Scholar | |
Jurk K, Ritter MA, Schriek C, Van Aken H, Droste DW, Ringelstein EB and Kehrel BE: Activated monocytes capture platelets for heterotypic association in patients with severe carotid artery stenosis. Thromb Haemost. 103:1193–1202. 2010. View Article : Google Scholar : PubMed/NCBI | |
Desai P, Helkin A, Odugbesi A, Stein J, Bruch D, Lawler J, Maier KG and Gahtan V: Fluvastatin inhibits intimal hyperplasia in wild-type but not Thbs1-null mice. J Surg Res. 210:1–7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liauw J, Hoang S, Choi M, Eroglu C, Choi M, Sun GH, Percy M, Wildman-Tobriner B, Bliss T, Guzman RG, et al: Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke. J Cereb Blood Flow Metab. 28:1722–1732. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lin TN, Kim GM, Chen JJ, Cheung WM, He YY and Hsu CY: Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke. 34:177–186. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yang AL, Zhou HJ, Lin Y, Luo JK, Cui HJ, Tang T and Yang QD: Thrombin promotes the expression of thrombospondin-1 and -2 in a rat model of intracerebral hemorrhage. J Neurol Sci. 323:141–146. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou HJ, Zhang HN, Tang T, Zhong JH, Qi Y, Luo JK, Lin Y, Yang QD and Li XQ: Alteration of thrombospondin-1 and -2 in rat brains following experimental intracerebral hemorrhage. Laboratory investigation. J Neurosurg. 113:820–825. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bodewes TC, Johnson JM, Auster M, Huynh C, Muralidharan S, Contreras M, LoGerfo FW and Pradhan-Nabzdyk L: Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model. FASEB J. 31:109–119. 2017. View Article : Google Scholar | |
Woo MS, Yang J, Beltran C and Cho S: Cell surface CD36 protein in monocyte/macrophage contributes to phagocytosis during the resolution phase of ischemic stroke in mice. J Biol Chem. 291:23654–23661. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim CW, Pokutta-Paskaleva A, Kumar S, Timmins LH, Morris AD, Kang DW, Dalal S, Chadid T, Kuo KM, Raykin J, et al: Disturbed flow promotes arterial stiffening through thrombospondin-1. Circulation. 136:1217–1232. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moura R, Tjwa M, Vandervoort P, Van Kerckhoven S, Holvoet P and Hoylaerts MF: Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in ApoE−/− mice. Circ Res. 103:1181–1189. 2008. View Article : Google Scholar : PubMed/NCBI | |
Narizhneva NV, Razorenova OV, Podrez EA, Chen J, Chandrasekharan UM, DiCorleto PE, Plow EF, Topol EJ and Byzova TV: Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium. FASEB J. 19:1158–1160. 2005. View Article : Google Scholar : PubMed/NCBI | |
Roth JJ, Gahtan V, Brown JL, Gerhard C, Swami VK, Rothman VL, Tulenko TN and Tuszynski GP: Thrombospondin-1 is elevated with both intimal hyperplasia and hypercholesterolemia. J Surg Res. 74:11–16. 1998. View Article : Google Scholar : PubMed/NCBI | |
Muraishi A, Capuzzi DM and Tuszynski GP: Binding of thrombospondin to human plasma lipoproteins. Biochem Biophys Res Commun. 193:1145–1151. 1993. View Article : Google Scholar : PubMed/NCBI | |
Barillari G, Iovane A, Bonuglia M, Albonici L, Garofano P, Di Campli E, Falchi M, Condò I, Manzari V and Ensoli B: Fibroblast growth factor-2 transiently activates the p53 oncosuppressor protein in human primary vascular smooth muscle cells: Implications for atherogenesis. Atherosclerosis. 210:400–406. 2010. View Article : Google Scholar : PubMed/NCBI | |
Osada-Oka M, Ikeda T, Akiba S and Sato T: Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1. J Cell Biochem. 104:1918–1926. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takahashi M, Oka M, Ikeda T, Akiba S and Sato T: Role of thrombospondin-1 in hypoxia-induced migration of human vascular smooth muscle cells. Yakugaku Zasshi. 128:377–383. 2008.(In Japanese). View Article : Google Scholar : PubMed/NCBI | |
Yabkowitz R, Mansfield PJ, Ryan US and Suchard SJ: Thrombospondin mediates migration and potentiates platelet-derived growth factor-dependent migration of calf pulmonary artery smooth muscle cells. J Cell Physiol. 157:24–32. 1993. View Article : Google Scholar : PubMed/NCBI | |
Raman P, Krukovets I, Marinic TE, Bornstein P and Stenina OI: Glycosylation mediates up-regulation of a potent antiangiogenic and proatherogenic protein, thrombospondin-1, by glucose in vascular smooth muscle cells. J Biol Chem. 282:5704–5714. 2007. View Article : Google Scholar | |
Stenina OI, Krukovets I, Wang K, Zhou Z, Forudi F, Penn MS, Topol EJ and Plow EF: Increased expression of thrombospondin-1 in vessel wall of diabetic Zucker rat. Circulation. 107:3209–3215. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ganguly R, Sahu S, Ohanyan V, Haney R, Chavez RJ, Shah S, Yalamanchili S and Raman P: Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE−/− mice. Sci Rep. 7:452792017. View Article : Google Scholar | |
Yang YJ, Cheng DY, Zheng XW, Li F and Yang GL: Expression of thrombospondin-1 in the lung of hypoxic pulmonary hypertension rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 43:19–23. 2012.(In Chinese). PubMed/NCBI | |
Reed MJ, Iruela-Arispe L, O’Brien ER, Truong T, LaBell T, Bornstein P and Sage EH: Expression of thrombospondins by endothelial cells. Injury is correlated with TSP-1. Am J Pathol. 147:1068–1080. 1995.PubMed/NCBI | |
DiPietro LA, Nebgen DR and Polverini PJ: Downregulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesis. J Vasc Res. 31:178–185. 1994. View Article : Google Scholar : PubMed/NCBI | |
Dardik R, Solomon A, Loscalzo J, Eskaraev R, Bialik A, Goldberg I, Schiby G and Inbal A: Novel proangiogenic effect of factor XIII associated with suppression of thrombospondin 1 expression. Arterioscler Thromb Vasc Biol. 23:1472–1477. 2003. View Article : Google Scholar : PubMed/NCBI | |
Isenberg JS, Hyodo F, Ridnour LA, Shannon CS, Wink DA, Krishna MC and Roberts DD: Thrombospondin 1 and vasoactive agents indirectly alter tumor blood flow. Neoplasia. 10:886–896. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tzeng HT, Tsai CH, Yen YT, Cheng HC, Chen YC, Pu SW, Wang YS, Shan YS, Tseng YL, Su WC, et al: Dysregulation of Rab37-mediated cross-talk between cancer cells and endothelial cells via thrombospondin-1 promotes tumor neovasculature and metastasis. Clin Cancer Res. 23:2335–2345. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bitar MS: Diabetes impairs angiogenesis and induces endothelial cell senescence by up-regulating thrombospondin-CD47-dependent signaling. Int J Mol Sci. 20:E6732019. View Article : Google Scholar : PubMed/NCBI | |
Yafai Y, Eichler W, Iandiev I, Unterlauft JD, Jochmann C, Wiedemann P and Bringmann A: Thrombospondin-1 is produced by retinal glial cells and inhibits the growth of vascular endothelial cells. Ophthalmic Res. 52:81–88. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Sorenson CM and Sheibani N: Lack of thrombospondin 1 and exacerbation of choroidal neovascularization. Arch Ophthalmol. 130:615–620. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Wang S, Sorenson CM and Sheibani N: Attenuation of retinal vascular development and neovascularization in transgenic mice over-expressing thrombospondin-1 in the lens. Dev Dyn. 235:1908–1920. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang S and Sheibani N: Enhanced proangiogenic signaling in thrombospondin-1-deficient retinal endothelial cells. Microvasc Res. 71:143–151. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Wu Z, Sorenson CM, Lawler J and Sheibani N: Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn. 228:630–642. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sheibani N, Sorenson CM, Cornelius LA and Frazier WA: Thrombospondin-1, a natural inhibitor of angiogenesis, is present in vitreous and aqueous humor and is modulated by hyperglycemia. Biochem Biophys Res Commun. 267:257–261. 2000. View Article : Google Scholar : PubMed/NCBI | |
Koch M, Hussein F, Woeste A, Gründker C, Frontzek K, Emons G and Hawighorst T: CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo. Breast Cancer Res Treat. 128:337–346. 2011. View Article : Google Scholar | |
Tomii Y, Kamochi J, Yamazaki H, Sawa N, Tokunaga T, Ohnishi Y, Kijima H, Ueyama Y, Tamaoki N and Nakamura M: Human thrombospondin 2 inhibits proliferation of microvascular endothelial cells. Int J Oncol. 20:339–342. 2002.PubMed/NCBI | |
Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE and Bornstein P: Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell. 13:1893–1905. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kyriakides TR, Zhu YH, Yang Z, Huynh G and Bornstein P: Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice. Am J Pathol. 159:1255–1262. 2001. View Article : Google Scholar : PubMed/NCBI | |
Calabro NE, Kristofik NJ and Kyriakides TR: Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta. 1840.2396–2402. 2014. | |
Krady MM, Zeng J, Yu J, MacLauchlan S, Skokos EA, Tian W, Bornstein P, Sessa WC and Kyriakides TR: Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. Am J Pathol. 173:879–891. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park YW, Kang YM, Butterfield J, Detmar M, Goronzy JJ and Weyand CM: Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol. 165:2087–2098. 2004. View Article : Google Scholar : PubMed/NCBI | |
Agah A, Kyriakides TR, Letrondo N, Bjorkblom B and Bornstein P: Thrombospondin 2 levels are increased in aged mice: Consequences for cutaneous wound healing and angiogenesis. Matrix Biol. 22:539–547. 2004. View Article : Google Scholar : PubMed/NCBI | |
Feige JJ: Thrombospondins: Multimodular proteins with angiostatic function. Pathol Biol (Paris). 47:339–344. 1999.(In French). | |
Raugi GJ, Mullen JS, Bark DH, Okada T and Mayberg MR: Thrombospondin deposition in rat carotid artery injury. Am J Pathol. 137:179–185. 1990.PubMed/NCBI | |
Lemkens P, Boari G, Fazzi G, Janssen G, Murphy-Ullrich J, Schiffers P and De Mey J: Thrombospondin-1 in early flow-related remodeling of mesenteric arteries from young normotensive and spontaneously hypertensive rats. Open Cardiovasc Med J. 6:50–59. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ichii T, Koyama H, Tanaka S, Shioi A, Okuno Y, Otani S and Nishizawa Y: Thrombospondin-1 mediates smooth muscle cell proliferation induced by interaction with human platelets. Arterioscler Thromb Vasc Biol. 22:1286–1292. 2002. View Article : Google Scholar : PubMed/NCBI | |
Riessen R, Kearney M, Lawler J and Isner JM: Immunolocalization of thrombospondin-1 in human atherosclerotic and restenotic arteries. Am Heart J. 135:357–364. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yoshida S, Nabzdyk CS, Pradhan L and LoGerfo FW: Thrombospondin-2 gene silencing in human aortic smooth muscle cells improves cell attachment. J Am Coll Surg. 213:668–676. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ochoa CD, Yu L, Al-Ansari E, Hales CA and Quinn DA: Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension. J Cardiothorac Surg. 5:322010. View Article : Google Scholar : PubMed/NCBI | |
Satoh M, Nasu T, Osaki T and Hitomi S: Thrombospondin-1 contributes to slower aortic aneurysm growth by inhibiting maladaptive remodeling of extracellular matrix. Clin Sci (Lond). 131:1283–1285. 2017. View Article : Google Scholar | |
Liu Z, Morgan S, Ren J, Wang Q, Annis DS, Mosher DF, Zhang J, Sorenson CM, Sheibani N and Liu B: Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ Res. 117:129–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cointe S, Rheaume E, Martel C, Blanc-Brude O, Dubé E, Sabatier F, Dignat-George F, Tardif JC and Bonnefoy A: Thrombospondin-1-derived peptide RFYVVMWK improves the adhesive phenotype of CD34(+) cells from atherosclerotic patients with type 2 diabetes. Cell Transplant. 26:327–337. 2017. View Article : Google Scholar : | |
Kyriakides TR, Rojnuckarin P, Reidy MA, Hankenson KD, Papayannopoulou T, Kaushansky K and Bornstein P: Megakaryocytes require thrombospondin-2 for normal platelet formation and function. Blood. 101:3915–3923. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD and Bornstein P: Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci USA. 96:4449–4454. 1999. View Article : Google Scholar : PubMed/NCBI | |
Roberts DD, Haverstick DM, Dixit VM, Frazier WA, Santoro SA and Ginsburg V: The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J Biol Chem. 260:9405–9411. 1985.PubMed/NCBI | |
Yang S, Song R, Li X, Zhang T, Fu J and Cui X: Thrombospondin-2 predicts response to treatment with intravenous immunoglobulin in children with Kawasaki disease. BMJ Paediatr Open. 2:e0001902018. View Article : Google Scholar : PubMed/NCBI | |
Reinecke H, Robey TE, Mignone JL, Muskheli V, Bornstein P and Murry CE: Lack of thrombospondin-2 reduces fibrosis and increases vascularity around cardiac cell grafts. Cardiovasc Pathol. 22:91–95. 2013. View Article : Google Scholar | |
Roberts DD: Interactions of thrombospondin with sulfated glycolipids and proteoglycans of human melanoma cells. Cancer Res. 48:6785–6793. 1988.PubMed/NCBI | |
Orr AW, Pedraza CE, Pallero MA, Elzie CA, Goicoechea S, Strickland DK and Murphy-Ullrich JE: Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol. 161:1179–1189. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Calzada MJ, Sipes JM, Cashel JA, Krutzsch HC, Annis DS, Mosher DF and Roberts DD: Interactions of thrombospondins with alpha4beta1 integrin and CD47 differentially modulate T cell behavior. J Cell Biol. 157:509–519. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Newcomb CJ, Lei Y, Zhou Y, Bornstein P, Amendt BA, Stupp SI and Snead ML: Bioactive nanofibers enable the identification of thrombospondin 2 as a key player in enamel regeneration. Biomaterials. 61:216–228. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lawler J and Hynes RO: An integrin receptor on normal and thrombasthenic platelets that binds thrombospondin. Blood. 74:2022–2027. 1989. View Article : Google Scholar : PubMed/NCBI | |
Kong P, Cavalera M and Frangogiannis NG: The role of thrombospondin (TSP)-1 in obesity and diabetes. Adipocyte. 3:81–84. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hogg PJ, Hotchkiss KA, Jimenez BM, Stathakis P and Chesterman CN: Interaction of platelet-derived growth factor with thrombospondin 1. Biochem J. 326:709–716. 1997. View Article : Google Scholar : PubMed/NCBI | |
Qian X, Wang TN, Rothman VL, Nicosia RF and Tuszynski GP: Thrombospondin-1 modulates angiogenesis in vitro by up-regulation of matrix metalloproteinase-9 in endothelial cells. Exp Cell Res. 235:403–412. 1997. View Article : Google Scholar : PubMed/NCBI | |
Liu A, Garg P, Yang S, Gong P, Pallero MA, Annis DS, Liu Y, Passaniti A, Mann D, Mosher DF, et al: Epidermal growth factor-like repeats of thrombospondins activate phospholipase Cgamma and increase epithelial cell migration through indirect epidermal growth factor receptor activation. J Biol Chem. 284:6389–6402. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zheng B and Clemmons DR: Blocking ligand occupancy of the alphaVbeta3 integrin inhibits insulin-like growth factor I signaling in vascular smooth muscle cells. Proc Natl Acad Sci USA. 95:11217–11222. 1998. View Article : Google Scholar : PubMed/NCBI | |
Saumet A, Slimane MB, Lanotte M, Lawler J and Dubernard V: Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/alphavbeta3 in promyelocytic leukemia NB4 cells. Blood. 106:658–667. 2005. View Article : Google Scholar : PubMed/NCBI | |
Isenberg JS, Jia Y, Fukuyama J, Switzer CH, Wink DA and Roberts DD: Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem. 282:15404–15415. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lagadec P, Dejoux O, Ticchioni M, Cottrez F, Johansen M, Brown EJ and Bernard A: Involvement of a CD47-dependent pathway in platelet adhesion on inflamed vascular endothelium under flow. Blood. 101:4836–4843. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mandler WK, Nurkiewicz TR, Porter DW, Kelley EE and Olfert IM: Microvascular dysfunction following multiwalled carbon nanotube exposure is mediated by thrombospondin-1 receptor CD47. Toxicol Sci. 165:90–99. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Chen K, Gao L, Zheng Y and Yang YG: Thrombospondin-1 signaling through CD47 inhibits cell cycle progression and induces senescence in endothelial cells. Cell Death Dis. 7:e23682016. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi Y, Kuroki M, Imakiire T, Uno K, Abe H, Beppu R, Yamashita Y, Kuroki M and Shirakusa T: Opposite effects of thrombospondin-1 via CD36 and CD47 on homotypic aggregation of monocytic cells. Matrix Biol. 21:441–448. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kaur S, Chang T, Singh SP, Lim L, Mannan P, Garfield SH, Pendrak ML, Soto-Pantoja DR, Rosenberg AZ, Jin S and Roberts DD: CD47 signaling regulates the immunosuppressive activity of VEGF in T cells. J Immunol. 193:3914–3924. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rogers NM, Roberts DD and Isenberg JS: Age-associated induction of cell membrane CD47 limits basal and temperature-induced changes in cutaneous blood flow. Ann Surg. 258:184–191. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rogers NM, Sharifi-Sanjani M, Csanyi G, Pagano PJ and Isenberg JS: Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biol. 37:92–101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Csanyi G, Feck DM, Ghoshal P, Singla B, Lin H, Nagarajan S, Meijles DN, Al Ghouleh I, Cantu-Medellin N, Kelley EE, et al: CD47 and Nox1 mediate dynamic fluid-phase macropinocytosis of native LDL. Antioxid Redox Signal. 26:886–901. 2017. View Article : Google Scholar : | |
Rogers NM, Sharifi-Sanjani M, Yao M, Ghimire K, Bienes-Martinez R, Mutchler SM, Knupp HE, Baust J, Novelli EM, Ross M, et al: TSP1-CD47 signaling is upregulated in clinical pulmonary hypertension and contributes to pulmonary arterial vasculopathy and dysfunction. Cardiovasc Res. 113:15–29. 2017. View Article : Google Scholar | |
Kellouche S, Mourah S, Bonnefoy A, Schoëvaert D, Podgorniak MP, Calvo F, Hoylaerts MF, Legrand C and Dosquet C: Platelets, thrombospondin-1 and human dermal fibroblasts cooperate for stimulation of endothelial cell tubulogenesis through VEGF and PAI-1 regulation. Exp Cell Res. 313:486–499. 2007. View Article : Google Scholar | |
Murphy-Ullrich JE and Poczatek M: Activation of latent TGF-beta by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev. 11:59–69. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schultz-Cherry S, Lawler J and Murphy-Ullrich JE: The type 1 repeats of thrombospondin 1 activate latent transforming growth factor-beta. J Biol Chem. 269:26783–26788. 1994.PubMed/NCBI | |
Rosini S, Pugh N, Bonna AM, Hulmes DJS, Farndale RW and Adams JC: Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites. Sci Signal. 11:eaar25662018. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Strickland DK and Bornstein P: Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem. 276:8403–8408. 2001. View Article : Google Scholar | |
Nakamura M, Oida Y, Abe Y, Yamazaki H, Mukai M, Matsuyama M, Chijiwa T, Matsumoto H and Ueyama Y: Thrombospondin-2 inhibits tumor cell invasion through the modulation of MMP-9 and uPA in pancreatic cancer cells. Mol Med Rep. 1:423–427. 2008.PubMed/NCBI | |
Murphy-Ullrich JE and Mosher DF: Interactions of thrombospondin with endothelial cells: Receptor-mediated binding and degradation. J Cell Biol. 105:1603–1611. 1987. View Article : Google Scholar : PubMed/NCBI | |
Godyna S, Liau G, Popa I, Stefansson S and Argraves WS: Identification of the low density lipoprotein receptor-related protein (LRP) as an endocytic receptor for thrombospondin-1. J Cell Biol. 129:1403–1410. 1995. View Article : Google Scholar : PubMed/NCBI | |
Mikhailenko I, Kounnas MZ and Strickland DK: Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor mediates the cellular internalization and degradation of thrombospondin. A process facilitated by cell-surface proteoglycans. J Biol Chem. 270:9543–9549. 1995. View Article : Google Scholar : PubMed/NCBI | |
Daviet L and McGregor JL: Vascular biology of CD36: Roles of this new adhesion molecule family in different disease states. Thromb Haemost. 78:65–69. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ramanathan S, Mazzalupo S, Boitano S and Montfort WR: Thrombospondin-1 and angiotensin II inhibit soluble guanylyl cyclase through an increase in intracellular calcium concentration. Biochemistry. 50:7787–7799. 2011. View Article : Google Scholar : PubMed/NCBI | |
Trujillo G and Kew RR: Platelet-derived thrombospondin-1 is necessary for the vitamin D-binding protein (Gc-globulin) to function as a chemotactic cofactor for C5a. J Immunol. 173:4130–4136. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Scheef EA, Wang S, Sorenson CM, Marcus CB, Jefcoate CR and Sheibani N: CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression. Blood. 113:744–754. 2009. View Article : Google Scholar : | |
MacLauchlan S, Yu J, Parrish M, Asoulin TA, Schleicher M, Krady MM, Zeng J, Huang PL, Sessa WC and Kyriakides TR: Endothelial nitric oxide synthase controls the expression of the angiogenesis inhibitor thrombospondin 2. Proc Natl Acad Sci USA. 108:E1137–E1145. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee NV, Sato M, Annis DS, Loo JA, Wu L, Mosher DF and Iruela-Arispe ML: ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J. 25:5270–5283. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mead TJ and Apte SS: ADAMTS proteins in human disorders. Matrix Biol. 71–72:225–239. 2018. View Article : Google Scholar | |
Bengtsson E, Hultman K, Duner P, Asciutto G, Almgren P, Orho-Melander M, Melander O, Nilsson J, Hultgardh-Nilsson A and Gonçalves I: ADAMTS-7 is associated with a high-risk plaque phenotype in human atherosclerosis. Sci Rep. 7:37532017. View Article : Google Scholar : PubMed/NCBI | |
Pereira A, Palma Dos Reis R, Rodrigues R, Sousa AC, Gomes S, Borges S, Ornelas I, Freitas AI, Guerra G, Henriques E, et al: Association of ADAMTS7 gene polymorphism with cardiovascular survival in coronary artery disease. Physiol Genomics. 48:810–815. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bauer RC, Tohyama J, Cui J, Cheng L, Yang J, Zhang X, Ou K, Paschos GK, Zheng XL, Parmacek MS, et al: Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Circulation. 131:1202–1213. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, et al: Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: Two genome-wide association studies. Lancet. 377:383–392. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qin W, Cao Y, Li L, Chen W and Chen X: Upregulation of ADAMTS7 and downregulation of COMP are associated with aortic aneurysm. Mol Med Rep. 16:5459–5463. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kessler T, Zhang L, Liu Z, Yin X, Huang Y, Wang Y, Fu Y, Mayr M, Ge Q, Xu Q, et al: ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation. 131:1191–1201. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pu X, Xiao Q, Kiechl S, Chan K, Ng FL, Gor S, Poston RN, Fang C, Patel A, Senver EC, et al: ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet. 92:366–374. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W and Wang X: ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 104:688–698. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Li J, Yu C, Gao Y, Fan S, Ye X, Wang Y and Zheng J: Association of serum ADAMTS-7 levels with left ventricular reverse remodeling after ST-elevation myocardial infarction. Eur J Med Res. 23:152018. View Article : Google Scholar : PubMed/NCBI | |
Chan K, Pu X, Sandesara P, Poston RN, Simpson IA, Quyyumi AA, Ye S and Patel RS: Genetic variation at the ADAMTS7 locus is associated with reduced severity of coronary artery disease. J Am Heart Assoc. 6:e0069282017. View Article : Google Scholar : | |
Wu W, Wang H, Yu C, Li J, Gao Y, Ke Y, Wang Y, Zhou Y and Zheng J: Association of ADAMTS-7 levels with cardiac function in a rat model of acute myocardial infarction. Cell Physiol Biochem. 38:950–958. 2016. View Article : Google Scholar : PubMed/NCBI |