1
|
Di Cosimo S and Baselga J: Management of
breast cancer with targeted agents: Importance of heterogeneity.
[corrected]. Nat Rev Clin Oncol. 7:139–147. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bostner J, Ahnström-Waltersson M,
Fornander T, Skoog L, Nordenskjöld B and Stål O: Amplification of
CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance
in post-menopausal breast cancer. Oncogene. 26:6997–7005. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Hui R, Campbell DH, Lee CS, McCaul K,
Horsfall DJ, Musgrove EA, Daly RJ, Seshadri R and Sutherland RL:
EMS1 amplification can occur independently of CCND1 or INT-2
amplification at 11q13 and may identify different phenotypes in
primary breast cancer. Oncogene. 15:1617–1623. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mukherjee S and Conrad SE: c-Myc
suppresses p21WAF1/CIP1 expression during estrogen signaling and
antiestrogen resistance in human breast cancer cells. J Biol Chem.
280:17617–17625. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fujita T, Liu W, Doihara H and Wan Y: An
in vivo study of Cdh1/APC in breast cancer formation. Int J Cancer.
125:826–836. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lei H, Sjoberg-Margolin S, Salahshor S,
Werelius B, Jandakova E, Hemminki K, Lindblom A and Vorechovsky I:
CDH1 mutations are present in both ductal and lobular breast
cancer, but promoter allelic variants show no detectable breast
cancer risk. Int J Cancer. 98:199–204. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Feinberg AP and Tycko B: The history of
cancer epigenetics. Nat Rev Cancer. 4:143–153. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hilakivi-Clarke L: Estrogens, BRCA1, and
breast cancer. Cancer Res. 60:4993–5001. 2000.PubMed/NCBI
|
9
|
Stevens KN, Vachon CM and Couch FJ:
Genetic susceptibility to triple-negative breast cancer. Cancer
Res. 73:2025–2030. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sharma P: Update on the treatment of
early-stage triple-negative breast cancer. Curr Treat Options
Oncol. 19:22–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Matsuyama R, Reddy S and Smith TJ: Why do
patients choose chemotherapy near the end of life? A review of the
perspective of those facing death from cancer. J Clin Oncol.
24:3490–3496. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lonning PE: Molecular basis for therapy
resistance. Mol Oncol. 4:284–300. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Vassilomanolakis M, Koumakis G, Barbounis
V, Demiri M, Panopoulos C, Chrissohoou M, Apostolikas N and
Efremidis AP: First-line chemotherapy with docetaxel and cisplatin
in meta-static breast cancer. Breast. 14:136–141. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jordan P and Carmo-Fonseca M: Molecular
mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci.
57:1229–1235. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brabec V: DNA modifications by antitumor
platinum and ruthenium compounds: Their recognition and repair.
Prog Nucleic Acid Res Mol Biol. 71:1–68. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shamseddine AI and Farhat FS:
Platinum-based compounds for the treatment of metastatic breast
cancer. Chemotherapy. 57:468–487. 2011. View Article : Google Scholar
|
17
|
Sharp CN and Siskind LJ: Developing better
mouse models to study cisplatin-induced kidney injury. Am J Physiol
Renal Physiol. 313:F835–F841. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Galluzzi L, Senovilla L, Vitale I, Michels
J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms
of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar
|
19
|
Rosenbluh J, Wang X and Hahn WC: Genomic
insights into WNT/β-catenin signaling. Trends Pharmacol Sci.
35:103–109. 2014. View Article : Google Scholar
|
20
|
Anastas JN and Moon RT: WNT signalling
pathways as therapeutic targets in cancer. Nat Rev Canc. 13:11–26.
2013. View
Article : Google Scholar
|
21
|
Nagahata T, Shimada T, Harada A, Nagai H,
Onda M, Yokoyama S, Shiba T, Jin E, Kawanami O and Emi M:
Amplification, up-regulation and over-expression of DVL-1, the
human counterpart of the Drosophila disheveled gene, in primary
breast cancers. Cancer Sci. 94:515–518. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Badawy AM, El-Naga RN, Gad AM, Tadros MG
and Fawzy HM: Wogonin pre-treatment attenuates cisplatin-induced
nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis
and Wnt/β-catenin pathway. Chem Biol Interact. 308:137–146. 2019.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Yin P, Song G and Jiang Z: Cisplatin
suppresses proliferation, migration and invasion of nasopharyngeal
carcinoma cells in vitro by repressing the
Wnt/β-catenin/Endothelin-1 axis via activating B cell translocation
gene 1. Cancer Chemother Pharmacol. 81:863–872. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao H, Wei W, Sun Y, Gao J, Wang Q and
Zheng J: Interference with the expression of β-catenin reverses
cisplatin resistance in A2780/DDP cells and inhibits the
progression of ovarian cancer in mouse model. DNA Cell Biol.
34:55–62. 2015. View Article : Google Scholar
|
25
|
Zhang X, Liu R, Zhao N, Ji S, Hao C, Cui
W, Zhang R and Hao J: Sohlh2 inhibits breast cancer cell
proliferation by suppressing Wnt/β-catenin signaling pathway. Mol
Carcinog. 58:1008–1018. 2009. View
Article : Google Scholar
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Krishnamurthy N and Kurzrock R: Targeting
the Wnt/beta- catenin pathway in cancer: Update on effectors and
inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar
|
28
|
Li L, Liu HC, Wang C, Liu X, Hu FC, Xie N,
Lü L, Chen X and Huang HZ: Overexpression of β-catenin induces
cisplatin resistance in oral squamous cell carcinoma. Biomed Res
Int. 2016:53785672016.
|
29
|
Zhang B, Liu M, Tang HK, Ma HB, Wang C,
Chen X and Huang HZ: The expression and significance of MRP1, LRP,
TOPOIIβ, and BCL2 in tongue squamous cell carcinoma. J Oral Pathol
Med. 41:141–148. 2012. View Article : Google Scholar
|
30
|
Naor D, Nedvetzki S, Golan I, Melnik L and
Faitelson Y: CD44 in cancer. Crit Rev Clin Lab Sci. 39:527–579.
2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ouhtit A, Rizeq B, Saleh HA, Rahman MM and
Zayed H: Novel CD44-downstream signaling pathways mediating breast
tumor invasion. Int J Biol Sci. 14:1782–1790. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hubbard AK and Rothlein R: Intercellular
adhesion molecule-1 (ICAM-1) expression and cell signaling
cascades. Free Radic Biol Med. 28:1379–1386. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pantel K, Schlimok G, Angstwurm M,
Passlick B, Izbicki JR, Johnson JP and Riethmüller G: Early
metastasis of human solid tumours: Expression of cell adhesion
molecules. Ciba Found Symp. 189:157–176. 1995.PubMed/NCBI
|
34
|
Elangbam CS, Qualls CW and Dahlgren RR:
Cell adhesion molecules-update. Vet Pathol. 34:61–73. 1997.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Baj G, Arnulfo A, Deaglio S, Tibaldi E,
Surico N and Malavasi F: All-trans retinoic acid inhibits the
growth of breast cancer cells by up-regulating ICAM-1 expression. J
Biol Regul Homeost Agents. 13:115–122. 1999.PubMed/NCBI
|
36
|
Schröder C, Witzel I, Müller V, Krenkel S,
Wirtz RM, Jänicke F, Schumacher U and Milde-Langosch K: Prognostic
value of intercellular adhesion molecule (ICAM)-1 expression in
breast cancer. J Cancer Res Clin Oncol. 137:1193–1201. 2011.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Siddik ZH: Cisplatin: Mode of cytotoxic
action and molecular basis of resistance. Oncogene. 22:7265–7279.
2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang Y, Liu B, Zhao Q, Hou T and Huang X:
Nuclear localization of β-catenin is associated with poor survival
and chemo-/radioresistance in human cervical squamous cell cancer.
Int J Clin Exp Pathol. 7:3908–3917. 2014.
|
39
|
Yagami T, Yamamoto Y and Koma H:
Pathophysiological roles of intracellular proteases in neuronal
development and neurological diseases. Mol Neurobiol. 56:3090–3112.
2019. View Article : Google Scholar
|
40
|
Lossi L, Castagna C and Merighi A:
Caspase-3 mediated cell death in the normal development of the
mammalian cerebellum. Int J Mol Sci. 19:pii: E3999. 2018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim B, Srivastava SK and Kim SH: Caspase-9
as a therapeutic target for treating cancer. Expert Opin Ther
Targets. 19:113–127. 2015. View Article : Google Scholar
|
42
|
Broxterman HJ, Lankelma J and Hoekman K:
Resistance to cytotoxic and anti-angiogenic anticancer agents:
Similarities and differences. Drug Resist Updat. 6:111–127. 2003.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhu L, Zou J, Zhao Y, Jiang X, Wang Y,
Wang X and Chen B: ER-α36 mediates cisplatin resistance in breast
cancer cells through EGFR/HER-2/ERK signaling pathway. J Exp Clin
Cancer Res. 37:1232018. View Article : Google Scholar
|