1
|
Shih B, Garside E, McGrouther DA and Bayat
A: Molecular dissection of abnormal wound healing processes
resulting in keloid disease. Wound Repair Regen. 18:139–153. 2010.
View Article : Google Scholar
|
2
|
Cosman B, Crikelair GF, Ju DMC, Gaulin JC
and Lattes R: The surgical treatment of keloids. Plast Reconstr
Surg. 27:335–358. 1961. View Article : Google Scholar
|
3
|
Viera MH, Vivas AC and Berman B: Treatment
of keloids and scars. Ethn Dermatology Princ Pract:. 159–172. 2013.
View Article : Google Scholar
|
4
|
Tuan TL and Nichter LS: The molecular
basis of keloid and hypertrophic scar formation. Mol Med Today.
4:19–24. 1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ledon JA, Savas J, Franca K, Chacon A and
Nouri K: Intralesional treatment for keloids and hypertrophic
scars: A review. Dermatol Surg. 39:1745–1757. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Manca G, Pandolfi P, Gregorelli C, Cadossi
M and de Terlizzi F: Treatment of keloids and hypertrophic scars
with bleomycin and electroporation. Plast Reconstr Surg.
132:621e–630e. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vincent AS, Phan TT, Mukhopadhyay A, Lim
HY, Halliwell B and Wong KP: Human skin keloid fibroblasts display
bioener-getics of cancer cells. J Invest Dermatol. 128:702–709.
2008. View Article : Google Scholar
|
8
|
Naitoh M, Hosokawa N, Kubota H, Tanaka T,
Shirane H, Sawada M, Nishimura Y and Nagata K: Upregulation of
HSP47 and collagen type III in the dermal fibrotic disease, keloid.
Biochem Biophys Res Commun. 280:1316–1322. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Uitto J, Perejda AJ, Abergel RP, Chu ML
and Ramirez F: Altered steady-state ratio of type I/III procollagen
mRNAs correlates with selectively increased type I procollagen
biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci
USA. 82:5935–5939. 1985. View Article : Google Scholar : PubMed/NCBI
|
10
|
Babu M, Diegelmann R and Oliver N: Keloid
fibroblasts exhibit an altered response to TGF-beta. J Invest
Dermatol. 99:650–655. 1992. View Article : Google Scholar : PubMed/NCBI
|
11
|
Banerjee K and Resat H: Constitutive
activation of STAT3 in breast cancer cells: A review. Int J Cancer.
138:2570–2578. 2016. View Article : Google Scholar :
|
12
|
Lim CP, Phan TT, Lim IJ and Cao X: Stat3
contributes to keloid pathogenesis via promoting collagen
production, cell proliferation and migration. Oncogene.
25:5416–5425. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Abroun S, Saki N, Ahmadvand M, Asghari F,
Salari F and Rahim F: STATs: An old story, yet mesmerizing. Cell J.
17:395–411. 2015.PubMed/NCBI
|
14
|
Schlessinger K and Levy DE: Malignant
transformation but not normal cell growth depends on signal
transducer and activator of transcription 3. Cancer Res.
65:5828–5834. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Meydan N, Grunberger T, Dadi H, Shahar M,
Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, et
al: Inhibition of acute lymphoblastic leukaemia by a Jak-2
inhibitor. Nature. 379:645–648. 1996. View
Article : Google Scholar : PubMed/NCBI
|
16
|
An JY, Pang HG, Huang TQ, Song JN, Li DD,
Zhao YL and Ma XD: AG490 ameliorates early brain injury via
inhibition of JAK2/STAT3-mediated regulation of HMGB1 in
subarachnoid hemorrhage. Exp Ther Med. 15:1330–1338.
2018.PubMed/NCBI
|
17
|
Xu MY, Hu JJ, Shen J, Wang ML, Zhang QQ,
Qu Y and Lu LG: Stat3 signaling activation crosslinking of TGF-β1
in hepatic stel-late cell exacerbates liver injury and fibrosis.
Biochim Biophys Acta. 1842:2237–2245. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Nielsen M, Kaltoft K, Nordahl M, Röpke C,
Geisler C, Mustelin T, Dobson P, Svejgaard A and Odum N:
Constitutive activation of a slowly migrating isoform of Stat3 in
mycosis fungoides: Tyrphostin AG490 inhibits Stat3 activation and
growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci
USA. 94:6764–6769. 1997. View Article : Google Scholar : PubMed/NCBI
|
19
|
Burdelya L, Catlett-Falcone R, Levitzki A,
Cheng F, Mora LB, Sotomayor E, Coppola D, Sun J, Sebti S, Dalton
WS, et al: Combination therapy with AG-490 and interleukin 12
achieves greater antitumor effects than either agent alone. Mol
Cancer Ther. 1:893–899. 2002.PubMed/NCBI
|
20
|
Samanta AK, Lin H, Sun T, Kantarjian H and
Arlinghaus RB: Janus kinase 2: A critical target in chronic
myelogenous leukemia. Cancer Res. 66:6468–6472. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Abe M, Funakoshi-Tago M, Tago K,
Kamishimoto J, Aizu-Yokota E, Sonoda Y and Kasahara T: The
polycythemia vera-associated Jak2 V617F mutant induces
tumorigenesis in nude mice. Int Immunopharmacol. 9:870–877. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ma J, Yan X, Lin Y and Tan Q: Hepatocyte
growth factor secreted from human adipose-derived stem cells
inhibits fibrosis in hypertrophic scar fibroblasts. Curr Mol Med.
Jan 5–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu X, Bian D, Dou Y, Gong Z, Tan Q, Xia Y
and Dai Y: Asiaticoside hinders the invasive growth of keloid
fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway. J
Biochem Mol Toxicol. 31:2017. View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
25
|
Dunkel Y, Ong A, Notani D, Mittal Y, Lam
M, Mi X and Ghosh P: STAT3 protein up-regulates Gα-interacting
vesicle-associated protein (GIV)/Girdin expression, and GIV
enhances STAT3 activation in a positive feedback loop during wound
healing and tumor invasion/metastasis. J Biol Chem.
287:41667–41683. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wlodkowic D, Telford W, Skommer J and
Darzynkiewicz Z: Apoptosis and beyond: Cytometry in studies of
programmed cell death. Methods Cell Biol. 103:55–98. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Pakyari M, Farrokhi A, Maharlooei MK and
Ghahary A: Critical role of transforming growth factor beta in
different phases of wound healing. Adv Wound Care (New Rochelle).
2:215–224. 2013. View Article : Google Scholar
|
28
|
Hanagata N: CpG oligodeoxynucleotide
nanomedicines for the prophylaxis or treatment of cancers,
infectious diseases, and allergies. Int J Nanomedicine. 12:515–531.
2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tomita N, Ogihara T and Morishita R:
Transcription factors as molecular targets: Molecular mechanisms of
decoy ODN and their design. Curr Drug Targets. 4:603–608. 2003.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Rawlings JS, Rosler KM and Harrison DA:
The JAK/STAT signaling pathway. J Cell Sci. 117:1281–1283. 2004.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Efron PA and Moldawer LL: Cytokines and
wound healing: The role of cytokine and anticytokine therapy in the
repair response. J Burn Care Rehabil. 25:149–160. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ghazizadeh M, Tosa M, Shimizu H, Hyakusoku
H and Kawanami O: Functional implications of the IL-6 signaling
pathway in keloid pathogenesis. J Invest Dermatol. 127:98–105.
2007. View Article : Google Scholar
|
33
|
Gazit A, Osherov N, Posner I, Yaish P,
Poradosu E, Gilon C and Levitzki A: Tyrphostins. 2. Heterocyclic
and alpha-substituted benzylidenemalononitrile tyrphostins as
potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases. J
Med Chem. 34:1896–1907. 1991. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chin GS, Liu W, Steinbrech D, Hsu M,
Levinson H and Longaker MT: Cellular signaling by tyrosine
phosphorylation in keloid and normal human dermal fibroblasts.
Plast Reconstr Surg. 106:1532–1540. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lipson KE, Wong C, Teng Y and Spong S:
CTGF is a central mediator of tissue remodeling and fibrosis and
its inhibition can reverse the process of fibrosis. Fibrogenesis
Tissue Repair. 5(Suppl 1): S242012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Jurzak M, Adamczyk K, Antończak P,
Garncarczyk A, Kuśmierz D and Latocha M: Evaluation of genistein
ability to modulate CTGF mRNA/protein expression, genes expression
of TGFβ isoforms and expression of selected genes regulating cell
cycle in keloid fibroblasts in vitro. Acta Pol Pharm. 71:972–986.
2014.
|
37
|
Biernacka A, Dobaczewski M and
Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors.
29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Walton KL, Johnson KE and Harrison CA:
Targeting TGF-β mediated SMAD signaling for the prevention of
fibrosis. Front Pharmacol. 8:4612017. View Article : Google Scholar
|
39
|
Song R, Li G and Li S: Aspidin PB, a novel
natural anti-fibrotic compound, inhibited fibrogenesis in
TGF-β1-stimulated keloid fibroblasts via PI-3K/Akt and Smad
signaling pathways. Chem Biol Interact. 238:66–73. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bickelhaupt S, Erbel C, Timke C, Wirkner
U, Dadrich M, Flechsig P, Tietz A, Pföhler J, Gross W, Peschke P,
et al: Effects of CTGF blockade on attenuation and reversal of
radiation-induced pulmonary fibrosis. J Natl Cancer Inst. 109:2017.
View Article : Google Scholar : PubMed/NCBI
|