Comprehensive analysis of drugs to treat SARS‑CoV‑2 infection: Mechanistic insights into current COVID‑19 therapies (Review)
- Authors:
- George Mihai Nitulescu
- Horia Paunescu
- Sterghios A. Moschos
- Dimitrios Petrakis
- Georgiana Nitulescu
- George Nicolae Daniel Ion
- Demetrios A. Spandidos
- Taxiarchis Konstantinos Nikolouzakis
- Nikolaos Drakoulis
- Aristidis Tsatsakis
-
Affiliations: Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020956 Bucharest, Romania, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle‑Upon‑Tyne NE1 8ST, UK, Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece - Published online on: May 18, 2020 https://doi.org/10.3892/ijmm.2020.4608
- Pages: 467-488
-
Copyright: © Nitulescu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Lai CC, Shih TP, Ko WC, Tang HJ and Hsueh PR: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 55:1059242020. View Article : Google Scholar : PubMed/NCBI | |
Fehr AR and Perlman S: Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 1282:1–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu Q and Guo D: Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 92:418–423. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M and Hernández AF: COVID-19 an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. In Press. | |
Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, et al: COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI | |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Geng M, Peng Y, Meng L and Lu S: Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 10:102–108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Docea AO, Tsatsakis A, Albulescu D, Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou M, Drakoulis N, et al: A new threat from an old enemy: Re-emergence of coronavirus (Review). Int J Mol Med. 45:1631–1643. 2020.PubMed/NCBI | |
Paules CI, Marston HD and Fauci AS: Coronavirus infections - more than just the common cold. JAMA. 323:7072020. View Article : Google Scholar | |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, et al: Genome composition and divergence of the Novel Coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 27:325–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, Mommaas AM and Snijder EJ: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 6:e2262008. View Article : Google Scholar : PubMed/NCBI | |
Alsaadi EA and Jones IM: Membrane binding proteins of coronaviruses. Future Virol. 14:275–286. 2019. View Article : Google Scholar | |
Robbins M, Judge A, Liang L, McClintock K, Yaworski E and MacLachlan I: 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther. 15:1663–1669. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kikkert M: Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 12:4–20. 2020. View Article : Google Scholar : | |
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O′Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. https://doi.org/10.1038/s41586-020-2286-9. | |
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS and McLellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367:1260–1263. 2020. View Article : Google Scholar : PubMed/NCBI | |
To KF and Lo AWI: Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 203:740–743. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sawicki SG, Sawicki DL and Siddell SG: A contemporary view of coronavirus transcription. J Virol. 81:20–29. 2007. View Article : Google Scholar : | |
Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM and Al-Nasser AD: Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens. 9:E2312020. View Article : Google Scholar : PubMed/NCBI | |
Gribble J, Pruijssers AJ, Agostini ML, Anderson-Daniels J, Chappell JD, Lu X, Stevens LJ, Routh AL and Denison MR: The coronavirus proofreading exoribonuclease mediates extensive viral recombination. bioRxiv: https://doi.org/10.1101/2020.04.23057786. | |
Ferron F, Subissi L, Silveira De Morais AT, Le NTT, Sevajol M, Gluais L, Decroly E, Vonrhein C, Bricogne G, Canard B, et al: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA. 115:E162–E171. 2018. View Article : Google Scholar | |
Forster P, Forster L, Renfrew C and Forster M: Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA. 117:9241–9243. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, et al: On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. nwaa0362020. | |
Korber B, Fischer W, Gnanakaran SG, Yoon H, Theiler J, Abfalterer W, Foley B, Giorgi EE, Bhattacharya T, Parker MD, et al: Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv: https://.org/10.1101/2020.04.29069054. | |
van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan CCS, Boshier FAT, et al: Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol. May 5–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Bilinska K, Jakubowska P, Von Bartheld CS and Butowt R: Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. May 7–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J and Hauser BM: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. https://doi.org/10.1016/j.cell.2020.04.035. | |
Moschos SA, Frick M, Taylor B, Turnpenny P, Graves H, Spink KG, Brady K, Lamb D, Collins D, Rockel TD, et al: Uptake, efficacy, and systemic distribution of naked, inhaled short interfering RNA (siRNA) and locked nucleic acid (LNA) antisense. Mol Ther. 19:2163–2168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Di Pasquale G and Chiorini JA: AAV transcytosis through barrier epithelia and endothelium. Mol Ther. 13:506–516. 2006. View Article : Google Scholar | |
Lin L, Lu L, Cao W and Li T: Hypothesis for potential pathogenesis of SARS-CoV-2 infection - a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 9:727–732. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, Yin H, Xiao Q, Tang Y, Qu X, et al: Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 5:434–435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xiao F, Tang M, Zheng X, Liu Y, Li X and Shan H: Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 158:1831–1833.e3. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song C, Wang Y, Li W, Hu B, Chen G, Xia P, Wang W, Li C, Hu Z, Yang X, et al: Detection of 2019 novel coronavirus in semen and testicular biopsy specimen of COVID-19 patients. medRxiv: :https://doi.org/10.1101/2020.03.31.20042333. | |
Chen Y and Li L: SARS-CoV-2: Virus dynamics and host response. Lancet Infect Dis. 20:515–516. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yi Y, Lagniton PNP, Ye S, Li E and Xu RH: COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 16:1753–1766. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G and Melino G: COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 27:1451–1454. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, et al: Profiling early humoral response to diagnose novel Coronavirus Disease (COVID-19). Clin Infect Dis ciaa. 310:2020. | |
To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, Yip CC, Cai JP, Chan JM, Chik TS, et al: Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect Dis. 20:565–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cao Z, Liu L, Du L, Zhang C, Jiang S, Li T and He Y: Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients. Virol J. 7:2992010. View Article : Google Scholar : PubMed/NCBI | |
Calina D, Docea AO, Petrakis D, Egorov A M, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, et al: Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 46:3–16. 2020. | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, Song S, Ma Z, Mo P and Zhang Y: Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 221:1762–1769. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, Lai WY, Yang DM, Chou SJ, Yang YP, et al: A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int J Mol Sci. 21:212020. View Article : Google Scholar | |
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, et al: Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. Feb 27–2020.Epub ahead of print. View Article : Google Scholar | |
Shojaei A and Salari P: COVID-19 and off label use of drugs: An ethical viewpoint. Daru. May 8–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Senanayake SL: Drug repurposing strategies for COVID-19. Future Drug Discov: fdd-2020-0010. 2020. View Article : Google Scholar | |
Sanders JM, Monogue ML, Jodlowski TZ and Cutrell JB: Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A Review. JAMA. 323:1824–1836. 2020. | |
Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J and Krähenbühl S: Pharmacokinetics and pharmacodynamics of recombinant human angio-tensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 52:783–792. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wilkins MR, Aman J, Harbaum L, Ulrich A, Wharton J and Rhodes CJ: Recent advances in pulmonary arterial hypertension. F1000Research. 7:F1000 Faculty Rev- 1128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, et al: A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 21:2342017. View Article : Google Scholar : PubMed/NCBI | |
Batlle D, Wysocki J and Satchell K: Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clin Sci (Lond). 134:543–545. 2020. View Article : Google Scholar | |
US National Library of Medicine: Recombinant Human Angiotensin-converting Enzyme 2 (rhACE2) as a Treatment for Patients With COVID-19 (APN01-COVID-19). http://ClinicalTrials.gov Identifier: NCT04335136. https://clinicaltrials.gov/ct2/show/NCT04335136?term=NCT04335136&draw=2amp;rank=1. Accessed April 6, 2020. | |
Han Y and Král P: Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano. 14:5143–5147. 2020. View Article : Google Scholar : PubMed/NCBI | |
Heinemann L, Baughman R, Boss A and Hompesch M: Pharmacokinetic and pharmacodynamic properties of a novel inhaled insulin. J Diabetes Sci Technol. 11:148–156. 2017. View Article : Google Scholar : | |
Deng J, Wang D-X, Deng W, Li C-Y and Tong J: The effect of endogenous angiotensin II on alveolar fluid clearance in rats with acute lung injury. Can Respir J. 19:311–318. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hernández Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RA, Castellano RK, Lampkins AJ, Gubala V, Ostrov DA, et al: Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension. 51:1312–1317. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Zhang J, Cole-Jeffrey CT, Shenoy V, Espejo A, Hanna M, Song C, Pepine CJ, Katovich MJ and Raizada MK: Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension. 62:746–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qaradakhi T, Gadanec LK, McSweeney KR, Tacey A, Apostolopoulos V, Levinger I, Rimarova K, Egom EE, Rodrigo L, Kruzliak P, et al: The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol. 47:751–758. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gurwitz D: Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. Mar 4–2020.Epub ahead of print. View Article : Google Scholar | |
Ishikura H, Nishimura S, Matsunami M, Tsujiuchi T, Ishiki T, Sekiguchi F, Naruse M, Nakatani T, Kamanaka Y and Kawabata A: The proteinase inhibitor camostat mesilate suppresses pancreatic pain in rodents. Life Sci. 80:1999–2004. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, et al: Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 116:76–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kawase M, Shirato K, van der Hoek L, Taguchi F and Matsuyama S: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 86:6537–6545. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H, Preuss A, Nelson PS, Garten W, Klenk HD, Gabriel G, et al: TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol. 88:4744–4751. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fuwa M, Kageyama M, Ohashi K, Sasaoka M, Sato R, Tanaka M and Tashiro K: Nafamostat and sepimostat identified as novel neuroprotective agents via NR2B N-methyl-D-aspartate receptor antagonism using a rat retinal excitotoxicity model. Sci Rep. 9:204092019. View Article : Google Scholar | |
Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI and Matsuda Z: Identification of Nafamostat as a potent inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-mediated membrane fusion using the Split-Protein-Based Cell-Cell Fusion Assay. Antimicrob Agents Chemother. 60:6532–6539. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30:269–271. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee YK, Lee HW, Choi KH and Kim BS: Ability of nafamostat mesilate to prolong filter patency during continuous renal replacement therapy in patients at high risk of bleeding: A randomized controlled study. PLoS One. 9:e1087372014. View Article : Google Scholar : PubMed/NCBI | |
Lucas JM, Heinlein C, Kim T, Hernandez SA, Malik MS, True LD, Morrissey C, Corey E, Montgomery B, Mostaghel E, et al: The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 4:1310–1325. 2014. View Article : Google Scholar : PubMed/NCBI | |
Laporte M and Naesens L: Airway proteases: An emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol. 24:16–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maggio R and Corsini GU: Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection. Pharmacol Res. 157:1048372020. View Article : Google Scholar : PubMed/NCBI | |
Zhirnov OP, Matrosovich TY, Matrosovich MN and Klenk HD: Aprotinin, a protease inhibitor, suppresses proteolytic activation of pandemic H1N1v influenza virus. Antivir Chem Chemother. 21:169–174. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bojkova D, McGreig JE, McLaughlin KM, Masterson SG, Widera M, Krähling V, Ciesek S, Wass MN, Michaelis M and Cinatl J Jr: SARS-CoV-2 and SARS-CoV differ in their cell tropism and drug sensitivity profiles. bioRxiv: :https://doi.org/10.1101/2020.04.03024257. | |
Chen Z, Mi L, Xu J, Yu J, Wang X, Jiang J, Xing J, Shang P, Qian A, Li Y, et al: Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 191:755–760. 2005. View Article : Google Scholar : PubMed/NCBI | |
Watanabe A, Yoneda M, Ikeda F, Terao-Muto Y, Sato H and Kai C: CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J Virol. 84:4183–4193. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lythgoe MP and Middleton P: Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends Pharmacol Sci. Apr 9–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T and Sugamura K: Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 81:8722–8729. 2007. View Article : Google Scholar : PubMed/NCBI | |
Choy KT, Wong AYL, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X, et al: Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 178:1047862020. View Article : Google Scholar : PubMed/NCBI | |
Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D and Richardson P: COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 20:400–402. 2020. View Article : Google Scholar : PubMed/NCBI | |
Conner SD and Schmid SL: Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol. 156:921–929. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sorrell FJ, Szklarz M, Abdul Azeez KR, Elkins JM and Knapp S: Family-wide structural analysis of human Numb-associated protein kinases. Structure. 24:401–411. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eberl HC, Werner T, Reinhard FB, Lehmann S, Thomson D, Chen P, Zhang C, Rau C, Muelbaier M, Drewes G, et al: Chemical proteomics reveals target selectivity of clinical Jak inhibitors in human primary cells. Sci Rep. 9:141592019. View Article : Google Scholar : PubMed/NCBI | |
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 11:16202020. View Article : Google Scholar : PubMed/NCBI | |
Dana D and Pathak SK: A review of small molecule inhibitors and functional probes of human Cathepsin L. Molecules. 25:6982020. View Article : Google Scholar : | |
Cossart P and Helenius A: Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol. 6:a0169722014. View Article : Google Scholar : PubMed/NCBI | |
Nicola AV, McEvoy AM and Straus SE: Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol. 77:5324–5332. 2003. View Article : Google Scholar : PubMed/NCBI | |
Touret F and de Lamballerie X: Of chloroquine and COVID-19. Antiviral Res. 177:1047622020. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, et al: In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. Mar 9–2020.Epub ahead of print. View Article : Google Scholar : | |
Devaux CA, Rolain JM, Colson P and Raoult D: New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents. Mar 12–2020.Epub ahead of print. View Article : Google Scholar | |
Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D and De Clercq E: Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem. 49:2845–2849. 2006. View Article : Google Scholar : PubMed/NCBI | |
de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, van den Hoogen BG, Neyts J and Snijder EJ: Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 58:4875–4884. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG and Nichol ST: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2:692005. View Article : Google Scholar : PubMed/NCBI | |
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A and Einav S: A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. Mar 10–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Tian Z and Yang X: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 14:72–73. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guangdong Provincial Department of Science and Technology and Guangdong Provincial Health Commission Multi-center Collaborative Group of chloroquine phosphate for the treatment of New Coronavirus Pneumonia: Expert consensus on the treatment of new coronavirus pneumonia with chloroquine phosphate. Zhonghua Jie He He Hu Xi Za Zhi. 43:185–188. 2020. | |
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W and Wang M: Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 6:162020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Hu J and Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B and Zhang Z: Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRxiv: :https://doi.org/10.1101/2020.03.22.20040758. | |
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, et al: Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. Mar 20–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Hickley NM, Al-Maskari A and McKibbin M: Chloroquine and hydroxychloroquine toxicity. Arch Ophthalmol. 129:1506–1507. 2011. View Article : Google Scholar : PubMed/NCBI | |
Taccone FS, Gorham J and Vincent JL: Hydroxychloroquine in the management of critically ill patients with COVID-19: The need for an evidence base. Lancet Respir Med. Apr 15–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Magagnoli J, Narendran S, Pereira F, Cummings T, Hardin JW, Sutton SS and Ambati J: Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv: :https://doi.org/10.1101/2020.04.16.20065920. | |
Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, Li J, Zhou Z, Ding Y, Zhao Q, et al: Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol. 82:2515–2527. 2008. View Article : Google Scholar : | |
Hall DC Jr and Ji HF: A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Med Infect Dis. Apr 12–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, et al: α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment. J Med Chem. 63:4562–4578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K and Hilgenfeld R: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 368:409–412. 2020.PubMed/NCBI | |
Croxtall JD and Perry CM: Lopinavir/Ritonavir: A review of its use in the management of HIV-1 infection. Drugs. 70:1885–1915. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW, Cheng VC, Tsui WH, Hung IF and Lee TS: In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 31:69–75. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto N, Matsuyama S, Hoshino T and Yamamoto N: Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv: :https://doi.org/10.1101/2020.04.06026476. | |
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, et al: A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 382:1787–1799. 2020. View Article : Google Scholar : PubMed/NCBI | |
Boopathi S, Poma AB and Kolandaivel P: Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. Apr 30–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, Rabenau H, Doerr HW, Hunsmann G, Otaka A, et al: HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun. 318:719–725. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fintelman-Rodrigues N, Sacramento CQ, Lima CR, da Silva FS, Ferreira AC, Mattos M, de Freitas CS, Soares VC, da Silva Gomes Dias S, Temerozo JR, et al: Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. bioRxiv: :https://doi.org/10.1101/2020.04.04020925. | |
Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, et al: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio. 9:e00221–e18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, et al: Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. Apr 10–2020.Epub ahead of print. View Article : Google Scholar | |
Smith EC: The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathog. 13:e1006254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Smith EC, Blanc H, Surdel MC, Vignuzzi M and Denison MR: Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: Evidence for proofreading and potential therapeutics. PLoS Pathog. 9:e1003565. 2013. View Article : Google Scholar : PubMed/NCBI | |
Becares M, Pascual-Iglesias A, Nogales A, Sola I, Enjuanes L and Zuñiga S: Mutagenesis of Coronavirus nsp14 reveals its potential role in modulation of the innate immune response. J Virol. 90:5399–5414. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Clercq E and Li G: DC approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 29:695–747. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elfiky AA: Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 253:1175922020. View Article : Google Scholar : PubMed/NCBI | |
Amirian ES and Levy JK: Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health. 9:1001282020. View Article : Google Scholar : PubMed/NCBI | |
US Food and Drug Administration (FDA): Recommendations for Investigational COVID-19 Convalescent Plasma. https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma. Accessed May 1, 2020. | |
Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi D, Lusakibanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A, et al; PALM Writing Group. PALM Consortium Study Team: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med. 381:2293–2303. 2019. View Article : Google Scholar : PubMed/NCBI | |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: Washington State 2019-nCoV Case Investigation Team: First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI | |
COVID-19 Investigation Team: Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat Med. Apr 23–2020.Epub ahead of print. | |
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q, et al: Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 395:P1569–P1578. 2020. View Article : Google Scholar | |
Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H and Shiraki K: Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother. 49:981–986. 2005. View Article : Google Scholar : PubMed/NCBI | |
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF and Barnard DL: Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 100:446–454. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jordan PC, Stevens SK and Deval J: Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother. 26:20402066187644832018. View Article : Google Scholar : PubMed/NCBI | |
Madelain V, Nguyen THT, Olivo A, de Lamballerie X, Guedj J, Taburet A-M and Mentré F: Ebola virus infection: Review of the pharmacokinetic and pharmacodynamic properties of drugs considered for testing in human efficacy trials. Clin Pharmacokinet. 55:907–923. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagata T, Lefor AK, Hasegawa M and Ishii M: Favipiravir: A new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep. 9:79–81. 2015. View Article : Google Scholar | |
Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, et al: Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing). Mar 18–2020.Epub ahead of print. | |
Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren SA, Dong L, Retterer CJ, Eaton BP, Pegoraro G, et al: Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature. 508:402–405. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taylor R, Kotian P, Warren T, Panchal R, Bavari S, Julander J, Dobo S, Rose A, El-Kattan Y, Taubenheim B, et al: BCX4430 - A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Public Health. 9:220–226. 2016. View Article : Google Scholar : PubMed/NCBI | |
De Clercq E: New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J. 14:3962–3968. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH III, Stevens LJ, et al: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 12:eabb58832020. View Article : Google Scholar : PubMed/NCBI | |
Agostini ML, Pruijssers AJ, Chappell JD, Gribble J, Lu X, Andres EL, Bluemling GR, Lockwood MA, Sheahan TP, Sims AC, et al: Small-molecule antiviral β-d-N4-Hydroxycytidine inhibits a proofreading-intact Coronavirus with a high genetic barrier to resistance. J Virol. 93:e01348–e19. 2019. View Article : Google Scholar : | |
Stockman LJ, Bellamy R and Garner P: SARS: Systematic review of treatment effects. PLoS Med. 3:e343. 2006. View Article : Google Scholar : PubMed/NCBI | |
Moens U and Macdonald A: Effect of the large and small T-antigens of human polyomaviruses on signaling pathways. Int J Mol Sci. 20:202019. View Article : Google Scholar | |
Gassen NC, Niemeyer D, Muth D, Corman VM, Martinelli S, Gassen A, Hafner K, Papies J, Mösbauer K, Zellner A, et al: SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat Commun. 10:57702019. View Article : Google Scholar : PubMed/NCBI | |
Gassen NC, Papies J, Bajaj T, Dethloff F, Emanuel J, Weckmann K, Heinz DE, Heinemann N, Lennarz M, Richter A, et al: Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. bioRxiv: :https://doi.org/10.1101/2020.04.15.997254. | |
Mizutani T, Fukushi S, Saijo M, Kurane I and Morikawa S: Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Vero E6 cells. Virology. 327:169–174. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos DA, Libra M and Tsatsakis AM: Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol. 48:869–885. 2016. View Article : Google Scholar : | |
Denisova OV, Söderholm S, Virtanen S, Von Schantz C, Bychkov D, Vashchinkina E, Desloovere J, Tynell J, Ikonen N, Theisen LL, et al: Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob Agents Chemother. 58:3689–3696. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kindrachuk J, Ork B, Hart BJ, Mazur S, Holbrook MR, Frieman MB, Traynor D, Johnson RF, Dyall J, Kuhn JH, et al: Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob Agents Chemother. 59:1088–1099. 2015. View Article : Google Scholar : | |
De Santi M, Baldelli G, Diotallevi A, Galluzzi L, Schiavano GF and Brandi G: Metformin prevents cell tumorigenesis through autophagy-related cell death. Sci Rep. 9:662019. View Article : Google Scholar : PubMed/NCBI | |
Lehrer S: Inhaled biguanides and mTOR inhibition for influenza and coronavirus (Review). World Acad Sci J. 2:12020.PubMed/NCBI | |
Chen W, Mook RA Jr, Premont RT and Wang J: Niclosamide: Beyond an antihelminthic drug. Cell Signal. 41:89–96. 2018. View Article : Google Scholar | |
Wu CJ, Jan JT, Chen CM, Hsieh HP, Hwang DR, Liu HW, Liu CY, Huang HW, Chen SC, Hong CF, et al: Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob Agents Chemother. 48:2693–2696. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, et al: Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respi-ratory syndrome coronavirus. J Med Chem. 50:4087–4095. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jurgeit A, McDowell R, Moese S, Meldrum E, Schwendener R and Greber UF: Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects. PLoS Pathog. 8:e1002976. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schweizer MT, Haugk K, McKiernan JS, Gulati R, Cheng HH, Maes JL, Dumpit RF, Nelson PS, Montgomery B, McCune JS, et al: A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS One. 13:e01983892018. View Article : Google Scholar : PubMed/NCBI | |
Pizzorno A, Terrier O, Nicolas de Lamballerie C, Julien T, Padey B, Traversier A, Roche M, Hamelin ME, Rhéaume C, Croze S, et al: Repurposing of drugs as novel influenza inhibitors from clinical gene expression infection signatures. Front Immunol. 10:602019. View Article : Google Scholar : PubMed/NCBI | |
Rossignol J-F: Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health. 9:227–230. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shou J, Wang M, Cheng X, Wang X, Zhang L, Liu Y, Fei C, Wang C, Gu F, Xue F, et al: Tizoxanide induces autophagy by inhibiting PI3K/Akt/mTOR pathway in RAW264.7 macrophage cells. Arch Pharm Res. 43:257–270. 2020. View Article : Google Scholar : PubMed/NCBI | |
Blaising J, Polyak SJ and Pécheur E-I: Arbidol as a broad-spectrum antiviral: An update. Antiviral Res. 107:84–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haviernik J, Štefánik M, Fojtíková M, Kali S, Tordo N, Rudolf I, Hubálek Z, Eyer L and Ruzek D: Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses. 10:1842018. View Article : Google Scholar : | |
Zhu Z, Lu Z, Xu T, Chen C, Yang G, Zha T, Lu J and Xue Y: Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. Apr 10–2020.Epub ahead of print. View Article : Google Scholar | |
Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, Hong Z and Xia J: Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect. Mar 11–2020.Epub ahead of print. View Article : Google Scholar | |
Lian N, Xie H, Lin S, Huang J, Zhao J and Lin Q: Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin Microbiol Infect. Apr 25–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, Li Y, Zhao L, Li W, Sun X, et al: The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov. 6:282020. View Article : Google Scholar : PubMed/NCBI | |
Crump A: Ivermectin: Enigmatic multifaceted ′wonder′ drug continues to surprise and exceed expectations. J Antibiot (Tokyo). 70:495–505. 2017. View Article : Google Scholar | |
Caly L, Druce JD, Catton MG, Jans DA and Wagstaff KM: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 178:1047872020. View Article : Google Scholar : PubMed/NCBI | |
Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA and Jans DA: The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res. 177:1047602020. View Article : Google Scholar | |
Juarez M, Schcolnik-Cabrera A and Dueñas-Gonzalez A: The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res. 8:317–331. 2018.PubMed/NCBI | |
Shen L, Niu J, Wang C, Huang B, Wang W, Zhu N, Deng Y, Wang H, Ye F, Cen S, et al: High-throughput screening and identification of potent broad-spectrum inhibitors of Coronaviruses. J Virol. 93:e00023–e19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong HJ, Wang ZH, Meng W, Li CC, Hu YX, Zhou L and Wang XJ: The natural compound Homoharringtonine presents broad antiviral activity in Vitro and in Vivo. Viruses. 10:6012018. View Article : Google Scholar : | |
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O′Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. Apr 30–2020.Epub ahead of print. View Article : Google Scholar | |
D′Elia RV, Harrison K, Oyston PC, Lukaszewski RA and Clark GC: Targeting the 'cytokine storm' for therapeutic benefit. Clin Vaccine Immunol. 20:319–327. 2013. View Article : Google Scholar | |
Tay MZ, Poh CM, Rénia L, MacAry PA and Ng LFP: The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol. Apr 28–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA and Tsatsakis A: Obesity a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 22:9–19. 2020.PubMed/NCBI | |
Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL and Borca MV: The role of interleukin 6 during viral infections. Front Microbiol. 10:10572019. View Article : Google Scholar : PubMed/NCBI | |
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ; HLH Across Speciality Collaboration, UK: COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI | |
Betts BC, St Angelo ET, Kennedy M and Young JW: Anti-IL6-receptor-alpha (tocilizumab) does not inhibit human monocyte-derived dendritic cell maturation or alloreactive T-cell responses. Blood. 118:5340–5343. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reichert JM: Which are the antibodies to watch in 2013? MAbs. 5:1–4. 2013. View Article : Google Scholar : | |
Chinese Clinical Trial Registry (ChiCTR): A clinical study for the efficacy and safety of Adalimumab Injection in the treatment of patients with severe novel coronavirus pneumonia (COVID-19). Registration number: ChiCTR2000030089. http://www.chictr.org.cn/showprojen.aspx?proj=49889. Accessed February 22, 2020. | |
Kamimura D, Ishihara K and Hirano T: IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev Physiol Biochem Pharmacol. 149:1–38. 2003.PubMed/NCBI | |
Kaur S, Bansal Y, Kumar R and Bansal G: A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorganic Med Chem. 28:1153272020. View Article : Google Scholar | |
Rose-John S: IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int J Biol Sci. 8:1237–1247. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W and Tian DS: Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. Mar 12–2020.Epub ahead of print. | |
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 395:1054–1062. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B and Sève P: Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. May 4–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Srirangan S and Choy EH: The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2:247–256. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alzghari SK and Acuña VS: Supportive treatment with Tocilizumab for COVID-19: A systematic review. J Clin Virol. 127:1043802020. View Article : Google Scholar : PubMed/NCBI | |
Sciascia S, Aprà F, Baffa A, Baldovino S, Boaro D, Boero R, Bonora S, Calcagno A, Cecchi I, Cinnirella G, et al: Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin Exp Rheumatol. May 1–2020.Epub ahead of print. | |
Bae SC and Lee YH: Comparison of the efficacy and tolerability of tocilizumab, sarilumab, and sirukumab in patients with active rheumatoid arthritis: A Bayesian network meta-analysis of randomized controlled trials. Clin Rheumatol. 37:1471–1479. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S and Van Hemelrijck M: Associations between immune-suppressive and stimulating drugs and novel COVID-19 - a systematic review of current evidence. Ecancermedicalscience. 14:10222020. View Article : Google Scholar | |
Dinarello CA: The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 20(Suppl 27): S1–S13. 2002. | |
Sichelstiel A, Yadava K, Trompette A, Salami O, Iwakura Y, Nicod LP and Marsland BJ: Targeting IL-1β and IL-17A driven inflammation during influenza-induced exacerbations of chronic lung inflammation. PLoS One. 9:e984402014. View Article : Google Scholar | |
Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M, Richards D and Hussell T: Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 395:1407–1409. 2020. View Article : Google Scholar : PubMed/NCBI | |
Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, Vantarakis A and Poulas K: Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. Apr 30–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Berlin I, Thomas D, Le Faou AL and Cornuz J: COVID-19 and smoking. Nicotine Tob Res. Apr 3–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Arimori Y, Nakamura R, Yamada H, Shibata K, Maeda N, Kase T and Yoshikai Y: Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antiviral Res. 99:230–237. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R and Menachery VD: SARS-CoV-2 sensitive to type I interferon pretreatment. bioRxiv: :https://doi.org/10.1101/2020.03.07.982264. | |
Mantlo E, Bukreyeva N, Maruyama J, Paessler S and Huang C: Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 179:1048112020. View Article : Google Scholar : PubMed/NCBI | |
Deftereos S, Giannopoulos G, Vrachatis DA, Siasos G, Giotaki SG, Cleman M, Dangas G and Stefanadis C: Colchicine as a potent anti-inflammatory treatment in COVID-19: can we teach an old dog new tricks. Eur Hear J Cardiovasc Pharmacother. Apr 27–2020.Epub ahead of print. View Article : Google Scholar | |
Hemilä H: Vitamin C and Infections. Nutrients. 9:3392017. View Article : Google Scholar : | |
Cheng RZ: Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med drug Discov. 5:1000282020. View Article : Google Scholar : PubMed/NCBI | |
Marik PE, Kory P and Varon J: Does vitamin D status impact mortality from SARS-CoV-2 infection? Med drug Discov. Apr 29–2020.Epub ahead of print. View Article : Google Scholar : | |
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for COVID 19 (Review). Int J Mol Med. 46:17–26. 2020. | |
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C and Ranasinghe P: Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr. 14:367–382. 2020. View Article : Google Scholar : PubMed/NCBI | |
Langsted A and Nordestgaard BG: Antisense oligonucleotides targeting lipoprotein(a). Curr Atheroscler Rep. 21:302019. View Article : Google Scholar : PubMed/NCBI | |
Li Q: Nusinersen as a therapeutic agent for spinal muscular atrophy. Yonsei Med J. 61:273–283. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, Larson A, Pendergast MK, Goldkind SF, Lee EA, Kuniholm A, et al: Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med. 381:1644–1652. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moschos SA, Usher L and Lindsay MA: Clinical potential of oligonucleotide-based therapeutics in the respiratory system. Pharmacol Ther. 169:83–103. 2017. View Article : Google Scholar | |
Ng B, Cash-Mason T, Wang Y, Seitzer J, Burchard J, Brown D, Dudkin V, Davide J, Jadhav V, Sepp-Lorenzino L, et al: Intratracheal administration of siRNA triggers mRNA silencing in the lung to modulate T cell immune response and lung inflammation. Mol Ther Nucleic Acids. 16:194–205. 2019. View Article : Google Scholar : PubMed/NCBI | |
Le ATH, Krylova SM, Kanoatov M, Desai S and Krylov SN: Ideal-filter capillary electrophoresis (IFCE) facilitates the one-step selection of aptamers. Angew Chem Int Ed Engl. 58:2739–2743. 2019. View Article : Google Scholar | |
Yufa R, Krylova SM, Bruce C, Bagg EA, Schofield CJ and Krylov SN: Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection: Allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein. Anal Chem. 87:1411–1419. 2015. View Article : Google Scholar | |
Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, et al: Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza. bioRxiv: :https://doi.org/10.1101/2020.03.13991307. | |
Schopman NCT, ter Brake O and Berkhout B: Anticipating and blocking HIV-1 escape by second generation antiviral shRNAs. Retrovirology. 7:522010. View Article : Google Scholar : PubMed/NCBI | |
Duncan GA, Kim N, Colon-Cortes Y, Rodriguez J, Mazur M, Birket SE, Rowe SM, West NE, Livraghi-Butrico A, Boucher RC, et al: An Adeno-Associated Viral Vector Capable of Penetrating the Mucus Barrier to Inhaled Gene Therapy. Mol Ther Methods Clin Dev. 9:296–304. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kurosaki F, Uchibori R, Mato N, Sehara Y, Saga Y, Urabe M, Mizukami H, Sugiyama Y and Kume A: Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract. Gene Ther. 24:290–297. 2017. View Article : Google Scholar : PubMed/NCBI | |
Steines B, Dickey DD, Bergen J, Excoffon KJ, Weinstein JR, Li X, Yan Z, Abou Alaiwa MH, Shah VS, Bouzek DC, et al: CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes. JCI Insight. 1:e887282016. View Article : Google Scholar : | |
Suhy DA, Kao SC, Mao T, Whiteley L, Denise H, Souberbielle B, Burdick AD, Hayes K, Wright JF, Lavender H, et al: Safe, long-term hepatic expression of anti-HCV shRNA in a nonhuman primate model. Mol Ther. 20:1737–1749. 2012. View Article : Google Scholar : PubMed/NCBI | |
Denise H, Moschos SA, Sidders B, Burden F, Perkins H, Carter N, Stroud T, Kennedy M, Fancy SA, Lapthorn C, et al: Deep sequencing insights in therapeutic shRNA processing and siRNA target cleavage precision. Mol Ther Nucleic Acids. 3:e1452014. View Article : Google Scholar : PubMed/NCBI |