Placental exosomes isolated from urine of patients with gestational diabetes exhibit a differential profile expression of microRNAs across gestation
- Authors:
- Ana Sofía Herrera-Van Oostdam
- Juan Carlos Toro‑Ortíz
- Jesús Adrián López
- Daniel E. Noyola
- David Alejandro García‑López
- Noé Valentín Durán‑Figueroa
- Eduardo Martínez‑Martínez
- Diana P. Portales‑Pérez
- Mariana Salgado‑Bustamante
- Yamilé López‑Hernández
-
Affiliations: Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico, Division of Gynecology and Obstetrics, Hospital Central ‘Dr. Ignacio Morones Prieto’, San Luis Potosí 78290, Mexico, Laboratory of microRNAs and Cancer, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico, Department of Microbiology, Faculty of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico, Laboratory of Cellular Biology and Neurobiology, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico, Interdisciplinary Professional Biotechnology Unit, Instituto Politécnico Nacional, Ciudad de Mexico 07340, Mexico, Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica, México City 14610, Mexico, Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico, CONACyT, Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico - Published online on: June 3, 2020 https://doi.org/10.3892/ijmm.2020.4626
- Pages: 546-560
-
Copyright: © Herrera-Van Oostdam et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Basina M: Gestational diabetogenesis. J Women's Health Care. 01:e1062012. View Article : Google Scholar | |
Sáez T, de Vos P, Sobrevia L and Faas MM: Is there a role for exosomes in foetoplacental endothelial dysfunction in gestational diabetes mellitus? Placenta. 61:48–54. 2018. View Article : Google Scholar | |
Powe CE: Early pregnancy biochemical predictors of gestational diabetes mellitus. Curr Diab Rep. 17:122017. View Article : Google Scholar : PubMed/NCBI | |
Rodrigo N and Glastras SJ: The emerging role of biomarkers in the diagnosis of gestational diabetes mellitus. J Clin Med. 7:1202018. View Article : Google Scholar : | |
Akgöl E, Abuşoğlu S, Gün FD and Ünlü A: Prevalence of gestational diabetes mellitus according to the different criterias. Turk J Obstet Gynecol. 14:18–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karcaaltincaba D, Calis P, Ocal N, Ozek A, Altug Inan M and Bayram M: Prevalence of gestational diabetes mellitus evaluated by universal screening with a 75-g,2-h oral glucose tolerance test and IADPSG criteria. Int J Gynecol Obstet. 138:148–151. 2017. View Article : Google Scholar | |
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, et al: Placental origins of adverse pregnancy outcomes: Potential molecular targets: An executive workshop summary of the eunice kennedy shriver national institute of child health and human development. Am J Obstet Gynecol. 215(1 Suppl): S1–S46. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guarino E, Poggi CD, Grieco GE, Cenci V, Ceccarelli E, Crisci I, Sebastiani G and Dotta F: Circulating MicroRNAs as biomarkers of gestational diabetes mellitus: Updates and perspectives. Int J Endocrinol. 2018:63804632018. View Article : Google Scholar : PubMed/NCBI | |
Kowal J, Tkach M and Théry C: Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 29:116–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cuffe JSM, Holland O, Salomon C, Rice GE and Perkins AV: Review: Placental derived biomarkers of pregnancy disorders. Placenta. 54:104–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu G, Brkić J, Hayder H and Peng C: MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. 14:5519–5544. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ouyang Y, Mouillet JF, Coyne CB and Sadovsky Y: Review: Placenta-specific microRNAs in exosomes-good things come in nano-packages. Placenta. 35(Suppl): S69–S73. 2014. View Article : Google Scholar | |
Hromadnikova I, Kotlabova K, Ondrackova M, Pirkova P, Kestlerova A, Novotna V, Hympanova L and Krofta L: Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol. 34:437–457. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Tian F, Li H, Zhou Y, Lu J and Ge Q: Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. Int J Gynecol Obstet. 130:49–53. 2015. View Article : Google Scholar | |
Salomon C, Torres MJ, Kobayashi M, Scholz-Romero K, Sobrevia L, Dobierzewska A, Illanes SE, Mitchell MD and Rice GE: A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 9:e986672014. View Article : Google Scholar : PubMed/NCBI | |
Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, Longo S, Duncombe G, Mitchell MD, Rice GE and Illanes SE: Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes. 65:598–609. 2016. View Article : Google Scholar : PubMed/NCBI | |
Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy: A world health organization guideline. Diabetes Res Clin Pract. 103:341–363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gonzales PA, Zhou H, Pisitkun T, Wang NS, Star RA, Knepper MA and Yuen PS: Isolation and purification of exosomes in urine. Methods Mol Biol. 641:89–99. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abdalla M: Comprehensive coverage of exosomes purification and exosomal RNA isolation from different types of liquid biopsies. https://www.exosome-rna.com/upcoming-webinar-comprehensive-coverage-of-exosome-purification-and-exosomal-rna-isolation-from-different-types-of-liquid-biopsies/. Accessed April 15, 2019. | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar | |
Kwon DN, Chang BS and Kim JH: MicroRNA dysregulation in liver and pancreas of CMP-Neu5Ac hydroxylase null mice disrupts insulin/PI3K-AKT signaling. Biomed Res Int. 2014:2363852014. View Article : Google Scholar : PubMed/NCBI | |
Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, Descamps B, Floris I, Sangalli E, Vono R, et al: MicroRNA-15a and MicroRNA-16 Impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res. 112:335–346. 2013. View Article : Google Scholar : | |
Kaddar T, Rouault JP, Chien WW, Chebel A, Gadoux M, Salles G, Ffrench M and Magaud JP: Two new miR-16 targets: Caprin-1 and HMGA1, proteins implicated in cell proliferation. Biol Cell. 101:511–524. 2009. View Article : Google Scholar : PubMed/NCBI | |
Palmieri D, D'Angelo D, Valentino T, De Martino I, Ferraro A, Wierinckx A, Fedele M, Trouillas J and Fusco A: Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene. 31:3857–3865. 2012. View Article : Google Scholar | |
Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z and Zheng X: MiR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 36:5391–5404. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Stephen CW, Luciani MG and Fåhraeus R: p53 stability and activity is regulated by Mdm2-mediated induction of alter-native p53 translation products. Nat Cell Biol. 4:462–467. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marcel V, Perrier S, Aoubala M, Ageorges S, Groves MJ, Diot A, Fernandes K, Tauro S and Bourdon JC: Δ160p53 is a novel N-terminal p53 isoform encoded by Δ133p53 transcript. FEBS Lett. 584:4463–4468. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Xia Y, Niu H and Chen Y: MiR-16 induced the suppression of cell apoptosis while promote proliferation in esophageal squamous cell carcinoma. Cell Physiol Biochem. 33:1340–1348. 2014. View Article : Google Scholar : PubMed/NCBI | |
Parsi S, Smith PY, Goupil C, Dorval V and Hébert SS: Preclinical evaluation of miR-15/107 family members as multifactorial drug targets for Alzheimer's disease. Mol Ther Nucleic Acids. 4:e2562015. View Article : Google Scholar : PubMed/NCBI | |
Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T and Vassella E: MiR-15a and miR-16 are implicated in cell cycle regulation in a Rb-Dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 69:5553–5559. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, et al: The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 14:1271–1277. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D and Corcoran MM: DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res. 315:2941–2952. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sebastiani G, Guarino E, Grieco GE, Formichi C, Poggi CD, Ceccarelli E and Dotta F: Circulating microRNA (miRNA) expression profiling in plasma of patients with gestational diabetes mellitus reveals upregulation of miRNA miR-330-3p. Front Endocrinol (Lausanne). 8:3452017. View Article : Google Scholar | |
Koralewska N, Ciechanowska K, Pokornowska M, Figlerowicz M and Kurzyńska-Kokorniak A: Human ribonuclease Dicer-structure and functions. Postepy Biochem. 65:173–182. 2019.In Polish. View Article : Google Scholar : PubMed/NCBI | |
Doyle SL, Husebye H, Connolly DJ, Espevik T, O'Neill LA and McGettrick AF: The GOLD domain-containing protein TMED7 inhibits TLR4 signalling from the endosome upon LPS stimu-lation. Nat Commun. 3:7072012. View Article : Google Scholar | |
Füllekrug J, Suganuma T, Tang BL, Hong W, Storrie B and Nilsson T: Localization and recycling of gp27 (hp24gamma3): Complex formation with other p24 family members. Mol Biol Cell. 10:1939–1955. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wisniewska M, Goettig P, Maskos K, Belouski E, Winters D, Hecht R, Black R and Bode W: Structural determinants of the ADAM inhibition by TIMP-3: Crystal structure of the TACE-N-TIMP-3 complex. J Mol Biol. 381:1307–1319. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kotronis K, Zafrakas M, Papasozomenou P, Timologou A, Miliaras D, Tarlatzis BC and Grimbizis G: Protein expression pattern of tissue inhibitor of metalloproteinase-3 (TIMP3) in endometriosis and normal endometrium. Gynecol Endocrinol. 35:1103–1106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M, Felli N, Mattia G, Petrini M, Colombo MP, et al: The Promyelocytic leukemia zinc Finger-MicroRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 68:2745–2754. 2008. View Article : Google Scholar : PubMed/NCBI | |
Felicetti F, Errico MC, Segnalini P, Mattia G and Carè A: MicroRNA-221 and -222 pathway controls melanoma progression. Expert Rev Anticancer Ther. 8:1759–1765. 2008. View Article : Google Scholar : PubMed/NCBI | |
Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu CG, Croce CM and Condorelli G: MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene. 27:3845–3855. 2008. View Article : Google Scholar : PubMed/NCBI | |
He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu C G, Franssila K, Suster S, et al: The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 102:19075–19080. 2005. View Article : Google Scholar : PubMed/NCBI | |
Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, et al: MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA. 102:18081–18086. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gits CM, van Kuijk PF, Jonkers MB, Boersma AW, van Ijcken WF, Wozniak A, Sciot R, Rutkowski P, Schöffski P, Taguchi T, et al: MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours. Br J Cancer. 109:1625–1635. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, et al: Transcriptome-wide identification of RNA-Binding protein and MicroRNA target sites by PAR-CLIP. Cell. 141:129–141. 2010. View Article : Google Scholar : PubMed/NCBI | |
Elmehdawi F, Wheway G, Szymanska K, Adams M, High AS, Johnson CA and Robinson PA: Human homolog of drosophila ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies. Exp Cell Res. 319:161–172. 2013. View Article : Google Scholar | |
von Stechow L, Typas D, Carreras Puigvert J, Oort L, Siddappa R, Pines A, Vrieling H, van de Water B, Mullenders LH and Danen EH: The E3 Ubiquitin ligase ARIH1 protects against genotoxic stress by initiating a 4EHP-Mediated mRNA translation arrest. Mol Cell Biol. 35:1254–1268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M and Zavolan M: A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods. 8:559–564. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kennedy SA, Jarboui MA, Srihari S, Raso C, Bryan K, Dernayka L, Charitou T, Bernal-Llinares M, Herrera-Montavez C, Krstic A, et al: Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 11:4992020. View Article : Google Scholar : | |
Shen N, Liu Y, Zhang K, Lyu Y, Gao M, Ma J, Xu L and Gai Z: Analysis of RPS6KA3 gene mutation in a Chinese pedigree affected with coffinlowry syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 36:798–800. 2019.In Chinese. PubMed/NCBI | |
Zhang J, Yang M, Li D, Zhu S, Zou J, Xu S, Wang Y, Shi J and Li Y: Homeobox C8 is a transcriptional repressor of E-cadherin gene expression in non-small cell lung cancer. Int J Biochem Cell Biol. 114:1055572019. View Article : Google Scholar : PubMed/NCBI | |
Gong C, Zou J, Zhang M, Zhang J, Xu S, Zhu S, Yang M, Li D, Wang Y, Shi J and Li Y: Upregulation of MGP by HOXC8 promotes the proliferation, migration, and EMT processes of triple-negative breast cancer. Mol Carcinog. 58:1863–1875. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang X and Yan R: MiR-152 inhibits the proliferation and invasion of chordoma cells by targeting HOXC8. J Int Med Res. 47:5185–5193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD, Shamulailatpam P, Love CL, Dave SS, Tuschl T, et al: Viral MicroRNA targetome of KSHV-Infected primary effusion lymphoma cell lines. Cell Host Microbe. 10:515–526. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene Ontology: Tool for the unification of biology. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI | |
The Gene Ontology Consortium: The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47:D330–D338. 2019. View Article : Google Scholar : | |
Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, Huo J, Yu C, Evans EJ, Leslie AJ, et al: Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem. 288:11771–11785. 2013. View Article : Google Scholar : PubMed/NCBI | |
He PX, Ma ZL, Han H, Zhang XY, Niu SH, Du LN, Zheng YC and Liu HM: Expression of programmed death ligand 1 (PD-L1) is associated with metastasis and differentiation in gastric cancer. Life Sci. 242:1172472020. View Article : Google Scholar : PubMed/NCBI | |
Whisnant AW, Bogerd HP, Flores O, Ho P, Powers JG, Sharova N, Stevenson M, Chen CH and Cullen BR: In-Depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. MBio. 4:e0001932013. View Article : Google Scholar : PubMed/NCBI | |
Racapé M, Duong Van Huyen JP, Danger R, Giral M, Bleicher F, Foucher Y, Pallier A, Pilet P, Tafelmeyer P, Ashton-Chess J, et al: The involvement of SMILE/TMTC3 in endoplasmic reticulum stress response. PLoS One. 6:e193212011. View Article : Google Scholar : PubMed/NCBI | |
Gan H, Lin L, Hu N, Yang Y, Gao Y, Pei Y, Chen K and Sun B: KIF2C exerts an oncogenic role in nonsmall cell lung cancer and is negatively regulated by miR-325-3p. Cell Biochem Funct. 37:424–431. 2019. View Article : Google Scholar : PubMed/NCBI | |
McHugh T, Zou J, Volkov VA, Aurélie Bertin A, Talapatra SK, Rappsilber J, Dogterom M and Welburn JPI: The depolymerase activity of MCAK shows a graded response to Aurora B kinase phosphorylation through allosteric regulation. J Cell Sci. 132:jcs2283532019. View Article : Google Scholar : | |
Nečasová I, Janoušková E, Klumpler T and Hofr C: Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res. 45:12170–12180. 2017. View Article : Google Scholar | |
Karginov FV and Hannon GJ: Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev. 27:1624–1632. 2013. View Article : Google Scholar : PubMed/NCBI | |
Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB and Piper M: Methodological challenges in utilizing miRNAs as circulating biomarkers. Version 2 J Cell Mol Med. 18:371–390. 2014. View Article : Google Scholar | |
Munaut C, Tebache L, Blacher S, Noël A, Nisolle M and Chantraine F: Dysregulated circulating miRNAs in preeclampsia. Biomed Rep. 5:686–692. 2016. View Article : Google Scholar | |
Li D and Li J: Association of miR-34a3p/5p, miR-1413p/5p, and miR-24 in decidual natural killer cells with unexplained recurrent spontaneous abortion. Med Sci Monit. 22:922–929. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song GY, Song WW, Han Y, Wang D and Na Q: Characterization of the role of microRNA-517a expression in low birth weight infants. J Dev Orig Health Dis. 4:522–526. 2013. View Article : Google Scholar | |
Li J, Chen L, Tang Q, Wu W, Gu H, Liu L, Wu J, Jiang H, Ding H, Xia Y, et al: The role, mechanism and potentially novel biomarker of microRNA-17-92 cluster in macrosomia. Sci Rep. 5:172122015. View Article : Google Scholar : PubMed/NCBI | |
Cai M, Kolluru GK and Ahmed A: Small molecule, big prospects: MicroRNA in pregnancy and its complications. J Pregnancy. 2017:69727322017. View Article : Google Scholar : PubMed/NCBI | |
Cao YL, Jia YJ, Xing BH, Shi DD and Dong XJ: Plasma microRNA-16-5p-17-5p and -20a-5p: Novel diagnostic biomarkers for gestational diabetes mellitus. J Obstet Gynaecol Res. 43:974–981. 2017. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Ju Y, Ren F, Qiu Y, Tomita Y, Tomoeda M, Kishida M, Wang Y, Jin L, Su F, et al: Insulin receptor substrate 1/2 (IRS1/2) regulates Wnt/β-catenin signaling through blocking autophagic degradation of dishevelled2. J Biol Chem. 289:11230–11241. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, Xifra G, Martínez C, Ricart W, Rieusset J, et al: Profiling of circulating MicroRNAs reveals common micrornas linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 37:1375–1383. 2014. View Article : Google Scholar : PubMed/NCBI | |
Demirsoy İH, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L and Aras N: Profiles of circulating MiRNAs following metformin treatment in patients with type 2 diabetes. J Med Biochem. 37:499–506. 2018. View Article : Google Scholar : PubMed/NCBI | |
Collares CV, Evangelista AF, Xavier DJ, Rassi DM, Arns T, Foss-Freitas MC, Foss MC, Puthier D, Sakamoto-Hojo ET, Passos GA, et al: Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes. 6:4912013. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Dong J, Jiang T, Shi Z, Yu B, Zhu Y, Chen D, Xu J, Huo R, Dai J, et al: Early second-trimester serum MiRNA profiling predicts gestational diabetes mellitus. PLoS One. 6:e239252011. View Article : Google Scholar : PubMed/NCBI | |
Pheiffer C, Dias S, Rheeder P and Adam S: Decreased expression of circulating miR-20a-5p in South African women with gestational diabetes mellitus. Mol Diagn Ther. 22:345–352. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Zhao C, Guo X, Ding H, Cui Y, Shen R and Liu J: Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of Erα expression in estrogen-induced insulin resistance. Endocrinology. 155:1982–1990. 2014. View Article : Google Scholar : PubMed/NCBI | |
López-Hernández Y, Herrera-Van Oostdam A, Toro-Ortiz JC, López JA, Salgado-Bustamante M, Murgu M and Torres-Torres LM: Urinary metabolites altered during the third trimester in pregnancies complicated by gestational diabetes mellitus: Relationship with potential upcoming metabolic disorders. Int J Mol Sci. 20:11862019. View Article : Google Scholar : | |
Ibarra A, Vega-Guedes B, Brito-Casillas Y and Wägner AM: Diabetes in pregnancy and MicroRNAs: Promises and limitations in their clinical application. Noncoding RNA. 4:322018. | |
Sadovsky Y, Mouillet JF, Ouyang Y, Bayer A and Coyne CB: The function of trophomirs and other micrornas in the human placenta. Cold Spring Harb Perspect Med. 5:a0230362015. View Article : Google Scholar : PubMed/NCBI | |
Hromadnikova I, Kotlabova K, Ivankova K and Krofta L: First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS One. 12:e01717562017. View Article : Google Scholar : PubMed/NCBI | |
Hromadnikova I, Dvorakova L, Kotlabova K and Krofta L: The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs. Int J Mol Sci. 20:29722019. View Article : Google Scholar : | |
Esteves JV, Enguita FJ and Machado UF: MicroRNAs-Mediated regulation of skeletal muscle GLUT4 expression and translocation in insulin resistance. J Diabetes Res. 2017:72679102017. View Article : Google Scholar : PubMed/NCBI |