1
|
Kitagawa I, Mahmud T, Simanjuntak P, Hori
K, Uji T and Shibuya H: Indonesian medicinal plants. VIII. Chemical
structures of three new triterpenoids, bruceajavanin A,
dihy-drobruceajavanin A, and bruceajavanin B, and a new alkaloidal
glycoside, bruceacanthinoside, from the stems of Brucea javanica
(Simaroubaceae). Chem Pharm Bull (Tokyo). 42:1416–1421. 1994.
View Article : Google Scholar
|
2
|
Liu JH, Qin JJ, Jin HZ, Hu XJ, Chen M,
Shen YH, Yan SK and Zhang WD: A new triterpenoid from. Arch Pharm
Res. 32:661–666. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cuendet M and Pezzuto JM: Antitumor
activity of bruceantin: An old drug with new promise. J Nat Prod.
67:269–272. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tang W, Xie J, Xu S, Lv H, Lin M, Yuan S,
Bai J, Hou Q and Yu S: Novel nitric oxide-releasing derivatives of
brusatol as anti-inflammatory agents: Design, synthesis, biological
evaluation, and nitric oxide release studies. J Med Chem.
57:7600–7612. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Oh ET, Kim CW, Kim HG, Lee JS and Park HJ:
Brusatol-mediated inhibition of c-myc increases HIF-1α degradation
and causes cell death in colorectal cancer under hypoxia.
Theranostics. 7:3415–3431. 2017. View Article : Google Scholar :
|
6
|
Lu Z, Lai ZQ, Leung AWN, Leung PS, Li ZS
and Lin ZX: Exploring brusatol as a new anti-pancreatic cancer
adjuvant: Biological evaluation and mechanistic studies.
Oncotarget. 8:84974–84985. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ren D, Villeneuve NF, Jiang T, Wu T, Lau
A, Toppin HA and Zhang DD: Brusatol enhances the efficacy of
chemotherapy by inhibiting the Nrf2-mediated defense mechanism.
Proc Natl Acad Sci USA. 108:1433–1438. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Olayanju A, Copple IM, Bryan HK, Edge GT,
Sison RL, Wong MW, Lai ZQ, Lin ZX, Dunn K, Sanderson CM, et al:
Brusatol provokes a rapid and transient inhibition of Nrf2
signaling and sensitizes mammalian cells to chemical
toxicity-implications for therapeutic targeting of Nrf2. Free Radic
Biol Med. 78:202–212. 2015. View Article : Google Scholar :
|
9
|
Zhang L, Feng X, Ma D, Yang J, Jiang H,
Zhang Y and He W: Brusatol isolated from Brucea javanica (L.) Merr.
induces apoptotic death of insect cell lines. Pestic Biochem
Physiol. 107:18–24. 2013. View Article : Google Scholar
|
10
|
Xiao C, Xia ML, Wang J, Zhou XR, Lou YY,
Tang LH, Zhang FJ, Yang JT and Qian LB: Luteolin attenuates cardiac
ischemia/reperfusion injury in diabetic rats by modulating nrf2
antioxidative function. Oxid Med Cell Longev. 2019:27192522019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang X, Lai W, Ying X, Xu L, Chu K, Brown
J, Chen L and Hong G: Salidroside reduces inflammation and brain
injury after permanent middle cerebral artery occlusion in rats by
regulating PI3K/PKB/Nrf2/NFKB signaling rather than complement C3
activity. Inflammation. 42:1830–1842. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huang Y, Zhou F, Shen C, Wang H and Xiao
Y: LBP reduces theinflammatory injuryof kidney in septic rat and
regulates the Keap1-Nrf2ARE signaling pathway1. Acta Cir Bras.
34:e201900100000032019. View Article : Google Scholar
|
13
|
Lu Y, Wu S, Xiang B, Li L and Lin Y:
Curcumin attenuates oxaliplatin-induced liver injury and oxidative
stress by activating the Nrf2 pathway. Drug Des Devel Ther.
14:73–85. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Han X, Yao W, Liu Z, Li H, Zhang ZJ, Hei Z
and Xia Z: Lipoxin A4 preconditioning attenuates intestinal
ischemia reperfusion injury through Keap1/Nrf2 pathway in a lipoxin
A4 receptor independent manner. Oxid Med Cell Longev.
2016:93036062016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lin Y, Sui LC, Wu RH, Ma RJ, Fu HY, Xu JJ,
Qiu XH and Chen L: Nrf2 inhibition affects cell cycle progression
during early mouse embryo development. J Reprod Dev. 64:49–55.
2018. View Article : Google Scholar :
|
16
|
Ma R, Li H, Zhang Y, Lin Y, Qiu X, Xie M
and Yao B: The toxic effects and possible mechanisms of Brusatol on
mouse oocytes. PLoS One. 12:e01778442017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kumar A, Sharma PR and Mondhe DM:
Potential anticancer role of colchicine-based derivatives: An
overview. Anticancer Drugs. 28:250–262. 2017. View Article : Google Scholar
|
18
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guo L, Liu Z and Tang X: Overexpression of
SLFN5 induced the epithelial-mesenchymal transition in human lung
cancer cell line A549 through β-catenin/Snail/E-cadherin pathway.
Eur J Pharmacol. 862:1726302019. View Article : Google Scholar
|
21
|
Gao S, Bian T, Zhang Y, Su M and Liu Y:
TCF12 overexpression as a poor prognostic factor in ovarian cancer.
Pathol Res Pract. 215:1525272019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhou X, Shi H, Jiang G, Zhou Y and Xu J:
Antitumor activities of ginseng polysaccharide in C57BL/6 mice with
Lewis lung carcinoma. Tumour Biol. 35:12561–12566. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou ML, Chen FS and Mao H: Clinical
significance and role of up-regulation of SERPINA3 expression in
endometrial cancer. World J Clin Cases. 7:1996–2002. 2019.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang T, Zhou R, Yu S, Yu S, Cui Z, Hu P,
Liu J, Qiao Q and Zhang J: Cytoplasmic SIRT1 inhibits cell
migration and invasion by impeding epithelial-mesenchymal
transition in ovarian carcinoma. Mol Cell Biochem. 459:157–169.
2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L,
Chao H and Chen ZS: The development of anticancer ruthenium(ii)
complexes: From single molecule compounds to nanomaterials. Chem
Soc Rev. 46:5771–5804. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Geiger S, Lange V, Suhl P, Heinemann V and
Stemmler HJ: Anticancer therapy induced cardiotoxicity: Review of
the literature. Anticancer Drugs. 21:578–590. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
McDaid WJ, Greene MK, Johnston MC,
Pollheimer E, Smyth P, McLaughlin K, Van Schaeybroeck S,
Straubinger RM, Longley DB and Scott CJ: Repurposing of cetuximab
in antibody-directed chemotherapy-loaded nanoparticles in EGFR
therapy-resistant pancreatic tumours. Nanoscale. 11:20261–20273.
2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zheng W, Wang C, Ding R, Huang Y, Li Y and
Lu Y: Triptolide-loaded nanoparticles targeting breast cancer in
vivo with reduced toxicity. Int J Pharm. 572:1187212019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Benguigui M, Weitz IS, Timaner M, Kan T,
Shechter D, Perlman O, Sivan S, Raviv Z, Azhari H and Shaked Y:
Copper oxide nanoparticles inhibit pancreatic tumor growth
primarily by targeting tumor initiating cells. Sci Rep.
9:126132019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Alavi SE, Muflih Al, Harthi S, Ebrahimi
Shahmabadi H and Akbarzadeh A: Cisplatin-loaded
polybutylcyanoacrylate nanoparticles with improved properties as an
anticancer agent. Int J Mol Sci. 20:15312019. View Article : Google Scholar :
|
31
|
Yang B, Liu H, Yang H, Chen W, Wu J, Feng
X, Tong R, Yu H, Chen Y, Lv Z, et al: Combinatorial
photochemotherapy on liver cancer stem cells with
organoplatinum(ii) metallacage-based nanoparticles. J Mater Chem B.
7:6476–6487. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Salanti A, Clausen TM, Agerbaek MO, Al
Nakouzi N, Dahlback M, Oo HZ, Lee S, Gustavsson T, Rich JR, Hedberg
BJ, et al: Targeting human cancer by a glycosaminoglycan binding
malaria protein. Cancer Cell. 28:500–514. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang B, Cheng G, Zheng M, Han J, Wang B,
Li M, Chen J, Xiao T, Zhang J, Cai L, et al: Targeted delivery of
doxorubicin by CSA-binding nanoparticles for choriocarcinoma
treatment. Drug Deliv. 25:461–471. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee JH, Rangappa S, Mohan CD, Basappa,
Sethi G, Lin ZX, Rangappa KS and Ahn KS: Brusatol, a Nrf2 inhibitor
targets STAT3 signaling cascade in head and neck squamous cell
carcinoma. Biomolecules. 9:5502019. View Article : Google Scholar :
|
35
|
Zhang J, Fang X, Li Z, Chan HF, Lin Z,
Wang Y and Chen M: Redox-sensitive micelles composed of
disulfide-linked Pluronic-linoleic acid for enhanced anticancer
efficiency of brusatol. Int J Nanomedicine. 13:939–956. 2018.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Beg S, Kawish SM, Panda SK, Tarique M,
Malik A, Afaq S, Al-Samghan AS, Iqbal J, Alam K and Rahman M:
Nanomedicinal strategies as efficient therapeutic interventions for
delivery of cancer vaccines. Semin Cancer Biol. Oct 13–2019.Epub
ahead of print. View Article : Google Scholar : PubMed/NCBI
|
37
|
Farokhzad OC, Cheng J, Teply BA, Sherifi
I, Jon S, Kantoff PW, Richie JP and Langer R: Targeted
nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.
Proc Natl Acad Sci USA. 103:6315–6320. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lin WJ, Juang LW and Lin CC: Stability and
release performance of a series of pegylated copolymeric micelles.
Pharm Res. 20:668–673. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang G, Chen Y, Wang P, Wang Y, Hong H, Li
Y, Qian J, Yuan Y, Yu B and Liu C: Preferential tumor accumulation
and desirable interstitial penetration of poly(lactic-co-glycolic
acid) nanoparticles with dual coating of chitosan oligosaccharide
and polyethylene glycol-poly(D, L-lactic acid). Acta Biomater.
29:248–260. 2016. View Article : Google Scholar
|
40
|
Chu CH, Wang YC, Huang HY, Wu LC and Yang
CS: Ultrafine PEG-coated poly(lactic-co-glycolic acid)
nanoparticles formulated by hydrophobic surfactant-assisted one-pot
synthesis for biomedical applications. Nanotechnology.
22:1856012011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang B, Zheng M, Cai L and Fan X:
Synthesis and characterization of placental chondroitin sulfate A
(plCSA)-targeting lipid-polymer nanoparticles. J Vis Exp.
18:582092018.
|
42
|
Ye R, Dai N, He Q, Guo P, Xiang Y and
Zhang Q, Hong Z and Zhang Q: Comprehensive anti-tumor effect of
Brusatol through inhibition of cell viability and promotion of
apoptosis caused by autophagy via the PI3K/Akt/mTOR pathway in
hepatocellular carcinoma. Biomed Pharmacother. 105:962–973. 2018.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Igney FH and Krammer PH: Death and
anti-death: Tumour resistance to apoptosis. Nat Rev Cancer.
2:277–288. 2002. View
Article : Google Scholar : PubMed/NCBI
|
44
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Goping IS, Barry M, Liston P, Sawchuk T,
Constantinescu G, Michalak KM, Shostak I, Roberts DL, Hunter AM,
Korneluk R and Bleackley RC: Granzyme B-induced apoptosis requires
both direct caspase activation and relief of caspase inhibition.
Immunity. 18:355–365. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Korsmeyer SJ: BCL-2 gene family and the
regulation of programmed cell death. Cancer Res. 59(7 Suppl):
1693S–1700S. 1999.PubMed/NCBI
|
47
|
Jia YL, Shi L, Zhou JN, Fu CJ, Chen L,
Yuan HF, Wang YF, Yan XL, Xu YC, Zeng Q, et al: Epimorphin promotes
human hepatocellular carcinoma invasion and metastasis through
activation of focal adhesion kinase/extracellular signal-regulated
kinase/matrix metalloproteinase-9 axis. Hepatology. 54:1808–1818.
2011. View Article : Google Scholar : PubMed/NCBI
|