Long non‑coding RNAs are novel players in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma (Review)
- Authors:
- Kaiying Zhang
- Wei Qiu
- Buling Wu
- Fuchun Fang
-
Affiliations: Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China - Published online on: June 3, 2020 https://doi.org/10.3892/ijmm.2020.4628
- Pages: 535-545
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Brogden KA, Johnson GK, Vincent SD, Abbasi T and Vali S: Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses. Expert Rev Anti Infect Ther. 11:1097–1113. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni V, Uttamani JR, Naqvi AR and Nares S: microRNAs: Emerging players in oral cancers and inflammatory disorders. Tumour Biol. 39:10104283176983792017. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Lan Z, Li Q and Li Y: Abnormal expression of long noncoding RNA FGD5-AS1 affects the development of periodontitis through regulating miR-142-3p/SOCS6/NF-kB pathway. Artif Cells Nanomed Biotechnol. 47:2098–2106. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xin M, Liang H, Wang H, Wen D, Wang L, Zhao L, Sun M and Wang J: Mirt2 functions in synergy with miR-377 to participate in inflammatory pathophysiology of sjogren's syndrome. Artif Cells Nanomed Biotechnol. 47:2473–2480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Liu X, Li H, Pan H, Acharya A, Deng Y, Yu Y, Haak R, Schmidt J, Schmalz G and Ziebolz D: Integrated analysis of long noncoding RNA-associated competing endogenous RNA network in periodontitis. J Periodontal Res. 53:495–505. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang M, Song L, Wang X, Lai W and Jiang S: LncRNA MALAT1 regulates inflammatory cytokine production in lipopolysaccharide-stimulated human gingival fibroblasts through sponging miR-20a and activating TLR4 pathway. J Periodontal Res. 55:182–190. 2020. View Article : Google Scholar | |
Lee PH, Chu PM, Hsieh PL, Yang HW, Chueh PJ, Huang YF, Liao YW and Yu CC: Glabridin inhibits the activation of myofi-broblasts in human fibrotic buccal mucosal fibroblasts through TGF-β/smad signaling. Environ Toxicol. 33:248–255. 2018. View Article : Google Scholar | |
Ganesh D, Sreenivasan P, Ohman J, Wallström M, Braz-Silva PH, Giglio D, Kjeller G and Hasséus B: Potentially malignant oral disorders and cancer transformation. Anticancer Res. 38:3223–3229. 2018. View Article : Google Scholar : PubMed/NCBI | |
Awadallah M, Idle M, Patel K and Kademani D: Management update of potentially premalignant oral epithelial lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 125:628–636. 2018. View Article : Google Scholar : PubMed/NCBI | |
Han X, Wei YB, Tian G, Tang Z, Gao JY and Xu XG: Screening of crucial long non-coding RNAs in oral epithelial dysplasia by serial analysis of gene expression. Genet Mol Res. 14:11729–11738. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhou Y and Li H: LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Res. 257:25–32. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chattopadhyay E, Singh R, Ray A, Roy R, Sarkar ND, Paul RR, Pal M, Aich R and Roy B: Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: Importance in progression of precancer and cancer. Sci Rep. 6:327352016. View Article : Google Scholar : PubMed/NCBI | |
Fiaschi T and Chiarugi P: Oxidative stress, tumor microenvironment, and metabolic reprogramming: A diabolic liaison. Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: Importance in progression of precancer and cancer. Int J Cell Biol. 2012:7628252012. View Article : Google Scholar | |
Naylor MS, Stamp GW, Foulkes WD, Eccles D and Balkwill FR: Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest. 91:2194–2206. 1993. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Lu X and Yuan L: LncRNA: A link between RNA and cancer. Biochim Biophys Acta. 1839:1097–1109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang ZH, Dang YQ and Ji G: Role of epigenetics in transformation of inflammation into colorectal cancer. World J Gastroenterol. 25:2863–2877. 2019. View Article : Google Scholar : PubMed/NCBI | |
Katsanos KH, Roda G, Brygo A, Delaporte E and Colombel JF: Oral cancer and oral precancerous lesions in inflammatory bowel diseases: A systematic review. J Crohns Colitis. 9:1043–1052. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jia H, Wang X and Sun Z: Exploring the long noncoding RNAs-based biomarkers and pathogenesis of malignant trans-formation from dysplasia to oral squamous cell carcinoma by bioinformatics method. Eur J Cancer Prev. 29:174–181. 2020. View Article : Google Scholar | |
Camacho CV, Choudhari R and Gadad SS: Long noncoding RNAs and cancer, an overview. Steroids. 133:93–95. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J and Chu M: Targeting of IL-6-relevant long noncoding RNA profiles in inflammatory and tumorous disease. Inflammation. 42:1139–1146. 2019. View Article : Google Scholar : PubMed/NCBI | |
St LG, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar | |
Jarroux J, Morillon A and Pinskaya M: History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 1008:1–46. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guenzl PM and Barlow DP: Macro lncRNAs: A new layer of cis-regulatory information in the mammalian genome. RNA Biol. 9:731–741. 2012. View Article : Google Scholar : PubMed/NCBI | |
Beltrami C, Angelini TG and Emanueli C: Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol. 89:42–50. 2015. View Article : Google Scholar | |
Allen MA, Andrysik Z, Dengler VL, Mellert HS, Guarnieri A, Freeman JA, Sullivan KD, Galbraith MD, Luo X, Kraus WL, et al: Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. Elife. 3:e22002014. View Article : Google Scholar | |
Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Münster S, Camblong J, Guffanti E, Stutz F, Huber W and Steinmetz LM: Bidirectional promoters generate pervasive transcription in yeast. Nature. 457:1033–1037. 2009. View Article : Google Scholar : PubMed/NCBI | |
Neil H, Malabat C, D'Aubenton-Carafa Y, Xu Z, Steinmetz LM and Jacquier A: Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature. 457:1038–1042. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fox MJ, Gao H, Smith-Kinnaman WR, Liu Y and Mosley AL: The exosome component Rrp6 is required for RNA polymerase II termination at specific targets of the Nrd1-Nab3 pathway. PLoS Genet. 11:e10049992015. View Article : Google Scholar : PubMed/NCBI | |
Yu D, Ma X, Zuo Z, Wang H and Meng Y: Classification of tran-scription boundary-associated RNAs (TBARs) in animals and plants. Front Genet. 9:1682018. View Article : Google Scholar | |
Bianchessi V, Badi I, Bertolotti M, Nigro P, D'Alessandra Y, Capogrossi MC, Zanobini M, Pompilio G, Raucci A and Laur A: The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in endothelial cells. J Mol Cell Cardiol. 81:62–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
Werner MS, Sullivan MA, Shah RN, Nadadur RD, Grzybowski AT, Galat V, Moskowitz IP and Ruthenburg AJ: Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat Struct Mol Biol. 24:596–603. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ferdin J, Nishida N, Wu X, Nicoloso MS, Shah MY, Devlin C, Ling H, Shimizu M, Kumar K, Cortez MA, et al: HINCUTs in cancer: Hypoxia-induced noncoding ultraconserved transcripts. Cell Death Differ. 20:1675–1687. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giannakakis A, Zhang J, Jenjaroenpun P, Nama S, Zainolabidin N, Aau MY, Yarmishyn AA, Vaz C, Ivshina AV, Grinchuk OV, et al: Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress. Sci Rep. 5:97372015. View Article : Google Scholar : PubMed/NCBI | |
Lazorthes S, Vallot C, Briois S, Aguirrebengoa M, Thuret JY, St Laurent G, Rougeulle C, Kapranov P, Mann C, Trouche D and Nicolas E: A vlincRNA participates in senescence maintenance by relieving H2AZ-mediated repression at the INK4 locus. Nat Commun. 6:59712015. View Article : Google Scholar : PubMed/NCBI | |
Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A and Gutti RK: Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol. 112:82–92. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen LL and Carmichael GG: Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol. 22:357–364. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Zhang K, Chen Z and Wu B: Noncoding RNAs: New insights into the odontogenic differentiation of dental tissue-derived mesenchymal stem cells. Stem Cell Res Ther. 10:2972019. View Article : Google Scholar : PubMed/NCBI | |
Geng F, Liu J, Guo Y, Li C, Wang H, Wang H, Zhao H and Pan Y: Persistent exposure to porphyromonas gingivalis promotes proliferative and invasion capabilities, and tumorigenic proper-ties of human immortalized oral epithelial cells. Front Cell Infect Microbiol. 7:572017. View Article : Google Scholar | |
Song Y, Pan Y and Liu J: Functional analysis of lncRNAs based on competitive endogenous RNA in tongue squamous cell carcinoma. PeerJ. 7:e69912019. View Article : Google Scholar : PubMed/NCBI | |
Ranzani V, Rossetti G, Panzeri I, Arrigoni A, Bonnal RJ, Curti S, Gruarin P, Provasi E, Sugliano E, Marconi M, et al: The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol. 16:318–325. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, Gingeras TR, Kapranov P, Weissman SM and Newburger PE: A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood. 113:2526–2534. 2009. View Article : Google Scholar : PubMed/NCBI | |
Elling R, Chan J and Fitzgerald KA: Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. Eur J Immunol. 46:504–512. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heward JA and Lindsay MA: Long non-coding RNAs in the regulation of the immune response. Trends Immunol. 35:408–419. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qu Q, Fang F, Wu B, Hu Y, Chen M, Deng Z, Ma D, Chen T, Hao Y and Ge Y: Potential role of long non-coding RNA in osteogenic differentiation of human periodontal ligament stem cells. J Periodontol. 8:e127–e137. 2016. View Article : Google Scholar | |
Bjørndal L, Simon S, Tomson PL and Duncan HF: Management of deep caries and the exposed pulp. Int Endod J. 52:949–973. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hui T, Wang C, Chen D, Zheng L, Huang D and Ye L: Epigenetic regulation in dental pulp inflammation. Oral Dis. 23:22–28. 2017. View Article : Google Scholar | |
Huang X and Chen K: Differential expression of long noncoding RNAs in normal and inflamed human dental pulp. J Endod. 44:62–72. 2018. View Article : Google Scholar | |
Lei F, Zhang H and Xie X: Comprehensive analysis of an lncRNA-miRNA-mRNA competing endogenous RNA network in pulpitis. PeerJ. 7:e71352019. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Zhang S, Bair E, Nares S and Khan AA: Differential expression of microRNAs in normal and inflamed human pulps. J Endod. 38:746–752. 2012. View Article : Google Scholar : PubMed/NCBI | |
Galicia JC, Henson BR, Parker JS and Khan AA: Gene expression profile of pulpitis. Genes Immun. 17:239–243. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mombelli A: Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol 2000. 76:85–96. 2018. View Article : Google Scholar | |
Singhrao SK, Harding A, Poole S, Kesavalu L and Crean S: Porphyromonas gingivalis periodontal infection and its putative links with Alzheimer's disease. Mediators Inflamm. 2015:1373572015. View Article : Google Scholar : PubMed/NCBI | |
Michaud DS, Fu Z, Shi J and Chung M: Periodontal disease, tooth loss, and cancer risk. Epidemiol Rev. 39:49–58. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Li C, Shu F, Tian Z, Xu W, Xu H, Tian H, Shi R and Mao X: lncRNA expression signatures in periodontitis revealed by microarray: The potential role of lncRNAs in periodontitis pathogenesis. J Cell Biochem. 116:640–647. 2015. View Article : Google Scholar | |
Liu W, Zheng Y, Chen B, Ke T and Shi Z: LncRNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) regulates the proliferation of human periodontal ligament stem cells and toll-like receptor 4 (TLR4) expression to improve periodontitis. BMC Oral Health. 19:1082019. View Article : Google Scholar : PubMed/NCBI | |
Malathi N, Mythili S and Vasanthi HR: Salivary diagnostics: A brief review. ISRN Dent. 2014:1587862014.PubMed/NCBI | |
Tzioufas AG, Tsonis J and Moutsopoulos HM: Neuroendocrine dysfunction in Sjogren's syndrome. Neuroimmunomodulation. 15:37–45. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zoukhri D: Effect of inflammation on lacrimal gland function. Exp Eye Res. 82:885–898. 2006. View Article : Google Scholar : | |
Gliozzi M, Greenwell-Wild T, Jin W, Moutsopoulos NM, Kapsogeorgou E, Moutsopoulos HM and Wahl SM: A link between interferon and augmented plasmin generation in exocrine gland damage in Sjögren's syndrome. J Autoimmun. 40:122–133. 2013. View Article : Google Scholar | |
Reksten TR, Jonsson MV, Szyszko EA, Brun JG, Jonsson R and Brokstad KA: Cytokine and autoantibody profiling related to histopathological features in primary Sjogren's syndrome. Rheumatology (Oxford). 48:1102–1106. 2009. View Article : Google Scholar | |
Dolcino M, Tinazzi E, Vitali C, Del PN, Puccetti A and Lunardi C: Long non-coding RNAs modulate Sjögren's syndrome associated gene expression and are involved in the pathogenesis of the disease. J Clin Med. 8:13492019. View Article : Google Scholar | |
Shi H, Cao N, Pu Y, Xie L, Zheng L and Yu C: Long non-coding RNA expression profile in minor salivary gland of primary Sjögren's syndrome. Arthritis Res Ther. 18:1092016. View Article : Google Scholar | |
Jia B, Qiu X, Chen J, Sun X, Zheng X, Zhao J, Li Q and Wang Z: A feed-forward regulatory network lncPCAT1/miR-106a-5p/E2F5 regulates the osteogenic differentiation of periodontal ligament stem cells. J Cell Physiol. 234:19523–19538. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Han Y, Guo R, Liu H, Li X, Jia L, Zheng Y and Li W: Long non-coding RNA FER1L4 promotes osteogenic differentiation of human periodontal ligament stromal cells via miR-874-3p and vascular endothelial growth factor A. Stem Cell Res Ther. 11:52020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu F, Song Y, Li X, Wu Q, Duan Y and Jin Z: Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death Dis. 7:e23272016. View Article : Google Scholar : PubMed/NCBI | |
Canniff JP, Harvey W and Harris M: Oral submucous fibrosis: Its pathogenesis and management. Br Dent J. 160:429–434. 1986. View Article : Google Scholar : PubMed/NCBI | |
Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ and Warnakulasuriya S: Oral submucous fibrosis: Review on aetiology and pathogenesis. Oral Oncol. 42:561–568. 2006. View Article : Google Scholar | |
Sharma M and Radhakrishnan R: Limited mouth opening in oral submucous fibrosis: Reasons, ramifications, and remedies. J Oral Pathol Med. 46:424–430. 2017. View Article : Google Scholar | |
Arakeri G, Patil SG, Aljabab AS, Lin KC, Merkx MAW, Gao S and Brennan PA: Oral submucous fibrosis: An update on pathophysiology of malignant transformation. J Oral Pathol Med. 46:413–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sharma M, Shetty SS and Radhakrishnan R: Oral submucous fibrosis as an overhealing wound: Implications in malignant transformation. Recent Pat Anticancer Drug Discov. 13:272–291. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang YK, Liu CM, Lin T, Fang CY, Yu CC and Yu CH: Inhibition of HIF1A-AS1 impedes the arecoline-induced migration activity of human oral mucosal fibroblasts. J Formos Med Assoc. 119:879–883. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin CY, Liao YW, Hsieh PL, Lu MY, Peng CY, Chu PM, Yang HW, Huang YF, Yu CC and Yu CH: LncRNA GAS5-AS1 inhibits myofibroblasts activities in oral submucous fibrosis. J Formos Med Assoc. 117:727–733. 2018. View Article : Google Scholar | |
Fang CY, Yu CC, Liao YW, Hsieh PL, Lu MY, Lin KC, Wu CZ and Tsai LL: LncRNA LINC00974 activates TGF-β/Smad signaling to promote oral fibrogenesis. J Oral Pathol Med. 48:151–158. 2019. | |
Zhou S, Zhu Y, He Z, Zhang D, Guo F, Jian X and Zhang C: Long non-coding RNA expression profile associated with malignant progression of oral submucous fibrosis. J Oncol. 2019:68351762019. View Article : Google Scholar : PubMed/NCBI | |
Lodi G, Scully C, Carrozzo M, Griffiths M, Sugerman PB and Thongprasom K: Current controversies in oral lichen planus: Report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 100:40–51. 2005. View Article : Google Scholar : PubMed/NCBI | |
Eisen D, Carrozzo M, Bagan SJ and Thongprasom K: Number V oral lichen planus: Clinical features and management. Oral Dis. 11:338–349. 2005. View Article : Google Scholar : PubMed/NCBI | |
Scully C, Beyli M, Ferreiro MC, Ficarra G, Gill Y, Griffiths M, Holmstrup P, Mutlu S, Porter S and Wray D: Update on oral lichen planus: Etiopathogenesis and management. Crit Rev Oral Biol Med. 9:86–122. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lončar-Brzak B, Klobučar M, Veliki-Dalic I, Sabol I, Pavelić SK, Krušlin B and Mravak-Stipetić M: Expression of small leucine-rich extracellular matrix proteoglycans biglycan and lumican reveals oral lichen planus malignant potential. Clin Oral Investig. 22:1071–1082. 2018. View Article : Google Scholar | |
Santoro A, Majorana A, Bardellini E, Festa S, Sapelli P and Facchetti F: NF-kappaB expression in oral and cutaneous lichen planus. J Pathol. 201:466–472. 2003. View Article : Google Scholar : PubMed/NCBI | |
Groeger S and Meyle J: Oral mucosal epithelial cells. Feonr Immunol. 10:2082019. | |
Yang Q, Xu B, Sun H, Wang X, Zhang J, Yu X and Ma X: A genome-wide association scan of biological processes involved in oral lichen planus and oral squamous cell carcinoma. Medicine (Baltimore). 96:e70122017. View Article : Google Scholar | |
Wang J, Zhai X, Guo J, Li Y, Yang Y, Wang L, Yang L and Liu F: Long non-coding RNA DQ786243 modulates the induction and function of CD4(+) Treg cells through Foxp3-miR-146a-NF-kB axis: Implications for alleviating oral lichen planus. Int Immunopharmacol. 75:1057612019. View Article : Google Scholar | |
Huang SH and O'Sullivan B: Oral cancer: Current role of radio-therapy and chemotherapy. Med Oral Patol Oral Cir Bucal. 18:e233–e240. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gomes CC, de Sousa SF, Calin GA and Gomez RS: The emerging role of long noncoding RNAs in oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 123:235–241. 2017. View Article : Google Scholar | |
Luo X, Qiu Y, Jiang Y, Chen F, Jiang L, Zhou Y, Dan H, Zeng X, Lei YL and Chen Q: Long non-coding RNA implicated in the invasion and metastasis of head and neck cancer: Possible function and mechanisms. Mol Cancer. 17:142018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Meng X, Zhu XW, Yang DC, Chen R, Jiang Y and Xu T: Long non-coding RNAs in Oral squamous cell carcinoma: Biologic function, mechanisms and clinical implications. Mol Cancer. 18:1022019. View Article : Google Scholar : PubMed/NCBI | |
Qiu YL, Liu YH, Ban JD, Wang WJ, Han M, Kong P and Li BH: Pathway analysis of a genomewide association study on a long noncoding RNA expression profile in oral squamous cell carcinoma. Oncol Rep. 41:895–907. 2019. | |
Zhu G, Wang S, Chen J, Wang Z, Liang X, Wang X, Jiang J, Lang J and Li L: Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma. Mol Carcinog. 56:2210–2222. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kong J, Sun W, Zhu W, Liu C, Zhang H and Wang H: Long noncoding RNA LINC01133 inhibits oral squamous cell carcinoma metastasis through a feedback regulation loop with GDF15. J Surg Oncol. 118:1326–1334. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kong XP, Yao J, Luo W, Feng FK, Ma JT, Ren YP, Wang DL and Bu RF: The expression and functional role of a FOXC1 related mRNA-lncRNA pair in oral squamous cell carcinoma. Mol Cell Biochem. 394:177–186. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang J, Pan J, Feng X, Duan P, Yin X, Xu Y, Wang X and Zou S: Insights into the roles of lncRNAs in skeletal and dental diseases. Cell Biosci. 8:82018. View Article : Google Scholar : PubMed/NCBI | |
Chang SM and Hu WW: Long non-coding RNA MALAT1 promotes oral squamous cell carcinoma development via microRNA-125b/STAT3 axis. J Cell Physiol. 233:3384–3396. 2018. View Article : Google Scholar | |
Fang Z, Zhao J, Xie W, Sun Q, Wang H and Qiao B: LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med. 6:2897–2908. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Ramirez I, Soto-Reyes E, Sanchez-Perez Y, Herrera LA and Garcia-Cuellar C: Histones and long non-coding RNAs: The new insights of epigenetic deregulation involved in oral cancer. Oral Oncol. 50:691–695. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang L, Zhang L, Wang Y, Li H, Ren X, Wei F, Yu W, Liu T, Wang X, et al: Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. Int J Oncol. 46:2586–2594. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang CM, Wang TH, Chen HC, Li SC, Lee MC, Liou HH, Liu PF, Tseng YK, Shiue YL, Ger LP and Tsai KW: Aberrant DNA hypermethylation-silenced SOX21-AS1 gene expression and its clinical importance in oral cancer. Clin Epigenetics. 8:1292016. View Article : Google Scholar : PubMed/NCBI | |
Shao TR, Zheng ZN, Chen YC, Wu QQ, Huang GZ, Li F, Zeng WS and Lv XZ: LncRNA AC007271.3 promotes cell proliferation, invasion, migration and inhibits cell apoptosis of OSCC via the Wnt/β-catenin signaling pathway. Life Sci. 239:1170872019. View Article : Google Scholar | |
Chen F, Qi S, Zhang X, Wu J, Yang X and Wang R: lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β-catenin pathway in oral squamous cell carcinoma. Int J Oncol. 54:1183–1194. 2019.PubMed/NCBI | |
Meseure D, Drak AK, Nicolas A, Bieche I and Morillon A: Long noncoding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. Biomed Res Int. 2015:3202142015. View Article : Google Scholar : PubMed/NCBI | |
Ju H, Zhang L, Mao L, Wu Y, Liu S, Ruan M, Hu J and Ren G: A comprehensive genome-wide analysis of the long noncoding RNA expression profile in metastatic lymph nodes of oral mucosal melanoma. Gene. 675:44–53. 2018. View Article : Google Scholar : PubMed/NCBI |