1
|
Kraut JA and Madias NE: Metabolic
acidosis: Pathophysiology, diagnosis and management. Nat Rev
Nephrol. 6:274–285. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kraut JA and Madias NE: Treatment of acute
metabolic acidosis: A pathophysiologic approach. Nat Rev Nephrol.
8:589–601. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Teplinsky K, O'Toole M, Olman M, Walley KR
and Wood LD: Effect of lactic acidosis on canine hemodynamics and
left ventricular function. Am J Physiol. 258:H1193–H1199.
1990.PubMed/NCBI
|
4
|
Gunnerson KJ, Saul M, He S and Kellum JA:
Lactate versus non-lactate metabolic acidosis: A retrospective
outcome evaluation of critically ill patients. Crit Care.
10:R222006. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Mitchell JH, Wildenthal K and Johnson RJ
Jr: The effects of acid-base disturbances on cardiovascular and
pulmonary function. Kidney Int. 1:375–389. 1972. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wagner CA, Imenez Silva PH and Bourgeois
S: Molecular pathophysiology of acid-base disorders. Semin Nephrol.
39:340–352. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Masgras I, Ciscato F, Brunati AM, Tibaldi
E, Indraccolo S, Curtarello M, Chiara F, Cannino G, Papaleo E,
Lambrughi M, et al: Absence of neurofibromin induces an oncogenic
metabolic switch via mitochondrial ERK-mediated phosphorylation of
the chaperone TRAP1. Cell Rep. 18:659–672. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lettini G, Sisinni L, Condelli V, Matassa
DS, Simeon V, Maddalena F, Gemei M, Lopes E, Vita G, Del Vecchio L,
et al: TRAP1 regulates stemness through Wnt/β-catenin pathway in
human colorectal carcinoma. Cell Death Differ. 23:1792–1803. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Xiang F, Huang YS, Shi XH and Zhang Q:
Mitochondrial chaperone tumour necrosis factor receptor-associated
protein 1 protects cardiomyocytes from hypoxic injury by regulating
mitochondrial permeability transition pore opening. FEBS J.
277:1929–1938. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yoshida S, Tsutsumi S, Muhlebach G,
Sourbier C, Lee MJ, Lee S, Vartholomaiou E, Tatokoro M, Beebe K,
Miyajima N, et al: Molecular chaperone TRAP1 regulates a metabolic
switch between mitochondrial respiration and aerobic glycolysis.
Proc Natl Acad Sci USA. 110:E1604–E1612. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen JF, Wu QS, Xie YX, Si BL, Yang PP,
Wang WY, Hua Q and He Q: TRAP1 ameliorates renal tubulointerstitial
fibrosis in mice with unilateral ureteral obstruction by protecting
renal tubular epithelial cell mitochondria. FASEB J. 31:4503–4514.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lau AT, He QY and Chiu JF: A proteome
analysis of the arsenite response in cultured lung cells: Evidence
for in vitro oxidative stress-induced apoptosis. Biochem J.
382:641–650. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Palladino G, Notarangelo T, Pannone G,
Piscazzi A, Lamacchia O, Sisinni L, Spagnoletti G, Toti P, Santoro
A, Storto G, et al: TRAP1 regulates cell cycle and apoptosis in
thyroid carcinoma cells. Endocr Relat Cancer. 23:699–709. 2016.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Tomecka E, Wojasinski M, Jastrzebska E,
Chudy M, Ciach T and Brzozka Z: Poly(l-lactic Acid) and
polyurethane nanofibers fabri-cated by solution blow spinning as
potential substrates for cardiac cell culture. Mater Sci Eng C
Mater Biol Appl. 75:305–316. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bass JJ, Wilkinson DJ, Rankin D, Phillips
BE, Szewczyk NJ, Smith K and Atherton PJ: An overview of technical
considerations for Western blotting applications to physiological
research. Scand J Med Sci Spor. 27:4–25. 2017. View Article : Google Scholar
|
16
|
Wang L, Feng Y, Xie X, Wu H, Su XN, Qi J,
Xin W, Gao L, Zhang Y, Shah VH and Zhu Q: Neuropilin-1 aggravates
liver cirrhosis by promoting angiogenesis via VEGFR2-dependent
PI3K/Akt pathway in hepatic sinusoidal endothelial cells.
EbioMedicine. 43:525–536. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Odell ID and Cook D: Immunofluorescence
techniques. J Invest Dermatol. 133:e42013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kang T, Lu W, Xu W, Anderson L, Bacanamwo
M, Thompson W, Chen YE and Liu D: MicroRNA-27 (miR-27) targets
prohibitin and impairs adipocyte differentiation and mitochondrial
function in human adipose-derived stem cells. J Biol Chem.
288:34394–34402. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Basit F, van Oppen LM, Schöckel L,
Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, Grefte S,
Kopitz C, Heroult M, Hgm Willems P and Koopman WJ: Mitochondrial
complex I inhibition triggers a mitophagy-dependent ROS increase
leading to necroptosis and ferroptosis in melanoma cells. Cell
Death Dis. 8:e27162017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu Z, Lv XA, Dai Q, Lu M and Jin Z:
Exogenous BDNF increases mitochondrial pCREB and alleviates
neuronal metabolic defects following mechanical injury in a
MPTP-dependent way. Mol Neurobiol. 55:3499–3512. 2018. View Article : Google Scholar
|
21
|
Hua G, Zhang Q and Fan Z: Heat shock
protein 75 (TRAP1) antagonizes reactive oxygen species generation
and protects cells from granzyme m-mediated apoptosis. J Biol Chem.
282:20553–20560. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu L, Voloboueva LA, Ouyang Y, Emery JF
and Giffard RG: Overexpression of mitochondrial Hsp70/Hsp75 in rat
brain protects mitochondria, reduces oxidative stress, and protects
from focal ischemia. J Cereb Blood Flow Metab. 29:365–374. 2009.
View Article : Google Scholar
|
23
|
Zhang P, Lu Y, Yu D, Zhang D and Hu W:
TRAP1 provides protection against myocardial ischemia-reperfusion
injury by ameliorating mitochondrial dysfunction. Cell Physiol
Biochem. 36:2072–2082. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Costantino E, Maddalena F, Calise S,
Piscazzi A, Tirino V, Fersini A, Ambrosi A, Neri V, Esposito F and
Landriscina M: TRAP1, a novel mitochondrial chaperone responsible
for multi-drug resistance and protection from apoptotis in human
colorectal carcinoma cells. Cancer Lett. 279:39–46. 2009.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tian X, Ma P, Sui CG, Meng FD, Li Y, Fu
LY, Jiang T, Wang Y and Jiang YH: Suppression of tumor necrosis
factor receptor-associated protein 1 expression induces inhibition
of cell proliferation and tumor growth in human esophageal cancer
cells. FEBS J. 281:2805–2819. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang X, Zhong Z and Li W: Downregulation
of TRAP1 aggravates injury of H9c2 cardiomyocytes in a
hyperglycemic state. Exp Ther Med. 18:2681–2686. 2019.PubMed/NCBI
|
27
|
Teixeira J, Basit F, Swarts HG, Forkink M,
Oliveira PJ, Willems PHGM and Koopman WJH: Extracellular
acidification induces ROS- and mPTP-mediated death in HEK293 cells.
Redox Biol. 15:394–404. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang YZ, Wang JJ, Huang Y, Liu F, Zeng WZ,
Li Y, Xiong ZG, Zhu MX and Xu TL: Tissue acidosis induces neuronal
necroptosis via ASIC1a channel independent of its ionic conduction.
Elife. 4:e056822015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kwong JQ and Molkentin JD: Physiological
and pathological roles of the mitochondrial permeability transition
pore in the heart. Cell Metab. 21:206–214. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bernardi P, Rasola A, Forte M and Lippe G:
The mitochondrial permeability transition pore: Channel formation
by F-ATP synthase, integration in signal transduction, and role in
pathophysiology. Physiol Rev. 95:1111–1155. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rottenberg H and Hoek JB: The path from
mitochondrial ROS to aging runs through the mitochondrial
permeability transition pore. Aging Cell. 16:943–955. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Li X, Jia P, Huang Z, Liu S, Miao J, Guo
Y, Wu N and Jia D: Lycopene protects against myocardial
ischemia-reperfusion injury by inhibiting mitochondrial
permeability transition pore opening. Drug Des Devel Ther.
13:2331–2342. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Šileikytė J, Devereaux J, de Jong J,
Schiavone M, Jones K, Nilsen A, Bernardi P, Forte M and Cohen M:
Second-generation inhibitors of the mitochondrial permeability
transition pore with improved plasma stability. ChemMedChem.
14:1771–1782. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Panel M, Ruiz I, Brillet R, Lafdil F,
Teixeira-Clerc F, Nguyen CT, Calderaro J, Gelin M, Allemand F,
Guichou JF, et al: Small-molecule inhibitors of cyclophilins block
opening of the mitochondrial permeability transition pore and
protect mice from hepatic ischemia/reperfusion injury.
Gastroenterology. 157:1368–1382. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hom JR, Quintanilla RA, Hoffman DL, de
Mesy Bentley KL, Molkentin JD, Sheu SS and Porter GA Jr: The
permeability transition pore controls cardiac mitochondrial
maturation and myocyte differentiation. Dev Cell. 21:469–478. 2011.
View Article : Google Scholar : PubMed/NCBI
|