1
|
Yuki K, Fujiogi M and Koutsogiannaki S:
COVID-19 pathophysiology: A review. Clin Immunol. 215:1084272020.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He
JX, Liu L, Shan H, Lei CL, Hui DSC, et al China Medical Treatment
Expert Group for Covid-19: Clinical characteristics of coronavirus
disease 2019 in China. N Engl J Med. 382:1708–1720. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Rothan HA and Byrareddy SN: The
epidemiology and pathogenesis of coronavirus disease (COVID-19)
outbreak. J Autoimmun. 109:1024332020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li Y, Zhou W, Yang L and You R:
Physiological and pathological regulation of ACE2, the SARS-CoV-2
receptor. Pharmacol Res. 157:1048332020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Doobay MF, Talman LS, Obr TD, Tian X,
Davisson RL and Lazartigues E: Differential expression of neuronal
ACE2 in transgenic mice with overexpression of the brain
renin-angio-tensin system. Am J Physiol Regul Integr Comp Physiol.
292:R373–R381. 2007. View Article : Google Scholar
|
7
|
Yan CH, Faraji F, Prajapati DP, Boone CE
and DeConde AS: Association of chemosensory dysfunction and
COVID-19 in patients presenting with influenza-like symptoms. Int
Forum Allergy Rhinol. April 12–2020.Epub ahead of print. View Article : Google Scholar
|
8
|
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong
Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission
dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.
N Engl J Med. 382:1199–1207. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang W, Tang J and Wei F: Updated
understanding of the outbreak of 2019 novel coronavirus (2019-nCoV)
in Wuhan, China. J Med Virol. 92:441–447. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cascella M, Rajnik M, Cuomo A, Dulebohn SC
and Di Napoli R: Features, evaluation and treatment coronavirus
(COVID-19). StatPearls Publishing; Treasure Island, FL: 2020
|
11
|
Nishiura H, Jung SM, Linton NM, Kinoshita
R, Yang Y, Hayashi K, Kobayashi T, Yuan B and Akhmetzhanov AR: The
extent of transmission of novel coronavirus in Wuhan, China, 2020.
J Clin Med. 9:3302020. View Article : Google Scholar :
|
12
|
Tang N, Li D, Wang X and Sun Z: Abnormal
coagulation parameters are associated with poor prognosis in
patients with novel coronavirus pneumonia. J Thromb Haemost.
18:844–847. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y,
Huang TB, Zhang HY, Sun W and Wang Y: COVID-19 patients' clinical
characteristics, discharge rate, and fatality rate of
meta-analysis. J Med Virol. 92:577–583. 2010. View Article : Google Scholar
|
14
|
Zou Y, Guo H, Zhang Y, Zhang Z, Liu Y,
Wang J, Lu H and Qian Z: Analysis of coagulation parameters in
patients with COVID-19 in Shanghai, China. Biosci Trends. April
30–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lodigiani C, Iapichino G, Carenzo L,
Cecconi M, Ferrazzi P, Sebastian T, Kucher N, Studt JD, Sacco C,
Alexia B, et al: Venous and arterial thromboembolic complications
in COVID-19 patients admitted to an academic hospital in Milan,
Italy. Thromb Res. 191:9–14. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bikdeli B, Madhavan MV, Jimenez D, Chuich
T, Dreyfus I, Driggin E, Nigoghossian C, Ageno W, Madjid M, Guo Y,
et al Global COVID-19 Thrombosis Collaborative Group, Endorsed by
the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working
Group on Pulmonary Circulation and Right Ventricular Function:
COVID-19 and thrombotic or thromboembolic disease: implications for
prevention, antithrombotic therapy, and follow-up: JACC
State-of-the-Art Review. J Am Coll Cardiol. 75:2950–2973. 2020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Tang N, Bai H, Chen X, Gong J, Li D and
Sun Z: Anticoagulant treatment is associated with decreased
mortality in severe coronavirus disease 2019 patients with
coagulopathy. J Thromb Haemost. 18:182020.
|
18
|
Fogarty H, Townsend L, Ni Cheallaigh C,
Bergin C, Martin-Loeches I, Browne P, Bacon CL, Gaule R, Gillett A,
Byrne M, et al: More on COVID-19 coagulopathy in Caucasian
patients. Br J Haematol. 189:1060–1061. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Beun R, Kusadasi N, Sikma M, Westerink J
and Huisman A: Thromboembolic events and apparent heparin
resistance in patients infected with SARS-CoV-2. Int J Lab Hematol.
42(Suppl 1): 19–20. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ye Q, Wang B and Mao J: The pathogenesis
and treatment of the 'Cytokine Storm' in COVID-19. J Infect.
80:607–613. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Vaninov N: In the eye of the COVID-19
cytokine storm. Nat Rev Immunol. 20:2772020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Magro C, Mulvey JJ, Berlin D, Nuovo G,
Salvatore S, Harp J, Baxter-Stoltzfus A and Laurence J: Complement
associated microvascular injury and thrombosis in the pathogenesis
of severe COVID-19 infection: A report of five cases. Transl Res.
220:1–13. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Risitano AM, Mastellos DC, Huber-Lang M,
Yancopoulou D, Garlanda C, Ciceri F and Lambris JD: Complement as a
target in COVID-19? Nat Rev Immunol. 20:343–344. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Campbell CM and Kahwash R: Will complement
inhibition be the new target in treating COVID-19-related systemic
thrombosis? Circulation. 141:1739–1741. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mastaglio S, Ruggeri A, Risitano AM,
Angelillo P, Yancopoulou D, Mastellos DC, Huber-Lang M, Piemontese
S, Assanelli A, Garlanda C, et al: The first case of COVID-19
treated with the complement C3 inhibitor AMY-101. Clin Immunol.
215:1084502020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rodziewicz M and D'Cruz DP: An update on
the management of antiphospholipid syndrome. Ther Adv Musculoskelet
Dis. 12:1759720X209108552020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Million M, Bardin N, Bessis S, Nouiakh N,
Douliery C, Edouard S, Angelakis E, Bosseray A, Epaulard O, Branger
S, et al: Thrombosis and antiphospholipid antibody syndrome during
acute Q fever: A cross-sectional study. Medicine (Baltimore).
96:e75782017. View Article : Google Scholar
|
28
|
Mendoza-Pinto C, García-Carrasco M and
Cervera R: Role of infectious diseases in the antiphospholipid
syndrome (including its catastrophic variant). Curr Rheumatol Rep.
20:622018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Catoggio C, Alvarez-Uría A, Fernandez PL,
Cervera R and Espinosa G: Catastrophic antiphospholipid syndrome
triggered by fulminant disseminated herpes simplex infection in a
patient with systemic lupus erythematosus. Lupus. 21:1359–1361.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Garcia-Carrasco M, Mendoza-Pinto C,
Macias-Diaz S, Vazquez de Lara F, Etchegaray-Morales I,
Galvez-Romero JL, Mendez-Martinez S and Cervera R: The role of
infectious diseases in the catastrophic antiphospholipid syndrome.
Autoimmun Rev. 14:1066–1071. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gómez-Puerta JA and Cervera R: Diagnosis
and classification of the antiphospholipid syndrome. J Autoimmun.
48-49:20–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pengo V, Del Ross T, Ruffatti A, Bison E,
Cattini MG, Pontara E, Testa S, Legnani C, Pozzi N, Peterle D, et
al: Lupus anticoagulant identifies two distinct groups of patients
with different antibody patterns. Thromb Res. 172:172–178. 2018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Cervera R: Antiphospholipid syndrome.
Thromb Res. 151(Suppl 1): S43–S47. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Erkan D, Espinosa G and Cervera R:
Catastrophic antiphospholipid syndrome: Updated diagnostic
algorithms. Autoimmun Rev. 10:74–79. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Shi W, Krilis SA, Chong BH, Gordon S and
Chesterman CN: Prevalence of lupus anticoagulant and
anticardiolipin antibodies in a healthy population. Aust N Z J Med.
20:231–236. 1990. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fields RA, Toubbeh H, Searles RP and
Bankhurst AD: The prevalence of anticardiolipin antibodies in a
healthy elderly population and its association with antinuclear
antibodies. J Rheumatol. 16:623–625. 1989.PubMed/NCBI
|
37
|
Arvanitakis Z, Capuano AW, Brey R,
Fleischman DA, Arfanakis K, Buchman AS, Schneider JA, Levine SR and
Bennett DA: Antiphospholipid Antibodies: Cognitive and Motor
Decline, Neuroimaging and Neuropathology. Neuroepidemiology.
53:100–107. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ruiz-Irastorza G, Crowther M, Branch W and
Khamashta MA: Antiphospholipid syndrome. Lancet. 376:1498–1509.
2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Carmi O, Berla M, Shoenfeld Y and Levy Y:
Diagnosis and management of catastrophic antiphospholipid syndrome.
Expert Rev Hematol. 10:365–374. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rodríguez-Pintó I, Lozano M, Cid J,
Espinosa G and Cervera R: Plasma exchange in catastrophic
antiphospholipid syndrome. Presse Med. 48:347–353. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Islam MA, Alam F, Wong KK, Kamal MA and
Gan SH: Thrombotic management of antiphospholipid syndrome: towards
novel targeted therapies. Curr Vasc Pharmacol. 15:313–326. 2017.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Quinti I, Lougaris V, Milito C, Cinetto F,
Pecoraro A, Mezzaroma I, Mastroianni CM, Turriziani O, Bondioni MP,
Filippini M, et al: A possible role for B cells in COVID-19? Lesson
from patients with agammaglobulinemia. J Allergy Clin Immunol.
April 22–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
43
|
McKee DL, Sternberg A, Stange U, Laufer S
and Naujokat C: Candidate drugs against SARS-CoV-2 and COVID-19.
Pharmacol Res. 157:1048592020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chighizola CB, Andreoli L, Gerosa M,
Tincani A, Ruffatti A and Meroni PL: The treatment of
anti-phospholipid syndrome: a comprehensive clinical approach. J
Autoimmun. 90:1–27. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang Y, Xiao M, Zhang S, Xia P, Cao W,
Jiang W, Chen H, Ding X, Zhao H, Zhang H, et al: Coagulopathy and
antiphos-pholipid antibodies in patients with Covid-19. N Engl J
Med. 382:e382020. View Article : Google Scholar
|
46
|
Beyrouti R, Adams ME, Benjamin L, Cohen H,
Farmer SF, Goh YY, Humphries F, Jäger HR, Losseff NA, Perry RJ, et
al: Characteristics of ischaemic stroke associated with COVID-19.
Neurol Neurosurg Psychiatry. April 30–2020.Epub ahead of print.
View Article : Google Scholar
|
47
|
Zayet S, Klopfenstein T, Kovacs R,
Stancescu S and Hagenkötter B: Acute cerebral stroke with multiple
infarctions and COVID-19, France, 2020. Emerg Infect Dis.
26:262020. View Article : Google Scholar
|
48
|
Aubignat M and Godefroy O: COVID-19 and
ischemic stroke: Should we systematically look for lupus
anticoagulant and antiphospholipid antibodies? Rev Neurol (Paris).
176:505–506. 2020. View Article : Google Scholar
|
49
|
Harzallah I, Debliquis A and Drénou B:
Lupus anticoagulant is frequent in patients with Covid-19. J Thromb
Haemost. 2020.
|
50
|
Bowles L, Platton S, Yartey N, Dave M, Lee
K, Hart DP, MacDonald V, Green L, Sivapalaratnam S, Pasi KJ, et al:
Lupus anticoagulant and abnormal coagulation tests in patients with
Covid-19. N Engl J Med. May 5–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
51
|
Helms J, Tacquard C, Severac F,
Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R,
Schenck M, Fagot Gandet F, et al CRICS TRIGGERSEP Group (Clinical
Research in Intensive Care and Sepsis Trial Group for Global
Evaluation and Research in Sepsis): High risk of thrombosis in
patients with severe SARS-CoV-2 infection: A multicenter
prospective cohort study. Intensive Care Med. 46:1089–1098. 2020.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Pineton de Chambrun M, Frere C, Miyara M,
Amoura Z, Martin-Toutain I, Mathian A, Hekimian G and Combes A:
High frequency of antiphospholipid antibodies in critically-ill
COVID-19 patients: a link with hypercoagulability? J Intern Med.
June 12–2020.Epub ahead of print. View Article : Google Scholar
|
53
|
Hossri S, Shadi M, Hamarsha Z, Schneider R
and El-Sayegh D: Clinically significant anticardiolipin antibodies
associated with COVID-19. J Crit Care. 59:32–34. 2020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Galeano-Valle F, Oblitas CM,
Ferreiro-Mazón MM, Alonso-Muñoz J, Del Toro-Cervera J, di Natale M
and Demelo-Rodríguez P: Antiphospholipid antibodies are not
elevated in patients with severe COVID-19 pneumonia and venous
thromboembolism. Thromb Res. 192:113–115. 2020. View Article : Google Scholar : PubMed/NCBI
|
55
|
Chaudhary R, Pagali S, Garg J, Murad MH,
Wysokinski WE and McBane RD 2nd: DOACs versus VKAs in older adults
treated for acute venous thromboembolism: systematic review and
meta-analysis. J Am Geriatr Soc. May 22–2020.Epub ahead of print.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Marchandot B, Sattler L, Jesel L,
Matsushita K, Schini-Kerth V, Grunebaum L and Morel O: COVID-19
Related coagulopathy: A distinct entity? J Clin Med. 9:92020.
View Article : Google Scholar
|
57
|
Oxley TJ, Mocco J, Majidi S, Kellner CP,
Shoirah H, Singh IP, De Leacy RA, Shigematsu T, Ladner TR, Yaeger
KA, et al: Large-vessel stroke as a presenting feature of Covid-19
in the young. N Engl J Med. 382:e602020. View Article : Google Scholar : PubMed/NCBI
|
58
|
Plunk MA, Alaniz A, Olademehin OP,
Ellington TL, Shuford KL and Kane RR: Design and Catalyzed
Activation of Tak-242 Prodrugs for Localized Inhibition of
TLR4-Induced Inflammation. ACS Med Chem Lett. 11:141–146. 2020.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Stojanovic I, Cuzzocrea S, Mangano K,
Mazzon E, Miljkovic D, Wang M, Donia M, Al Abed Y, Kim J, Nicoletti
F, et al: In vitro, ex vivo and in vivo immunopharmacological
activities of the isoxazoline compound VGX-1027: Modulation of
cytokine synthesis and prevention of both organ-specific and
systemic autoimmune diseases in murine models. Clin Immunol.
123:311–323. 2007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Nicoletti F, Fagone P, Meroni P, McCubrey
J and Bendtzen K: mTOR as a multifunctional therapeutic target in
HIV infection. Drug Discov Today. 16:715–721. 2011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Fagone P, Ciurleo R, Lombardo SD,
Iacobello C, Palermo CI, Shoenfeld Y, Bendtzen K, Bramanti P and
Nicoletti F: Transcriptional landscape of SARS-CoV-2 infection
dismantles pathogenic pathways activated by the virus, proposes
unique sex-specific differences and predicts tailored therapeutic
strategies. Autoimmun Rev. 19:1025712020. View Article : Google Scholar : PubMed/NCBI
|
62
|
Nicoletti F, Lapenta C, Donati S, Spada M,
Ranazzi A, Cacopardo B, Mangano K, Belardelli F, Perno C and Aquaro
S: Inhibition of human immunodeficiency virus (HIV-1) infection in
human peripheral blood leucocytes-SCID reconstituted mice by
rapamycin. Clin Exp Immunol. 155:28–34. 2009. View Article : Google Scholar :
|
63
|
Maiese K: The mechanistic target of
rapamycin (mTOR): Novel considerations as an antiviral treatment
and possibilities for COVID-19. Curr Neurovasc Res. April
25–2020.Epub ahead of print. View Article : Google Scholar
|
64
|
Kolyada A, Lee CJ, De Biasio A and Beglova
N: A novel dimeric inhibitor targeting Beta2GPI in
Beta2GPI/antibody complexes implicated in antiphospholipid
syndrome. PLoS One. 5:e153452010. View Article : Google Scholar : PubMed/NCBI
|
65
|
Lee CJ, De Biasio A and Beglova N: Mode of
interaction between β2GPI and lipoprotein receptors suggests
mutually exclusive binding of β2GPI to the receptors and anionic
phospholipids. Structure. 18:366–376. 2010. View Article : Google Scholar : PubMed/NCBI
|
66
|
Lin F, Murphy R, White B, Kelly J,
Feighery C, Doyle R, Pittock S, Moroney J, Smith O, Livingstone W,
et al: Circulating levels of β2-glycoprotein I in thrombotic
disorders and in inflammation. Lupus. 15:87–93. 2006. View Article : Google Scholar
|
67
|
Kolyada A, Karageorgos I, Mahlawat P and
Beglova N: An A1-A1 mutant with improved binding and inhibition of
β2GPI/antibody complexes in antiphospholipid syndrome. FEBS J.
282:864–873. 2015. View Article : Google Scholar :
|
68
|
Kolyada A, Porter A and Beglova N:
Inhibition of thrombotic properties of persistent autoimmune
anti-β2GPI antibodies in the mouse model of antiphospholipid
syndrome. Blood. 123:1090–1097. 2014. View Article : Google Scholar :
|
69
|
Agostinis C, Durigutto P, Sblattero D,
Borghi MO, Grossi C, Guida F, Bulla R, Macor P, Pregnolato F,
Meroni PL, et al: A non-complement-fixing antibody to β2
glycoprotein I as a novel therapy for antiphospholipid syndrome.
Blood. 123:3478–3487. 2014. View Article : Google Scholar : PubMed/NCBI
|