Neuregulin‑1, a microvascular endothelial‑derived protein, protects against myocardial ischemia‑reperfusion injury (Review)
- Authors:
- Yuhao Lin
- Haiqiong Liu
- Xianbao Wang
-
Affiliations: Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China - Published online on: June 26, 2020 https://doi.org/10.3892/ijmm.2020.4662
- Pages: 925-935
This article is mentioned in:
Abstract
Chan SH, Hung CH, Shih JY, Chu PM, Cheng YH, Lin HC and Tsai KL: SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease. Redox Biol. 13:301–309. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ibáñez B, Heusch G, Ovize M and Van de Werf F: Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ and Chen Y: Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J Pineal Res. 64:2018. View Article : Google Scholar : PubMed/NCBI | |
Mendes-Ferreira P, De Keulenaer GW, Leite-Moreira AF and Brás-Silva C: Therapeutic potential of neuregulin-1 in cardiovascular disease. Drug Discov Today. 18:836–842. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rupert CE and Coulombe KL: The roles of neuregulin-1 in cardiac development, homeostasis, and disease. Biomarker Insights. 10(Suppl 1): S1–S9. 2015. | |
Liu YQ, Yang M, Duan CH, Su GB, Wang JH, Liu YF and Zhang J: Protective role of neuregulin-1 toward doxorubicin-induced myocardial toxicity. Genet Mol Res. 13:4627–4634. 2014. View Article : Google Scholar : PubMed/NCBI | |
Galindo CL, Kasasbeh E, Murphy A, Ryzhov S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y, et al: Anti-remodeling and anti-fibrotic effects of the neuregulin-1beta glial growth factor 2 in a large animal model of heart failure. J Am Heart Assoc. 3:e0007732014. View Article : Google Scholar | |
Miao J, Huang S, Su YR, Lenneman CA, Wright M, Harrell FE, Sawyer DB and Lenihan DJ: Effects of endogenous serum neuregulin-1β on morbidity and mortality in patients with heart failure and left ventricular systolic dysfunction. Biomarkers. 23:704–708. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chou CF and Ozaki M: In silico analysis of neuregulin 1 evolution in vertebrates. Biosci Rep. 30:267–275. 2010. View Article : Google Scholar | |
Kataria H, Alizadeh A and Karimi-Abdolrezaee S: Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol. 180:1016432019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Bates R, Yin DM, Shen C, Wang F, Su N, Kirov SA, Luo Y, Wang JZ, Xiong WC and Mei L: Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci. 31:8491–8501. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tan W, Wang Y, Gold B, Chen J, Dean M, Harrison PJ, Weinberger DR and Law AJ: Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J Biol Chem. 282:24343–24351. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Fan Q, Hou H and Yan R: Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem. 136:234–249. 2016. View Article : Google Scholar : | |
Zhang Z, Huang J, Shen Y and Li R: BACE1-dependent Neuregulin-1 signaling: An implication for schizophrenia. Front Mol Neurosci. 10:3022017. View Article : Google Scholar : PubMed/NCBI | |
Willem M: Proteolytic processing of Neuregulin-1. Brain Res Bull. 126:178–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP and Bousman CA: Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev. 68:387–409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nagano T, Namba H, Abe Y, Aoki H, Takei N and Nawa H: In vivo administration of epidermal growth factor and its homologue attenuates developmental maturation of functional excitatory synapses in cortical GABAergic neurons. Eur J Neurosci. 25:380–390. 2007. View Article : Google Scholar : PubMed/NCBI | |
Olayioye MA, Neve RM, Lane HA and Hynes NE: The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO J. 19:3159–3167. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schlessinger J: Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 110:669–672. 2002. View Article : Google Scholar : PubMed/NCBI | |
D'Uva G and Lauriola M: Towards the emerging crosstalk: ERBB family and steroid hormones. Semin Cell Dev Biol. 50:143–152. 2016. View Article : Google Scholar | |
Li KX, Lu YM, Xu ZH, Zhang J, Zhu JM, Zhang JM, Cao SX, Chen XJ, Chen Z, Luo JH, et al: Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat Neurosci. 15:267–273. 2011. View Article : Google Scholar : PubMed/NCBI | |
Falls D: Neuregulins: Functions, forms, and signaling strategies. Exp Cell Res. 284:14–30. 2003. View Article : Google Scholar : PubMed/NCBI | |
Odiete O, Hill MF and Sawyer DB: Neuregulin in cardiovascular development and disease. Circ Res. 111:1376–1385. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fang SJ, Wu XS, Han ZH, Zhang XX, Wang CM, Li XY, Lu LQ and Zhang JL: Neuregulin-1 preconditioning protects the heart against ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Chin Med J (Engl). 123:3597–3604. 2010. | |
Morano M, Angotti C, Tullio F, Gambarotta G, Penna C, Pagliaro P and Geuna S: Myocardial ischemia/reperfusion upregulates the transcription of the Neuregulin1 receptor ErbB3, but only postconditioning preserves protein translation: Role in oxidative stress. Int J Cardiol. 233:73–79. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R and Sawyer DB: Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem. 279:51141–51147. 2004. View Article : Google Scholar : PubMed/NCBI | |
Iivanainen E, Paatero I, Heikkinen SM, Junttila TT, Cao R, Klint P, Jaakkola PM, Cao Y and Elenius K: Intra- and extracellular signaling by endothelial neuregulin-1. Exp Cell Res. 313:2896–2909. 2007. View Article : Google Scholar : PubMed/NCBI | |
Griffiths HR, Gao D and Pararasa C: Redox regulation in metabolic programming and inflammation. Redox Biol. 12:50–57. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nahrendorf M, Pittet MJ and Swirski FK: Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 121:2437–2445. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vilahur G and Badimon L: Ischemia/reperfusion activates myocardial innate immune response: The key role of the toll-like receptor. Front Physiol. 5:4962014. View Article : Google Scholar | |
Hoesel B and Schmid JA: The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013. View Article : Google Scholar | |
Sun SC: Non-canonical NF-κB signaling pathway. Cell Res. 21:71–85. 2011. View Article : Google Scholar | |
Sun SC: The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Wang L, Wang X, Xiong Q, Wei Y, Dang S and Zhong L: Effect of neuregulin-1 on heart function and inflammatory mediators in rats with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 30:140–144. 2018.In Chinese. PubMed/NCBI | |
Simmons LJ, Surles-Zeigler MC, Li Y, Ford GD, Newman GD and Ford BD: Regulation of inflammatory responses by neureg-ulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J Neuroinflammation. 13:2372016. View Article : Google Scholar | |
Vermeulen Z, Hervent AS, Dugaucquier L, Vandekerckhove L, Rombouts M, Beyens M, Schrijvers DM, De Meyer GRY, Maudsley S, De Keulenaer GW and Segers VFM: Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. Am J Physiol Heart Circ Physiol. 313:H934–H945. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu MQ, Chen Z and Chen LX: Endoplasmic reticulum stress: A novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin. 37:425–443. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Wu X, Jie B, Zhang X, Zhang J, Xin Y and Guo Y: Neuregulin-1 protects myocardial cells against H2O2-induced apoptosis by regulating endoplasmic reticulum stress. Cell biochemistry and function. 32:464–469. 2014. View Article : Google Scholar | |
Fang SJ, Li PY, Wang CM, Xin Y, Lu WW, Zhang XX, Zuo S, Ma CS, Tang CS, Nie SP and Qi YF: Inhibition of endoplasmic reticulum stress by neuregulin-1 protects against myocardial ischemia/reperfusion injury. Peptides. 88:196–207. 2017. View Article : Google Scholar | |
Groenendyk J, Agellon LB and Michalak M: Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol. 75:49–67. 2013. View Article : Google Scholar | |
Wu H, Ye M, Yang J, Ding J, Yang J, Dong W and Wang X: Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cell Physiol Biochem. 35:2320–2332. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Jin Q, Li Y, Ma Q, Wang J, Li D, Zhou H and Chen Y: Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca2+] c/VDAC-[Ca2+]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperones. 23:101–113. 2018. View Article : Google Scholar | |
Zhang Y, Zhou H, Wu W, Shi C, Hu S, Yin T, Ma Q, Han T, Zhang Y, Tian F and Chen Y: Liraglutide protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury through the suppression of the SR-Ca(2+)-XO-ROS axis via activation of the GLP-1R/PI3K/Akt/survivin pathways. Free Radic Biol Med. 95:278–292. 2016. View Article : Google Scholar : PubMed/NCBI | |
Förstermann U and Sessa WC: Nitric oxide synthases: Regulation and function. Eur Heart J. 33:829–837. 837a–837d. 2012. View Article : Google Scholar : | |
Yu X, Ge L, Niu L, Lian X, Ma H and Pang L: The dual role of inducible nitric oxide synthase in myocardial ischemia/reperfu-sion injury: Friend or foe? Oxid Med Cell Longev. 2018:83648482018. View Article : Google Scholar | |
Brero A, Ramella R, Fitou A, Dati C, Alloatti G, Gallo MP and Levi R: Neuregulin-1beta1 rapidly modulates nitric oxide synthesis and calcium handling in rat cardiomyocytes. Cardiovasc Research. 88:443–452. 2010. View Article : Google Scholar | |
Cadenas S: ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 117:76–89. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lemmens K, Fransen P, Sys SU, Brutsaert DL and De Keulenaer GW: Neuregulin-1 induces a negative inotropic effect in cardiac muscle: Role of nitric oxide synthase. Circulation. 109:324–326. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ebner B, Lange SA, Eckert T, Wischniowski C, Ebner A, Braun-Dullaeus RC, Weinbrenner C, Wunderlich C, Simonis G and Strasser RH: Uncoupled eNOS annihilates neuregulin-1β-induced cardioprotection: A novel mechanism in pharmacological postconditioning in myocardial infarction. Mol Cell Biochem. 373:115–123. 2013. View Article : Google Scholar | |
Giraud MN, Fluck M, Zuppinger C and Suter TM: Expressional reprogramming of survival pathways in rat cardiocytes by neuregulin-1beta. J Appl Physiol (1985). 99:313–322. 2005. View Article : Google Scholar | |
Timolati F, Ott D, Pentassuglia L, Giraud MN, Perriard JC, Suter TM and Zuppinger C: Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol. 41:845–854. 2006. View Article : Google Scholar : PubMed/NCBI | |
Greer SN, Metcalf JL, Wang Y and Ohh M: The updated biology of hypoxia-inducible factor. EMBO J. 31:2448–2460. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zimna A and Kurpisz M: Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: Applications and therapies. Biomed Res Int. 2015:5494122015. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Xu B, Xuan H, Ge Y, Wang Y, Wang L, Huang J, Fu W, Michie SA and Dalman R: Hypoxia-inducible factor 1 in clinical and experimental aortic aneurysm disease. J Vasc Surg. 68:1538–1550.e2. 2018. View Article : Google Scholar | |
Movafagh S, Crook S and Vo K: Regulation of hypoxia-inducible factor-1a by reactive oxygen species: New developments in an old debate. J Cell Biochem. 116:696–703. 2015. View Article : Google Scholar | |
Wang J, Zhou J, Wang Y, Yang C, Fu M, Zhang J, Han X, Li Z, Hu K and Ge J: Qiliqiangxin protects against anoxic injury in cardiac microvascular endothelial cells via NRG-1/ErbB-PI3K/Akt/mTOR pathway. J Cell Mol Med. 21:1905–1914. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lim CS, Kiriakidis S, Sandison A, Paleolog EM and Davies AH: Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg. 58:219–230. 2013. View Article : Google Scholar : PubMed/NCBI | |
Humtsoe JO, Pham E, Louie RJ, Chan DA and Kramer RH: ErbB3 upregulation by the HNSCC 3D microenvironment modulates cell survival and growth. Oncogene. 35:1554–1564. 2016. View Article : Google Scholar | |
Karar J and Maity A: PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 4:512011. View Article : Google Scholar : PubMed/NCBI | |
Kozlov AV, Lancaster JR Jr, Meszaros AT and Weidinger A: Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 13:170–181. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu XM, Yang ZM and Liu XK: Fas/FasL induces myocardial cell apoptosis in myocardial ischemia-reperfusion rat model. Eur Rev Med Pharmaco. 21:2913–2918. 2017. | |
Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB and Michalak M: Biology of endoplasmic reticulum stress in the heart. Circ Res. 107:1185–1197. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang XX, Wu XS, Mi SH, Fang SJ, Liu S, Xin Y and Zhao QM: Neuregulin-1 promotes mitochondrial biogenesis, attenuates mitochondrial dysfunction, and prevents hypoxia/reoxygenation injury in neonatal cardiomyocytes. Cell Biochem Funct. Feb;10:2020.Epub ahead of print. | |
Wang X, Zhuo X, Gao J, Liu H, Lin F and Ma A: Neuregulin-1β partially improves cardiac function in volume-overload heart failure through regulation of abnormal calcium handling. Front Pharmacol. 10:6162019. View Article : Google Scholar | |
Badalzadeh R, Mokhtari B and Yavari R: Contribution of apoptosis in myocardial reperfusion injury and loss of cardio-protection in diabetes mellitus. J Physiol Sci. 65:201–215. 2015. View Article : Google Scholar : PubMed/NCBI | |
Orogo AM and Gustafsson AB: Cell death in the myocardium: My heart won't go on. IUBMB life. 65:651–656. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kleinbongard P, Schulz R and Heusch G: TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev. 16:49–69. 2011. View Article : Google Scholar | |
Rohrbach S, Muller-Werdan U, Werdan K, Koch S, Gellerich NF and Holtz J: Apoptosis-modulating interaction of the neuregulin/erbB pathway with anthracyclines in regulating BclxS and Bcl-xL in cardiomyocytes. J Mol Cell Cardiol. 38:485–493. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kuramochi Y, Lim CC, Guo X, Colucci WS, Liao R and Sawyer DB: Myocyte contractile activity modulates norepi-nephrine cytotoxicity and survival effects of neuregulin-1beta. Am J Physiol Cell Physiol. 286:C222–C229. 2004. View Article : Google Scholar | |
Fukazawa R, Miller TA, Kuramochi Y, Frantz S, Kim YD, Marchionni MA, Kelly RA and Sawyer DB: Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol. 35:1473–1479. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Undyala VV, Gottlieb RA, Mentzer RM Jr and Przyklenk K: Autophagy: Definition, molecular machinery, and potential role in myocardial ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther. 15:220–230. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aghaei M, Motallebnezhad M, Ghorghanlu S, Jabbari A, Enayati A, Rajaei M, Pourabouk M, Moradi A, Alizadeh AM and Khori V: Targeting autophagy in cardiac ischemia/reperfu-sion injury: A novel therapeutic strategy. J Cell Physiol. 234:16768–16778. 2019. View Article : Google Scholar : PubMed/NCBI | |
An T, Huang Y, Zhou Q, Wei BQ, Zhang RC, Yin SJ, Zou CH, Zhang YH and Zhang J: Neuregulin-1 attenuates doxorubicin-induced autophagy in neonatal rat cardiomyocytes. J Cardiovasc Pharmacol. 62:130–137. 2013. View Article : Google Scholar : PubMed/NCBI | |
Surviladze Z, Sterk RT, DeHaro SA and Ozbun MA: Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol. 87:2508–2517. 2013. View Article : Google Scholar : | |
Sanada S, Komuro I and Kitakaze M: Pathophysiology of myocardial reperfusion injury: Preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 301:H1723–H1741. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ and Yellon DM: The therapeutic potential of ischemic conditioning: An update. Nat Rev Cardiol. 8:619–629. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heusch G: Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr Physiol. 5:1123–1145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ and Yellon DM: Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 13:193–209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Heusch G: Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 116:674–699. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stokfisz K, Ledakowicz-Polak A, Zagorski M and Zielinska M: Ischaemic preconditioning-current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 62:307–316. 2017. View Article : Google Scholar : PubMed/NCBI | |
Diaz RJ and Wilson GJ: Studying ischemic preconditioning in isolated cardiomyocyte models. Cardiovasc Res. 70:286–296. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rossello X and Yellon DM: The RISK pathway and beyond. Basic Res Cardiol. 113:22018. View Article : Google Scholar | |
Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM and Schulz R; Working Group of Cellular Biology of Heart of European Society of Cardiology: Postconditioning and protection from reperfusion injury: Where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 87:406–423. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hao M, Zhu S, Hu L, Zhu H, Wu X and Li Q: Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the activation of the nNOS/AMPK/mTOR pathway. Int J Mol Sci. 18:6142017. View Article : Google Scholar : | |
Jivraj N, Liew F and Marber M: Ischaemic postconditioning: Cardiac protection after the event. Anaesthesia. 70:598–612. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bice JS and Baxter GF: Postconditioning signalling in the heart: Mechanisms and translatability. Br J Pharmacol. 172:1933–1946. 2015. View Article : Google Scholar : | |
Pilz PM, Hamza O, Gidlöf O, Gonçalves IF, Tretter EV, Trojanek S, Abraham D, Heber S, Haller PM, Podesser BK and Kiss A: Remote ischemic perconditioning attenuates adverse cardiac remodeling and preserves left ventricular function in a rat model of reperfused myocardial infarction. Int J Cardiol. 285:72–79. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Wang H, Liu X, Yu H, Zuo B, Song Z, Wang N, Huang W and Wang G: Pharmacological postconditioning with Neuregulin-1 mimics the cardioprotective effects of ischaemic postconditioning via ErbB4-dependent activation of reperfusion injury salvage kinase pathway. Mol Med. 24:392018. View Article : Google Scholar : PubMed/NCBI | |
Khanabdali R, Rosdah AA, Dusting GJ and Lim SY: Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochem Pharmacol. 113:1–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Lu K, Zhu J and Wang J: Stem cell therapy for ischemic heart diseases. Br Med Bull. 121:135–154. 2017. View Article : Google Scholar : PubMed/NCBI | |
Barzegar M, Kaur G, Gavins FNE, Wang Y, Boyer CJ and Alexander JS: Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res. 37:1014212019. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Yan X, Bian Y, Caggiano AO and Morgan JP: Improving murine embryonic stem cell differentiation into cardiomyocytes with neuregulin-1: Differential expression of microRNA. Am J Physiol Cell Physiol. 301:C21–C30. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B and Laflamme MA: Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res. 107:776–786. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Z and Huang J: Neuregulin-1 increases connexin-40 and connexin-45 expression in embryonic stem cell-derived cardio-myocytes. Appl Biochem Biotechnol. 174:483–493. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schulz R, Gorge PM, Gorbe A, Ferdinandy P, Lampe PD and Leybaert L: Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther. 153:90–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ummarino D: Heart failure: Recombinant neuregulin for HF treatment. Nat Rev Cardiol. 14:1282017.PubMed/NCBI | |
Cao Y, Tan YF, Wong YS, Liew MWJ and Venkatraman S: Recent advances in chitosan-based carriers for gene delivery. Mar Drugs. 17:3812019. View Article : Google Scholar : | |
Xiao J, Li B, Zheng Z, Wang M, Peng J, Li Y and Li Z: Therapeutic effects of neuregulin-1 gene transduction in rats with myocardial infarction. Coron Artery Dis. 23:460–468. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiao S and Shaw RM: Cardiomyocyte protein trafficking: Relevance to heart disease and opportunities for therapeutic intervention. Trends Cardiovasc Med. 25:379–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang ZV and Hill JA: Protein quality control and metabolism: Bidirectional control in the heart. Cell Metab. 21:215–226. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pascual-Gil S, Abizanda G, Iglesias E, Garbayo E, Prósper F and Blanco-Prieto MJ: NRG1 PLGA MP locally induce macrophage polarisation toward a regenerative phenotype in the heart after acute myocardial infarction. J Drug Target. 27:573–581. 2019. View Article : Google Scholar | |
Pascual-Gil S, Simon-Yarza T, Garbayo E, Prosper F and Blanco-Prieto MJ: Cytokine-loaded PLGA and PEG-PLGA microparticles showed similar heart regeneration in a rat myocardial infarction model. Int J Pharm. 523:531–533. 2017. View Article : Google Scholar | |
Kirabo A, Ryzhov S, Gupte M, Sengsayadeth S, Gumina RJ, Sawyer DB and Galindo CL: Neuregulin-1β induces proliferation, survival and paracrine signaling in normal human cardiac ventricular fibroblasts. J Mol Cell Cardiol. 105:59–69. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garbayo E, Gavira JJ, de Yebenes MG, Pelacho B, Abizanda G, Lana H, Blanco-Prieto MJ and Prosper F: Catheter-based intra-myocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci Rep. 6:259322016. View Article : Google Scholar | |
Díaz-Herráez P, Saludas L, Pascual-Gil S, Simón-Yarza T, Abizanda G, Prósper F, Garbayo E and Blanco-Prieto MJ: Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model. J Control Release. 249:23–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bhagra SK, Pettit S and Parameshwar J: Cardiac transplantation: Indications, eligibility and current outcomes. Heart. 105:252–260. 2019. View Article : Google Scholar | |
Liu X, Gu X, Li Z, Li X, Li H, Chang J, Chen P, Jin J, Xi B, Chen D, et al: Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol. 48:1438–1447. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X, Li T, Liu X, Xu Y, Li X and Zhou M: A Phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol. 55:1907–1914. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jabbour A, Gao L, Kwan J, Watson A, Sun L, Qiu MR, Liu X, Zhou MD, Graham RM, Hicks M and MacDonald PS: A recombinant human neuregulin-1 peptide improves preservation of the rodent heart after prolonged hypothermic storage. Transplantation. 91:961–967. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harvey RP, Wystub-Lis K, del Monte-Nieto G, Graham RM and Tzahor E: Cardiac regeneration therapies-targeting neuregulin 1 signalling. Heart Lung Circ. 25:4–7. 2016. View Article : Google Scholar | |
Caillaud K, Boisseau N, Ennequin G, Chavanelle V, Etienne M, Li X, Denis P, Dardevet D, Lacampagne A and Sirvent P: Neuregulin 1 improves glucose tolerance in adult and old rats. Diabetes Metab. 42:96–104. 2016. View Article : Google Scholar | |
Pentassuglia L, Heim P, Lebboukh S, Morandi C, Xu L and Brink M: Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes. Am J Physiol Endocrinol Metab. 310:E782–E794. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ennequin G, Boisseau N, Caillaud K, Chavanelle V, Gerbaix M, Metz L, Etienne M, Walrand S, Masgrau A, Guillet C, et al: Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats. J Physiol. 593:2665–2677. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ennequin G, Boisseau N, Caillaud K, Chavanelle V, Etienne M, Li X, Montaurier C and Sirvent P: Neuregulin 1 affects leptin levels, food intake and weight gain in normal-weight, but not obese, db/db mice. Diabetes Metab. 41:168–172. 2015. View Article : Google Scholar : PubMed/NCBI |