Gut microbiota metabolites as integral mediators in cardiovascular diseases (Review)
- Authors:
- Ying Zhu
- Xiaorong Shui
- Zheng Liang
- Zufeng Huang
- Yi Qi
- Yuan He
- Can Chen
- Hui Luo
- Wei Lei
-
Affiliations: Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Laboratory of Vascular Surgery, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China - Published online on: July 13, 2020 https://doi.org/10.3892/ijmm.2020.4674
- Pages: 936-948
-
Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
GBD 2015 Mortality and Causes of Death Collaborators: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the global burden of disease study 2015. Lancet. 388:1459–1544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Drouin N, Kloots T, Schappler J, Rudaz S, Kohler I, Harms A, Lindenburg PW and Hankemeier T: Electromembrane extraction of highly polar compounds: Analysis of cardiovascular biomarkers in plasma. Metabolites. 10:42019. View Article : Google Scholar | |
Andersson C and Vasan RS: Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol. 15:230–240. 2018. View Article : Google Scholar | |
Maqbool M, Cooper ME and Jandeleit-Dahm KAM: Cardiovascular disease and diabetic kidney disease. Semin Nephrol. 38:217–232. 2018. View Article : Google Scholar : PubMed/NCBI | |
Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD and Wierzbicki AS: Familial hypercholesterolaemia. Nat Rev Dis Primers. 3:170932017. View Article : Google Scholar : PubMed/NCBI | |
Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G and Razvi S: Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 14:39–55. 2017. View Article : Google Scholar | |
Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF and Gordon JI: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 101:15718–15723. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al: Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 165:111–124. 2016. View Article : Google Scholar : PubMed/NCBI | |
Perez NB, Dorsen C and Squires A: Dysbiosis of the gut micro-biome: A concept analysis. J Holist Nurs. 8980101198795272019.Epub ahead of print. | |
Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z, Jia X, Kirsop J, Haag B, Lang JM, DiDonato JA, et al: Microbial transplantation with human gut commensals containing CutCis sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ Res. 123:1164–1176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fu J and Kuipers F: Systems genetics approach reveals cross-talk between bile acids and intestinal microbes. PLoS Genet. 15:e10083072019. View Article : Google Scholar : PubMed/NCBI | |
Ohira H, Tsutsui W and Fujioka Y: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb. 24:660–672. 2017. View Article : Google Scholar : PubMed/NCBI | |
Devlin AS, Marcobal A, Dodd D, Nayfach S, Plummer N, Meyer T, Pollard KS, Sonnenburg JL and Fischbach MA: Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host Microbe. 20:709–715. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao C, Chen BH, Joehanes R, Otlu B, Zhang X, Liu C, Huan T, Tastan O, Cupples LA, Meigs JB, et al: Integromic analysis of genetic variation and gene expression identifies networks for cardiovascular disease phenotypes. Circulation. 131:536–549. 2015. View Article : Google Scholar : | |
Zhang WQ, Zhao TT, Gui DK, Gao CL, Gu JL, Gan WJ, Huang W, Xu Y, Zhou H, Chen WN, et al: Sodium butyrate improves liver glycogen metabolism in Type 2 diabetes mellitus. J Agric Food Chem. 67:7694–7705. 2019. View Article : Google Scholar : PubMed/NCBI | |
Odegaard AO, Koh WP, Gross MD, Yuan JM and Pereira MA: Combined lifestyle factors and cardiovascular disease mortality in Chinese men and women: The Singapore Chinese health study. Circulation. 124:2847–2854. 2011. View Article : Google Scholar : PubMed/NCBI | |
Macfarlane GT and Macfarlane S: Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 95:50–60. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang WH, Kitai T and Hazen SL: Gut microbiota in cardiovascular health and disease. Circ Res. 120:1183–1196. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lam V, Su J, Hsu A, Gross GJ, Salzman NH and Baker JE: Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One. 11:e01608402016. View Article : Google Scholar : PubMed/NCBI | |
Caro-Gomez E, Sierra JA, Escobar JS, Alvarez-Quintero R, Naranjo M, Medina S, Velasquez-Mejia EP, Tabares-Guevara JH, Jaramillo JC, Leon-Varela YM, et al: Green coffee extract improves cardiometabolic parameters and modulates gut micro-biota in High-Fat-Diet-Fed ApoE−/− Mice. Nutrients. 11:4972019. View Article : Google Scholar | |
Tran HQ, Ley RE, Gewirtz AT and Chassaing B: Flagellin-elicited adaptive immunity suppresses flagellated microbiota and vaccinates against chronic inflammatory diseases. Nat Commun. 10:56502019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al: Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 163:1585–1595. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grabherr F, Grander C, Effenberger M, Adolph TE and Tilg H: Gut dysfunction and non-alcoholic fatty liver disease. Front Endocrinol (Lausanne). 10:6112019. View Article : Google Scholar | |
Ramirez-Perez O, Cruz-Ramon V, Chinchilla-Lopez P and Mendez-Sanchez N: The role of the gut microbiota in bile acid metabolism. Ann Hepato. 16(Suppl. 1: S3-105): S21–S20. 2017. View Article : Google Scholar | |
Chen H, Peng L, Perez de Nanclares M, Trudeau MP, Yao D, Cheng Z, Urriola PE, Mydland LT, Shurson GC, Overland M and Chen C: Identification of sinapine-derived choline from a rapeseed diet as a source of serum Trimethylamine N-Oxide in pigs. J Agric Food Chem. 67:7748–7754. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 472:57–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ufnal M, Zadlo A and Ostaszewski R: TMAO: A small molecule of great expectations. Nutrition. 31:1317–1323. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 19:576–585. 2013. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, et al: A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature. 386:292–296. 1997. View Article : Google Scholar : PubMed/NCBI | |
Brown JM and Hazen SL: The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu Rev Med. 66:343–359. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, Windecker S, Rodondi N, Nanchen D, Muller O, et al: Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: A prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 38:814–824. 2017.PubMed/NCBI | |
Liu TX, Niu HT and Zhang SY: Intestinal microbiota metabolism and atherosclerosis. Chin Med J (Engl). 128:2805–2811. 2015. View Article : Google Scholar | |
Ott SJ, El Mokhtari NE, Musfeldt M, Hellmig S, Freitag S, Rehman A, Kuhbacher T, Nikolaus S, Namsolleck P, Blaut M, et al: Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 113:929–937. 2006. View Article : Google Scholar : PubMed/NCBI | |
Winther SA, Ollgaard JC, Tofte N, Tarnow L, Wang Z, Ahluwalia TS, Jorsal A, Theilade S, Parving HH, Hansen TW, et al: Utility of plasma concentration of Trimethylamine N-Oxide in predicting cardiovascular and renal complications in individuals with type 1 diabetes. Diabetes Care. 42:1512–1520. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Geng J, Zhao J, Ni Q, Zhao C, Zheng Y, Chen X and Wang L: Trimethylamine N-Oxide exacerbates cardiac fibrosis via activating the NLRP3 inflammasome. Front Physiol. 10:8662019. View Article : Google Scholar : PubMed/NCBI | |
Shepshelovich J, Goldstein-Magal L, Globerson A, Yen PM, Rotman-Pikielny P and Hirschberg K: Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin. J Cell Sci. 118(Pt 8): 1577–1586. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, Schell M, Sandoval-Espinola WJ, Tao J, Sha B, et al: Trimethylamine N-Oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 30:1141–1151.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma G, Pan B, Chen Y, Guo C, Zhao M, Zheng L and Chen B: Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci Rep. 37:BSR201602442017. View Article : Google Scholar : PubMed/NCBI | |
Shiffka SJ, Kane MA and Swaan PW: Planar bile acids in health and disease. Biochim Biophys Acta Biomembr. 1859:2269–2276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chiang JY: Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocr Rev. 23:443–463. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lefebvre P, Cariou B, Lien F, Kuipers F and Staels B: Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 89:147–191. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hoving LR, Katiraei S, Heijink M, Pronk A, van der Wee-Pals L, Streefland T, Giera M, Willems van Dijk K and van Harmelen V: Dietary mannan oligosaccharides modulate gut microbiota, increase fecal bile acid excretion, and decrease plasma cholesterol and atherosclerosis development. Mol Nutr Food Res. 62:e17009422018. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Pang Y, Wang X, Wu Q, Liu H, Liu B, Liu G, Ye M, Kong W and Jiang C: Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharm Sin B. 9:702–710. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tsuei J, Chau T, Mills D and Wan YJ: Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med (Maywood). 239:1489–1504. 2014. View Article : Google Scholar | |
Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA and Sonnenburg JL: A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 551:648–652. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jia ET, Liu ZY, Pan M, Lu JF and Ge QY: Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B. 20:781–792. 2019. View Article : Google Scholar : PubMed/NCBI | |
Merritt ME and Donaldson JR: Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol. 58(Pt 12): 1533–1541. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Yang X, Yuan P, Yang J, Wang P, Zhong H, Zhang X, Che L, Feng B, Li J, et al: Undernutrition shapes the gut microbiota and bile acid profile in association with altered gut-liver FXR signaling in weaning pigs. J Agric Food Chem. 67:3691–3701. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Zhang Y, Liu Y, Wang X, Guo Z, Zhang Y, Liang X and Lai W: Effects of cholic acid on blood pressure and production of vascular aldosterone and corticosterone. Steroids. 64:291–295. 1999. View Article : Google Scholar : PubMed/NCBI | |
Valdivia C, Carvajal CA, Campino C, Allende F, Martinez-Aguayo A, Baudrand R, Vecchiola A, Lagos CF, Tapia-Castillo A, Fuentes CA, et al: Citosine-adenine-repeat microsatellite of 11β-hydroxysteroid dehydrogenase 2 gene in hypertensive children. Am J Hypertens. 29:25–32. 2016. View Article : Google Scholar | |
Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Li H, Wang R, Tang J, Huang T, et al: Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut. 68:1417–1429. 2019. View Article : Google Scholar : PubMed/NCBI | |
Charach G, Karniel E, Novikov I, Galin L, Vons S, Grosskopf I and Charach L: Reduced bile acid excretion is an independent risk factor for stroke and mortality: A prospective follow-up study. Atherosclerosis. 293:79–85. 2020. View Article : Google Scholar | |
Fedorova OV, Zernetkina VI, Shilova VY, Grigorova YN, Juhasz O, Wei W, Marshall CA, Lakatta EG and Bagrov AY: Synthesis of an Endogenous steroidal Na Pump inhibitor mari-nobufagenin, implicated in human cardiovascular diseases, is initiated by CYP27A1 via Bile Acid pathway. Circ Cardiovasc Genet. 8:736–745. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rainer PP, Primessnig U, Harenkamp S, Doleschal B, Wallner M, Fauler G, Stojakovic T, Wachter R, Yates A, Groschner K, et al: Bile acids induce arrhythmias in human atrial myocardium-implications for altered serum bile acid composition in patients with atrial fibrillation. Heart. 99:1685–1692. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pu J, Yuan A, Shan P, Gao E, Wang X, Wang Y, Lau WB, Koch W, Ma XL and He B: Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur Heart J. 34:1834–1845. 2013. View Article : Google Scholar : | |
Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang JN, Zhu JD, Zhang QY and Mi MT: Resveratrol attenuates Trimethylamine-N-Oxide (TMAO)-Induced atherosclerosis by regulating TMAO Synthesis and bile acid metabolism via remodeling of the Gut microbiota. mBio. 7:e02210–15. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG and Olefsky JM: A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem. 282:35279–35292. 2007. View Article : Google Scholar : PubMed/NCBI | |
Calderon-Perez L, Gosalbes MJ, Yuste S, Valls RM, Pedret A, Llaurado E, Jimenez-Hernandez N, Artacho A, Pla-Paga L, Companys J, et al: Gut metagenomic and short chain fatty acids signature in hypertension: A cross-sectional study. Sci Rep. 10:64362020. View Article : Google Scholar : PubMed/NCBI | |
Morrison DJ and Preston T: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 7:189–200. 2016. View Article : Google Scholar : PubMed/NCBI | |
Manrique Vergara D and González Sánchez ME: Short chain fatty acids (butyric acid) and intestinal diseases. Nutr Hosp. 34(Suppl 4): S58–S61. 2017.In Spanish. | |
Sun M, Wu W, Liu Z and Cong Y: Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol. 52:1–8. 2017. View Article : Google Scholar | |
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN and Garrett WS: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 341:569–573. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, et al: Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 5:142017. View Article : Google Scholar : PubMed/NCBI | |
Le B, Bůžková P, Robbins JA, Fink HA, Raiford M, Isales CM, Shikany JM, Coughlin SS and Carbone LD: The association of aromatic amino acids with incident hip fracture, aBMD, and body composition from the cardiovascular health study. Calcif Tissue Int. 105:161–172. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tessari P, Lante A and Mosca G: Essential amino acids: Master regulators of nutrition and environmental footprint? Sci Rep. 6:260742016. View Article : Google Scholar : PubMed/NCBI | |
Fernstrom JD and Fernstrom MH: Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 137(6 Suppl 1): 1539S–1547S; discussion 1548S. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shishehbor MH, Aviles RJ, Brennan ML, Fu X, Goormastic M, Pearce GL, Gokce N, Keaney JF Jr, Penn MS, Sprecher DL, et al: Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA. 289:1675–1680. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thomson L: 3-nitrotyrosine modified proteins in atherosclerosis. Dis Markers. 2015:7082822015. View Article : Google Scholar : PubMed/NCBI | |
Haase S, Haghikia A, Wilck N, Müller DN and Linker RA: Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 154:230–238. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brawner KM, Yeramilli VA, Duck LW, Van Der Pol W, Smythies LE, Morrow CD, Elson CO and Martin CA: Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function. Sci Rep. 9:147242019. View Article : Google Scholar : PubMed/NCBI | |
Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D'Angelo C, Massi-Benedetti C, Fallarino F, et al: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 39:372–385. 2013. View Article : Google Scholar : PubMed/NCBI | |
Metghalchi S, Ponnuswamy P, Simon T, Haddad Y, Laurans L, Clément M, Dalloz M, Romain M, Esposito B, Koropoulis V, et al: Indoleamine 2,3-dioxygenase fine-tunes immune homeostasis in atherosclerosis and colitis through repression of interleukin-10 production. Cell Metab. 22:460–471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Laurans L, Venteclef N, Haddad Y, Chajadine M, Alzaid F, Metghalchi S, Sovran B, Denis RGP, Dairou J, Cardellini M, et al: Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med. 24:1113–1120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, et al: CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 22:598–605. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hoyles L, Fernández-Real JM, Federici M, Serino M, Abbott J, Charpentier J, Heymes C, Luque JL, Anthony E, Barton RH, et al: Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med. 24:1070–1080. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, Mimura I, Morita H, Sugiyama D, Nishikawa H, et al: Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 128:2083–2088. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moludi J, Maleki V, Jafari-Vayghyan H, Vaghef-Mehrabany E and Alizadeh M: Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics. Clin Exp Pharmacol Physiol. 47:927–939. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, Wagner MA, Bennett BJ, Li L, DiDonato JA, et al: Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 290:5647–5660. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu F, Liu F, Zhou Q, Hu X and Zhang Y: Effects of grape pomace and seed polyphenol extracts on the recovery of gut microbiota after antibiotic treatment in high-fat diet-fed mice. Food Sci Nutr. 7:2897–2906. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Song L, Zeng B, Liu B, Qiu Y, Qu H, Zheng Y, Long M, Zhou H, Wang Y, et al: Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine. 44:665–674. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wan JJ, Lin CH, Ren ED, Su Y and Zhu WY: Effects of early intervention with maternal fecal bacteria and antibiotics on liver metabolome and transcription in neonatal pigs. Front Physiol. 10:1712019. View Article : Google Scholar : PubMed/NCBI | |
Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA and Solas M: Implication of trimethylamine N-Oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients. 10:13982018. View Article : Google Scholar : | |
Queipo-Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, Casanueva F and Tinahones FJ: Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 8:e654652013. View Article : Google Scholar : PubMed/NCBI | |
Roy Le T, Lécuyer E, Chassaing B, Rhimi M, Lhomme M, Boudebbouze S, Ichou F, Haro Barceló J, Huby T, Guerin M, et al: The intestinal microbiota regulates host cholesterol homeostasis. BMC Biol. 17:942019. View Article : Google Scholar | |
Heymsfield SB and Wadden TA: Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 376:254–266. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guirro M, Costa A, Gual-Grau A, Herrero P, Torrell H, Canela N and Arola L: Effects from diet-induced gut microbiota dysbiosis and obesity can be ameliorated by fecal microbiota transplantation: A multiomics approach. PLoS One. 14:e02181432019. View Article : Google Scholar : PubMed/NCBI | |
Enright EF, Joyce SA, Gahan CG and Griffin BT: Impact of gut microbiota-mediated bile acid metabolism on the solubilization capacity of bile salt micelles and drug solubility. Mol Pharm. 14:1251–1263. 2017. View Article : Google Scholar : PubMed/NCBI | |
Langlands SJ, Hopkins MJ, Coleman N and Cummings JH: Prebiotic carbohydrates modify the mucosa associated micro-flora of the human large bowel. Gut. 53:1610–1616. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, et al: Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 11:506–514. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gallo A, Passaro G, Gasbarrini A, Landolfi R and Montalto M: Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate. World J Gastroenterol. 22:7186–7202. 2016. View Article : Google Scholar : PubMed/NCBI | |
Quigley EM: Prebiotics and probiotics: Their role in the management of gastrointestinal disorders in adults. Nutr Clin Pract. 27:195–200. 2012. View Article : Google Scholar | |
Mozaffarian D: Dairy foods, obesity, and metabolic health: The role of the food matrix compared with single nutrients. Adv Nutr. 10:917S–923S. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Liu M, Zhang P, Fan S, Huang J, Yu S, Zhang C and Li H: Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut micro-biota and bile acid metabolism. Nutrition. 65:50–59. 2019. View Article : Google Scholar : PubMed/NCBI | |
Francavilla G, Abrignani MG, Braschi A, Sciacca R, Francavilla VC, Caracciolo MM, Renda N, Riccio C, Scaglione A and Braschi G: Physical exercise and sport activities in patients with and without coronary heart disease. Monaldi Arch Chest Dis. 68:87–95. 2007.In Italian. PubMed/NCBI | |
Cheng YJ, Zhao XJ, Zeng W, Xu MC, Ma YC and Wang M: Effect of intradialytic exercise on physical performance and cardiovascular risk factors in patients receiving maintenance hemodialysis: A pilot and feasibility study. Blood Purif. 1–10. 2019.Epub ahead of print. | |
Codella R, Luzi L and Terruzzi I: Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis. 50:331–341. 2018. View Article : Google Scholar | |
Chen J, Guo Y, Gui Y and Xu D: Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids Health Dis. 17:172018. View Article : Google Scholar : PubMed/NCBI | |
Ito S: High-intensity interval training for health benefits and care of cardiac diseases-The key to an efficient exercise protocol. World J Cardiol. 11:171–188. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang Y and Cai Y: Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies. Clin Res Hepatol Gastroenterol. 42:110–117. 2018. View Article : Google Scholar | |
Petriz BA, Castro AP, Almeida JA, Gomes CP, Fernandes GR, Kruger RH, Pereira RW and Franco OL: Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics. 15:5112014. View Article : Google Scholar : PubMed/NCBI | |
Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, Buurman WA, de Vos WM and Rensen SS: Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring). 21:E607–E615. 2013. View Article : Google Scholar | |
Denou E, Marcinko K, Surette MG, Steinberg GR and Schertzer JD: High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut micro-biota during diet-induced obesity. Am J Physiol Endocrinol Metab. 310:E982–E993. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hsu YJ, Chiu CC, Li YP, Huang WC, Huang YT, Huang CC and Chuang HL: Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 29:552–558. 2015. View Article : Google Scholar | |
Starkie R, Ostrowski SR, Jauffred S, Febbraio M and Pedersen BK: Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 17:884–886. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pedersen BK and Saltin B: Exercise as medicine-evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 25(Suppl 3): S1–S72. 2015. View Article : Google Scholar | |
Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC and Hu FB: Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation. 119:1093–1100. 2009. View Article : Google Scholar : PubMed/NCBI | |
Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH, Novotny JA and Baer DJ: Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial. J Nutr. 148:861–867. 2018. View Article : Google Scholar : PubMed/NCBI | |
Psaltopoulou T, Hatzis G, Papageorgiou N, Androulakis E, Briasoulis A and Tousoulis D: Socioeconomic status and risk factors for cardiovascular disease: Impact of dietary mediators. Hellenic J Cardiol. 58:32–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tindall AM, Mclimans CJ, Petersen KS, Kris-Etherton PM and Lamendella R: Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. J Nutr. 150:806–817. 2020. View Article : Google Scholar : |