Alteration of enzymes and their application to nucleic acid amplification (Review)
- Authors:
- Kiyoshi Yasukawa
- Itaru Yanagihara
- Shinsuke Fujiwara
-
Affiliations: Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606‑8502, Japan, Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Osaka 594‑1101, Japan, Department of Bioscience, School of Science and Technology, Kwansei‑Gakuin University, Sanda, Hyogo 669‑1337, Japan - Published online on: September 15, 2020 https://doi.org/10.3892/ijmm.2020.4726
- Pages: 1633-1643
-
Copyright: © Yasukawa et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Seki M, Kim CK, Hayakawa S and Mitarai S: Recent advances in tuberculosis diagnostics in resource-limited settings. Eur J Clin Microbiol Infect Dis. 37:1405–1410. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Chang L and Wang L: Nucleic acid testing and molecular characterization of HIV infections. Eur J Clin Microbiol Infect Dis. 38:829–842. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mullis KB and Faloona FA: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155:335–350. 1987. View Article : Google Scholar : PubMed/NCBI | |
Kievits T, van Gemen B, van Strijp D, Schkkink P, Dircks M, Adriaanse H, Malek L, Sooknanan R and Lens P: NASBA isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods. 35:273–286. 1991. View Article : Google Scholar : PubMed/NCBI | |
Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG and Malinowski DP: Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 20:1691–1696. 1992. View Article : Google Scholar : PubMed/NCBI | |
Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC and Ward DC: Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 19:225–232. 1998. View Article : Google Scholar : PubMed/NCBI | |
Vincent M, Xu Y and Kong H: Helicase-dependent isothermal DNA amplification. EMBO Rep. 5:795–800. 2004. View Article : Google Scholar : PubMed/NCBI | |
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S and Sintim HO: Isothermal amplified detection of DNA and RNA. Mol Biosyst. 10:970–1003. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chien A, Edgar DB and Trela JM: Deoxyribonucleic acid polymerase from the extreme thermophile. Thermus aquaticus J Bacteriol. 127:1550–1557. 1976. View Article : Google Scholar | |
Pavlov AR, Pavlova NV, Kozyavkin SA and Slesarev AI: Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol. 22:253–260. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tabor S and Richardson CC: A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy-and dideoxyribonucleotides. Proc Natl Acad Sci USA. 92:6339–6343. 1995. View Article : Google Scholar | |
Pavlov AR, Belova GI, Kozyavkin SA and Slesarev AI: Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases. Proc Natl Acad Sci USA. 99:13510–13515. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mallet F, Oriol G, Mary C, Verrier B and Mandrand B: Continuous RT-PCR using AMV-RT and Taq DNA polymerase: Characterization and comparison to uncoupled procedures. Biotechniques. 18:678–687. 1995.PubMed/NCBI | |
Kimmel AR and Berger SL: Preparation of cDNA and the generation of cDNA libraries: Overview. Methods Enzymol. 152:307–316. 1987. View Article : Google Scholar : PubMed/NCBI | |
Georgiadis MM, Jessen SM, Ogata CM, Telesnitsky A, Goff SP and Hendrickson WA: Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase. Structure. 3:879–892. 1995. View Article : Google Scholar : PubMed/NCBI | |
Das D and Georgiadis MM: The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. 12:819–829. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yasukawa K, Nemoto D and Inouye K: Comparison of the thermal stabilities of reverse transcriptases from avian myeloblastosis virus and Moloney murine leukaemia virus. J Biochem. 143:261–268. 2008. View Article : Google Scholar | |
Kotewicz ML, Sampson CM, D'Alessio JM and Gerard GF: Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. 16:265–277. 1988. View Article : Google Scholar : PubMed/NCBI | |
Gerard GF, Potter RJ, Smith MD, Rosenthal K, Dhariwal G, Lee J and Chatterjee DK: The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. 30:3118–3129. 2002. View Article : Google Scholar : PubMed/NCBI | |
Mizuno M, Yasukawa K and Inouye K: Insight into the mechanism of the stabilization of Moloney murine leukaemia virus reverse transcriptase by eliminating RNase H activity. Biosci Biotechnol Biochem. 74:440–442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yasukawa K, Mizuno M, Konishi A and Inouye K: Increase in thermal stability of Moloney murine leukaemia virus reverse transcriptase by site-directed mutagenesis. J Biotechnol. 150:299–306. 2010. View Article : Google Scholar : PubMed/NCBI | |
Konishi A, Ma X and Yasukawa K: Stabilization of Moloney murine leukemia virus reverse transcriptase by site-directed mutagenesis of the surface residue Val433. Biosci Biotechnol Biochem. 78:147–150. 2014. View Article : Google Scholar | |
Baba M, Kakue R, Leucht C, Rasor P, Walch H, Ladiges D, Bell C, Kojima K, Takita T and Yasukawa K: Further increase in thermostability of Moloney murine leukemia virus reverse transcriptase by mutational combination. Protein Eng Des Sel. 30:551–557. 2017. View Article : Google Scholar : PubMed/NCBI | |
Arezi B and Hogrefe H: Novel mutations in Moloney murine leukemia virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. 37:473–481. 2009. View Article : Google Scholar : | |
Baranauskas A, Paliksa S, Alzbutas G, Vaitkevicius M, Lubiene J, Letukiene V, Burinskas S, Sasnauskas G and Skirgaila R: Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. 25:657–668. 2012. View Article : Google Scholar : PubMed/NCBI | |
Katano Y, Li T, Baba M, Nakamura M, Ito M, Kojima K, Takita T and Yasukawa K: Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system. Biosci Biotechnol Biochem. 81:2339–2345. 2017. View Article : Google Scholar : PubMed/NCBI | |
Konishi A, Nemoto D, Yasukawa K and Inouye K: Comparison of the thermal stabilities of the αβ heterodimer and the α subunit of avian myeloblastosis virus reverse transcriptase. Biosci Biotechnol Biochem. 75:1618–1620. 2011. View Article : Google Scholar | |
Konishi A, Yasukawa K and Inouye K: Improving the thermal stability of avian myeloblastosis virus reverse transcriptase α-subunit by site-directed mutagenesis. Biotechnol Lett. 34:1209–1215. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yasukawa K, Agata N and Inouye K: Detection of cesA mRNA from Bacillus cereus by RNA-specific amplification. Enzyme Microb Technol. 46:391–396. 2009. View Article : Google Scholar | |
Okano H, Katano Y, Baba M, Fujiwara A, Hidese R, Fujiwara S, Yanagihara I, Hayashi T, Kojima K, Takita T and Yasukawa K: Enhanced detection of RNA by MMLV reverse transcriptase coupled with thermostable DNA polymerase and DNA/RNA helicase. Enzyme. Microb Technol. 96:111–120. 2017. View Article : Google Scholar | |
Baase WA, Liu L, Tronrud DF and Matthews BW: Lessons from the lysozyme of phage T4. Protein Sci. 19:631–641. 2010. View Article : Google Scholar : PubMed/NCBI | |
Astatke M, Ng K, Grindley ND and Joyce CM: A single side-chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc Natl Acad Sci USA. 95:3402–3407. 1998. View Article : Google Scholar | |
Gardner AF and Jack WE: Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res. 27:2545–2553. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lin TC, Wang CX, Joyce CM and Konigsberg WH: 3′-5′ Exonucleolytic activity of DNA polymerases: Structural features that allow kinetic discrimination between ribo- and deoxyribo-nucleotide residues. Biochemistry. 40:8749–8755. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lam WC, Thompson EH, Potapova O, Sun XC, Joyce CM and Millar DP: 3′-5′ Exonuclease of Klenow fragment: Role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting. Biochemistry. 41:3943–3951. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shandilya H, Griffiths K, Flynn EK, Astatke M, Shih PJ, Lee JE, Gerard GF, Gibbs MD and Bergquist PL: Thermophilic bacterial DNA polymerases with reverse-transcriptase activity. Extremophiles. 8:243–251. 2004. View Article : Google Scholar : PubMed/NCBI | |
Myers TW and Gelfand DH: Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry. 30:7661–7666. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ong JL, Loakes D, Jaroslawski S, Too K and Holliger P: Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide. J Mol Biol. 361:537–550. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kranaster R, Drum M, Engel N, Weidmann M, Hufert FT and Marx A: One-step RNA pathogen detection with reverse tran-scriptase activity of a mutated thermostable Thermus aquaticus DNA polymerase. Biotechnol J. 5:224–231. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jozwiakowski SK and Connolly BA: A modified family-B archaeal DNA polymerase with reverse transcriptase activity. Chembiochem. 12:35–37. 2011. View Article : Google Scholar | |
Schönbrunner NJ, Fiss EH, Budker O, Stoffel S, Sigua CL, Gelfand DH and Myers TW: Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3′-5′ exonuclease activity. Biochemistry. 45:12786–12795. 2006. View Article : Google Scholar | |
Sano S, Yamada Y, Shinkawa T, Kato S, Okada T, Higashibata H and Fujiwara S: Mutations to create thermostable reverse transcriptase with bacterial family A DNA polymerase from Thermotoga petrophila K4. J Biosci Bioeng. 113:315–321. 2012. View Article : Google Scholar | |
Cline J, Braman JC and Hogrefe HH: PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24:3546–3551. 1996. View Article : Google Scholar : PubMed/NCBI | |
Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M and Imanaka T: Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol. 63:4504–4510. 1997. View Article : Google Scholar : PubMed/NCBI | |
Firbank SJ, Wardle J, Heslop P, Lewis RJ and Connolly BA: Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography. J Mol Biol. 381:529–539. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ellefson JW, Gollihar J, Shroff R, Shivram H, Iyer VR and Ellington AD: Synthetic evolutionary origin of a proofreading reverse transcriptase. Science. 352:1590–1593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Okano H, Baba M, Kawato K, Hidese R, Yanagihara I, Kojima K, Takita T, Fujiwara S and Yasukawa K: High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies. J Biosci Bioeng. 125:275–281. 2018. View Article : Google Scholar | |
Singleton MR, Dillingham MS and Wigley DB: Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 76:23–50. 2007. View Article : Google Scholar : PubMed/NCBI | |
An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J and Kong H: Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem. 280:28952–28958. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jeong YJ, Park K and Kim DE: Isothermal DNA amplification in vitro: The helicase-dependent amplification system. Cell Mol Life Sci. 66:3325–3336. 2009. View Article : Google Scholar : PubMed/NCBI | |
Artiushin S, Tong Y, Timoney J, Lemieux B, Schlegel A and Kong H: Thermophilic helicase-dependent DNA amplification using the IsoAmp™ SE experimental kit for rapid detection of Streptococcus equi subspecies equi in clinical samples. J Vet Diagn Invest. 23:909–914. 2011. View Article : Google Scholar : PubMed/NCBI | |
Runyon GT and Lohman TM: Escherichia coli helicase II (UvrD) protein can completely unwind fully duplex linear and nicked circular DNA. J Biol Chem. 264:17502–17512. 1989.PubMed/NCBI | |
Fujiwara A, Kawato K, Kato S, Yasukawa K, Hides R and Fujiwara S: Application for a euryarchaeota-specific helicase from Thermococcus kodakarensis and its application for noise reduction in PCR. Appl Environ Microbiol. 82:3022–3031. 2016. View Article : Google Scholar : PubMed/NCBI | |
Walker JE, Luyties O and Santangelo TJ: Factor-dependent archaeal transcription termination. Proc Natl Acad Sci USA. 114:E6767–E6773. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hidese R, Kawato K, Nakura Y, Fujiwara A, Yasukawa K, Yanagihara I and Fujiwara S: Thermostable DNA helicase improves the sensitivity of digital PCR. Biochem Biophys Res Commun. 495:2189–2194. 2018. View Article : Google Scholar | |
Gutiérrez-Rivas M, Ibáñez Á, Martínez MA, Domingo E and Menéndez-Arias L: Mutational analysis of Phe160 within the 'palm' subdomain of human immunodeficiency virus type 1 reverse transcriptase. J Mol Biol. 290:615–625. 1999. View Article : Google Scholar | |
Kati WM, Johnson KA, Jerva LF and Anderson KS: Mechanism and fidelity of HIV reverse transcriptase. J Biol Chem. 267:25988–25997. 1992.PubMed/NCBI | |
Bebenek K and Kunkel TA: Analyzing fidelity of DNA polymerase. Methods Enzymol. 262:217–232. 1995. View Article : Google Scholar | |
Shendure J and Ji H: Next-generation DNA sequencing. Nat Biotechnol. 26:1135–1145. 2008. View Article : Google Scholar : PubMed/NCBI | |
Iida K, Jin H and Zhu JK: Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana. BMC Genomics. 10:1552009. View Article : Google Scholar : PubMed/NCBI | |
Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB and Loeb LA: Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci USA. 109:14508–14513. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yasukawa K, Iida K, Okano H, Hidese R, Baba M, Yanagihara I, Kojima K, Takita T and Fujiwara S: Next-generation sequencing-based analysis of reverse transcriptase fidelity. Biochem Biophys Res Commun. 492:147–153. 2017. View Article : Google Scholar : PubMed/NCBI | |
Okano H, Baba M, Hidese R, Iida K, Li T, Kojima K, Takita T, Yanagihara I, Fujiwara S and Yasukawa K: Accurate fidelity analysis of the reverse transcriptase by a modified next-generation sequencing. Enzyme Microb Technol. 115:81–85. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barrioluengo V, Álvarez M, Barbieri D and Menéndez-Arias L: Thermostable HIV-1 group O reverse transcriptase variants with the same fidelity as murine leukaemia virus reverse transcritpase. Biochem J. 436:599–607. 2011. View Article : Google Scholar : PubMed/NCBI | |
Álvarez M, Barrioluengo V, Afonso-Lehmann RN and Menéndez-Arias L: Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis. Nucleic Acid Res. 41:4601–4612. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garforth SJ, Domaoal RA, Lwatula C, Landau MJ, Meyer AJ, Anderson KS and Prasad VR: K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol. 401:33–44. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li J, Macdonald J and von Stetten F: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 144:31–67. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bleuit JS, Xu H, Ma Y, Wang T, Liu J and Morrical SW: Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc Natl Acad Sci USA. 98:8298–8305. 2001. View Article : Google Scholar : PubMed/NCBI | |
Piepenburg O, Williams CH, Stemple DL and Armes NA: DNA detection using recombination proteins. PLoS Biol. 4:e2042006. View Article : Google Scholar : PubMed/NCBI | |
Boyle DS, McNerney R, Teng Low H, Leader BT, Pérez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O and Forrest MS: Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One. 9. pp. e1030912014, View Article : Google Scholar | |
Shin Y, Perera AP, Tang WY, Fu DL, Liu Q, Sheng JK, Gu Z, Lee TY, Barkham T and Kyoung Park M: A rapid amplification/detection assay for analysis of Mycobacterium tuberculosis using an isothermal and silicon bio-photonic sensor complex. Biosens Bioelectron. 68:390–396. 2015. View Article : Google Scholar : PubMed/NCBI | |
Krõlov K, Frolova J, Tudoran O, Suhorutsenko J, Lehto T, Sibul H, Mäger I, Laanpere M, Tulp I and Langel Ü: Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples. J Mol Diagn. 16:127–135. 2014. View Article : Google Scholar | |
Clancy E, Higgins O, Forrest MS, Boo TW, Cormican M, Barry T, Piepenburg O and Smith TJ: Development of a rapid recombinase polymerase amplification assay for the detection of Streptococcus pneumoniae in whole blood. BMC Infect Dis. 15:4812015. View Article : Google Scholar : PubMed/NCBI | |
Mondal D, Ghosh P, Khan MA, Hossain F, Böhlken-Fascher S, Matlashewski G, Kroeger A, Olliaro P, Abd El and Wahed A: Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasit Vectors. 9:2812016. View Article : Google Scholar : PubMed/NCBI | |
Sriworarat C, Phumee A, Mungthin M, Leelayoova S and Siriyasatien P: Development of loop-mediated isothermal amplification (LAMP) for simple detection of Leishmania infection. Parasit Vectors. 8:5912015. View Article : Google Scholar : PubMed/NCBI | |
Nzelu CO, Cáceres AG, Guerrero-Quincho S, Tineo-Villafuerte E, Rodriquez-Delfin L, Mimori T, Uezato H, Katakura K, Gomez EA, Guevara AG, et al: A rapid molecular diagnosis of cutaneous leishmaniasis by colorimetric malachite green-loop-mediated isothermal amplification (LAMP) combined with an FTA card as a direct sampling tool. Acta Trop. 153:116–119. 2016. View Article : Google Scholar | |
Jauset-Rubio M, Tomaso H, El-Shahawi MS, Bashammakh AS, Al-Youbi AO and O'Sullivan CK: Duplex lateral flow assay for the simultaneous detection of yersinia pestis and francisella tularensis. Anal Chem. 90:12745–12751. 2018. View Article : Google Scholar : PubMed/NCBI | |
Toldrà A, Jauset-Rubio M, Andree KB, Fernández-Tejedor M, Diogène J, Katakis I, O'Sullivan CK and Campàs M: Detection and quantification of the toxic marine microalgae karlodinium veneficum and karlodinium armiger using recombinase polymerase amplification and enzyme-linked oligonucleotide assay. Anal Chim Acta. 1039:140–148. 2018. View Article : Google Scholar : PubMed/NCBI | |
Al-Madhagi S, Joda H, Jauset-Rubio M, Ortiz M, Katakis I and O' Sullivan CK: Isothermal amplification using modified primers for rapid electrochemical analysis of coeliac disease associated DQB1*02 HLA allele. Anal Biochem. 556:16–22. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sabaté del Río J, Steylaerts T, Henry OYF, Bienstman P, Stakenborg T, Van Roy W and O′Sullivan CK: Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification. Biosens Bioelectron. 73:130–137. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wiedenheft B, Sternberg SH and Doudna JA: RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482:331–338. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ and Zhang F: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360:439–444. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM and Doudna JA: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360:436–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chakrabarti R and Schutt CE: The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Res. 29:2377–2381. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kovárová M and Dráber P: New specificity and yield enhancer of polymerase chain reactions. Nucleic Acids Res. 28:E702000. View Article : Google Scholar : PubMed/NCBI | |
Chester N and Marshak DR: Dimethyl sulfoxide-mediated primer Tm reduction: A method for analyzing the role of renaturation temperature in the polymerase chain reaction. Anal Biochem. 209:284–290. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sarkar G, Kapelner S and Sommer SS: Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18:74651990. View Article : Google Scholar : PubMed/NCBI | |
Yasukawa K, Konishi A and Inouye K: Effects of organic solvents on the reverse transcription reaction catalyzed by reverse transcriptases from avian myeloblastosis virus and Moloney murine leukemia virus. Biosci Biotechnol Biochem. 74:1925–1930. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ahokas H and Erkkilä MJ: Interference of PCR amplification by the polyamines, spermine and spermidine. PCR Methods Appl. 3:65–68. 1993. View Article : Google Scholar : PubMed/NCBI | |
Roperch JP, Benzekri K, Mansour H and Incitti R: Improved amplification efficiency on stool samples by addition of spermi-dine and its use for non-invasive detection of colorectal cancer. BMC Biotechnol. 15:412015. View Article : Google Scholar | |
Kikuchi A, Sawamura T, Kawase N, Kitajima Y, Yoshida T, Daimaru O, Nakakita T and Itoh S: Utility of spermidine in PCR amplification of stool samples. Biochem Genet. 48:428–432. 2010. View Article : Google Scholar : PubMed/NCBI |