Role of m6A RNA methylation in cardiovascular disease (Review)
- Authors:
- Yuhan Qin
- Linqing Li
- Erfei Luo
- Jiantong Hou
- Gaoliang Yan
- Dong Wang
- Yong Qiao
- Chengchun Tang
-
Affiliations: Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China - Published online on: October 6, 2020 https://doi.org/10.3892/ijmm.2020.4746
- Pages: 1958-1972
-
Copyright: © Qin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Stellos K: The rise of epitranscriptomic era: Implications for cardiovascular disease. Cardiovasc Res. 113:e2–e3. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Weng H and Chen J: m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
Wei CM, Gershowitz A and Moss B: Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 4:379–386. 1975. View Article : Google Scholar : PubMed/NCBI | |
Lee M, Kim B and Kim VN: Emerging roles of RNA modification: m(6)A and U-tail. Cell. 158:980–987. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bhat SS, Bielewicz D, Jarmolowski A and Szweykowska- Kulinska Z: N6-methyladenosine (m6A): Revisiting the old with focus on new, an arabidopsis thaliana centered review. Genes (Basel). 9:5962018. View Article : Google Scholar | |
Zhao W, Qi X, Liu L, Ma S, Liu J and Wu J: Epigenetic regulation of m6A modifications in human cancer. Mol Ther. 19:405–412. 2020. | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, Howard BD, Daneshvar K, Mullen AC, Dedon P, et al: m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods. 13:692–698. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I and Okamura H: RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 155:793–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6) A promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen XY, Zhang J and Zhu JS: The role of m6A RNA methylation in human cancer. Mol Cancer. 18:1032019. View Article : Google Scholar | |
Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, Wang SY, Baltissen MPA, Jansen PWTC, Rossa M, et al: N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 24:870–878. 2017. View Article : Google Scholar : PubMed/NCBI | |
Visvanathan A and Somasundaram K: mRNA traffic control reviewed: N6-Methyladenosine (m6A) takes the driver's seat. Bioessays. Dec 4–2017.Epub ahead of print. View Article : Google Scholar | |
Meyer KD and Jaffrey SR: The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 15:313–326. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tong J, Flavell RA and Li HB: RNA m6A modification and its function in diseases. Front Med. 12:481–489. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T and He C: High-resolution N(6)- methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl. 54:1587–1590. 2015. View Article : Google Scholar | |
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR and Qian SB: Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 526:591–594. 2015. View Article : Google Scholar : PubMed/NCBI | |
Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 552:126–131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X and He C: Dynamic RNA modifications in posttranscriptional regulation. Mol Cell. 56:5–12. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 31:591–606.e6. 2017. View Article : Google Scholar | |
Zhu S, Wang JZ, Chen D, He YT, Meng N, Chen M, Lu RX, Chen XH, Zhang XL and Yan GR: An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nat Commun. 11:16852020. View Article : Google Scholar | |
Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P, Lu L, Luo N, et al: m6A-induced lncRNA RP11 triggers the dissemi-nation of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 18:872019. View Article : Google Scholar | |
Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, et al: The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 16:1042–1048. 2013. View Article : Google Scholar : PubMed/NCBI | |
Du K, Zhang L, Lee T and Sun T: m(6)A RNA methylation controls neural development and is involved in human diseases. Mol Neurobiol. 56:1596–1606. 2019. View Article : Google Scholar | |
Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, et al: Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9:47722018. View Article : Google Scholar | |
Kane SE and Beemon K: Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: Implications for RNA processing. Mol Cell Biol. 5:2298–2306. 1985. View Article : Google Scholar : PubMed/NCBI | |
Roignant JY and Soller M: m6A in mRNA: An ancient mechanism for fine-tuning gene expression. Trends Genet. 33:380–390. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Shi Y, Shen H and Xie W: m6A-binding proteins: The emerging crucial performers in epigenetics. J Hematol Oncol. 13:352020. View Article : Google Scholar | |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yao QJ, Sang L, Lin M, Yin X, Dong W, Gong Y and Zhou BO: Mettl3-Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 28:952–954. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar : | |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltrans-ferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : | |
Slobodin B, Han R, Calderone V, Vrielink JAFO, Loayza-Puch F, Elkon R and Agami R: Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell. 169:326–337.e12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Ieong KW, Demirci H, Chen J, Petrov A, Prabhakar A, O'Leary SE, Dominissini D, Rechavi G, Soltis SM, et al: N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. 23:110–115. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bujnicki JM, Feder M, Radlinska M and Blumenthal RM: Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol. 55:431–444. 2002. View Article : Google Scholar : PubMed/NCBI | |
Śledź P and Jinek M: Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. 5:e184342016. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schöller E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G: Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. 24:499–512. 2018. View Article : Google Scholar | |
Yue Y, Liu J and He C: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29:1343–1355. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar : | |
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI | |
Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4:102018. View Article : Google Scholar | |
Knuckles P, Lence T, Haussmann IU, Jacob D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, et al: Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32:415–429. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, Zheng H, Klungland A and Yan W: ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA. 115:E325–E333. 2018. View Article : Google Scholar | |
Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, Meyre D, Golzio C, Molinari F, Kadhom N, et al: Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 85:106–111. 2009. View Article : Google Scholar : PubMed/NCBI | |
Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C, et al: R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell. 172:90–105.e23. 2018. View Article : Google Scholar | |
A Alemu E, He C and Klungland A: ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair (Amst). 44:87–91. 2016. View Article : Google Scholar | |
Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FH and Stamm S: The YTH domain is a novel RNA binding domain. J Biol Chem. 285:14701–14710. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stoilov P, Rafalska I and Stamm S: YTH: A new domain in nuclear proteins. Trends Biochem Sci. 27:495–497. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liao S, Sun H and Xu C: YTH domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar | |
Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA. 24:1339–1350. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, et al: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27:1115–1127. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zarnack K, König J, Tajnik M, Martincorena I, Eustermann S, Stévant I, Reyes A, Anders S, Luscombe NM and Ule J: Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell. 152:453–466. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45:6051–6063. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bell JL, Wächter K, Mühleck B, Pazaitis N, Köhn M, Lederer M and Hüttelmaier S: Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 70:2657–2675. 2013. View Article : Google Scholar : | |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI | |
You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, et al: Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 18:603–610. 2015. View Article : Google Scholar : PubMed/NCBI | |
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29:2037–2053. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Parisien M, Dai Q, Zheng G, He C and Pan T: Probing N6-methyladenosine RNA modification status at single nucleo-tide resolution in mRNA and long noncoding RNA. RNA. 19:1848–1856. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, Winkler R, Nir R, Lasman L, Brandis A, et al: Deciphering the 'm6A Code' via antibody-independent quantitative profiling. Cell. 178:731–747.e16. 2019. View Article : Google Scholar | |
Liu Q and Gregory RI: RNAmod: An integrated system for the annotation of mRNA modifications. Nucleic Acids Res. 47:W548–W555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang SY, Zhang SW, Fan XN, Zhang T, Meng J and Huang Y: FunDMDeep-m6A: Identification and prioritization of functional differential m6A methylation genes. Bioinformatics. 35:i90–i98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C and Luo GZ: Single-base mapping of mA by an antibody-independent method. Sci Adv. 5:eaax02502019. View Article : Google Scholar | |
Lin J, Zhu Q, Huang J, Cai R and Kuang Y: Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating Mettl3 and paracrine factors. Stem Cells Int. 2020:28305652020. View Article : Google Scholar : PubMed/NCBI | |
Cohn JN, Ferrari R and Sharpe N: Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 35:569–582. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kehat I and Molkentin JD: Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 122:2727–2735. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maier T, Guell M and Serrano L: Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583:3966–3973. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dorn LE, Lasman L, Chen J, Xu X, Hund TJ, Medvedovic M, Hanna JH, van Berlo JH and Accornero F: The N6-Methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 139:533–545. 2019. View Article : Google Scholar | |
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y, Ni M, et al: ATG16L1 phosphorylation is oppositely regulated by CSNK2/casein kinase 2 and PPP1/protein phos-phatase 1 which determines the fate of cardiomyocytes during hypoxia/reoxygenation. Autophagy. 11:1308–1325. 2015. View Article : Google Scholar | |
Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, Lim JA, Zare H, Raben N, Ballabio A and Puertollano R: TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 12:1240–1258. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao E and Czaja MJ: Transcription factor EB: A central regulator of both the autophagosome and lysosome. Hepatology. 55:1632–1634. 2012. View Article : Google Scholar : PubMed/NCBI | |
Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, Jin J, Ding X, Wu S, Huang H, et al: METTL3 and ALKBH5 oppositely regu-late m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 15:1419–1437. 2019. View Article : Google Scholar : PubMed/NCBI | |
Misquitta CM, Iyer VR, Werstiuk ES and Grover AK: The role of 3′-untranslated region (3′-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol Cell Biochem. 224:53–67. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gratacós FM and Brewer G: The role of AUF1 in regulated mRNA decay. Wiley Interdiscip Rev RNA. 1:457–473. 2010. View Article : Google Scholar | |
Su YR, Chiusa M, Brittain E, Hemnes AR, Absi TS, Lim CC and Di Salvo TG: Right ventricular protein expression profile in end-stage heart failure. Pulm Circ. 5:481–497. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, et al: FTO-Dependent N6-Methyladenosine regulates cardiac function during remodeling and repair. Circulation. 139:518–532. 2019. View Article : Google Scholar : | |
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, Mohamed BA, Renner A, von Lewinski D, Sacherer M, et al: Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 22:54–66. 2020. View Article : Google Scholar | |
Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, et al: m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. 2:e2018002332019. View Article : Google Scholar | |
Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, et al: ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 113:e463–e654. 2006.PubMed/NCBI | |
Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A and Eckstein HH: Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology. 76:243–252. 2009. View Article : Google Scholar : PubMed/NCBI | |
He Y, Xing J, Wang S, Xin S, Han Y and Zhang J: Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm. Ann Transl Med. 7:7972019. View Article : Google Scholar | |
Zhong L, He X, Song H, Sun Y, Chen G, Si X, Sun J, Chen X, Liao W, Liao Y and Bin J: METTL3 induces AAA development and progression by modulating N6-methyladenosine-dependent primary miR34a processing. Mol Ther Nucleic Acids. 21:394–411. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thomas B, Matsushita K, Abate KH, Al-Aly Z, Ärnlöv J, Asayama K, Atkins R, Badawi A, Ballew SH, Banerjee A, et al: Global Cardiovascular and Renal Outcomes of Reduced GFR. J Am Soc Nephrol. 28:2167–2179. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H and Hruska KA: Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 85:142–150. 2014. View Article : Google Scholar | |
Cao XS, Chen J, Zou JZ, Zhong YH, Teng J, Ji J, Chen ZW, Liu ZH, Shen B, Nie YX, et al: Association of indoxyl sulfate with heart failure among patients on hemodialysis. Clin J Am Soc Nephrol. 10:111–119. 2015. View Article : Google Scholar : | |
Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, Cai J, Ding X and Zhang X: METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci. 239:1170342019. View Article : Google Scholar : PubMed/NCBI | |
McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, et al: ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 53:1573–1619. 2009. View Article : Google Scholar : PubMed/NCBI | |
Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al: 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 37:67–119. 2016. View Article : Google Scholar | |
Weitzenblum E, Sautegeau A, Ehrhart M, Mammosser M and Pelletier A: Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 131:493–498. 1985. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, Shen Q, Xu P, Zeng L, Zhou Y, et al: YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat commun. 10:48922019. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 113:E2047–E2056. 2016. View Article : Google Scholar | |
Fry NJ, Law BA, Ilkayeva OR, Holley CL and Mansfield KD: N6-methyladenosine is required for the hypoxic stabilization of specific mRNAs. RNA. 23:1444–1455. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu MC, Kalionis B, Wu JZ, Wang LL, Ge HY, Chen CC, Tang XD, Song YL, He H and Xia SJ: Characteristics of circular RNA expression in lung tissues from mice with hypoxiainduced pulmonary hypertension. Int J Mol Med. 42:1353–1366. 2018.PubMed/NCBI | |
Su H, Wang G, Wu L, Ma X, Ying K and Zhang R: Transcriptome-wide map of m6A circRNAs identified in a rat model of hypoxiamediated pulmonary hypertension. BMC Genomics. 21:392020. View Article : Google Scholar | |
Chan JJ and Tay Y: Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci. 19:2018. View Article : Google Scholar | |
Baarsma HA and Königshoff M: 'WNT-er is coming': WNT signalling in chronic lung diseases. Thorax. 72:746–759. 2017. View Article : Google Scholar : PubMed/NCBI | |
Savai R, Al-Tamari HM, Sedding D, Kojonazarov B, Muecke C, Teske R, Capecchi MR, Weissmann N, Grimminger F, Seeger W, et al: Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension. Nat Med. 20:1289–1300. 2014. View Article : Google Scholar : PubMed/NCBI | |
Haraksingh RR and Snyder MP: Impacts of variation in the human genome on gene regulation. J Mol Biol. 425:3970–3977. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mao F, Xiao L, Li X, Liang J, Teng H, Cai W and Sun ZS: RBP-Var: A database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res. 44:D154–D163. 2016. View Article : Google Scholar : | |
Wu X and Hurst LD: Determinants of the usage of splice-associated cis-Motifs predict the distribution of human pathogenic SNPs. Mol Biol Evol. 33:518–529. 2016. View Article : Google Scholar : | |
Ramaswami G, Deng P, Zhang R, Anna Carbone M, Mackay TFC and Billy Li J: Genetic mapping uncovers cis-regulatory land-scape of RNA editing. Nat Commun. 6:81942015. View Article : Google Scholar | |
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018. View Article : Google Scholar : | |
Yang N, Ying P, Tian J, Wang X, Mei S, Zou D, Peng X, Gong Y, Yang Y, Zhu Y, et al: Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population. Carcinogenesis. 41:761–768. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mo XB, Lei SF, Zhang YH and Zhang H: Detection of m6A-asso-ciated SNPs as potential functional variants for coronary artery disease. Epigenomics. 10:1279–1287. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mo X, Lei S, Zhang Y and Zhang H: Genome-wide enrichment of m6A-associated single-nucleotide polymorphisms in the lipid loci. Pharmacogenomics J. 19:347–357. 2019. View Article : Google Scholar | |
Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI and de Geus EJC: Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 45:80–85. 2005. View Article : Google Scholar | |
Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, et al: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 50:1412–1425. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mo XB, Lei SF, Zhang YH and Zhang H: Examination of the associations between m6A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res. 42:1582–1589. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, Heo L, Young Lee J, Kyoung Kim Y, Jin Kim Y, et al: A genome-wide association study of a coronary artery disease risk variant. J Hum Genet. 58:120–126. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA, et al: The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 318:1469–1472. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guyenet PG: The sympathetic control of blood pressure. Nat Rev Neurosci. 7:335–346. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pausova Z, Syme C, Abrahamowicz M, Xiao Y, Leonard GT, Perron M, Richer L, Veillette S, Smith GD, Seda O, et al: A common variant of the FTO gene is associated with not only increased adiposity but also elevated blood pressure in French Canadians. Circ Cardiovasc Genet. 2:260–269. 2009. View Article : Google Scholar : PubMed/NCBI | |
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 316:889–894. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marcadenti A, Fuchs FD, Matte U, Sperb F, Moreira LB and Fuchs SC: Effects of FTO RS9939906 and MC4R RS17782313 on obesity, type 2 diabetes mellitus and blood pressure in patients with hypertension. Cardiovasc Diabetol. 12:1032013. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell CJ and Nabel EG: Genomics of cardiovascular disease. N Engl J Med. 365:2098–2109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Prospective Studies Collaboration; Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, Qizilbash N, Peto R and Collins R: Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 370:1829–1839. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yadav PK, Rajvanshi PK and Rajasekharan R: The role of yeast m6A methyltransferase in peroxisomal fatty acid oxidation. Curr Genet. 64:417–422. 2018. View Article : Google Scholar | |
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 12:1212019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Chen G and Deng CQ: Effects and mechanisms of total Panax notoginseng saponins on proliferation of vascular smooth muscle cells with plasma pharmacology method. J Pharm Pharmracol. 64:139–145. 2012. View Article : Google Scholar | |
Zhu B, Gong Y, Shen L, Li J, Han J, Song B, Hu L, Wang Q and Wang Z: Total Panax notoginseng saponin inhibits vascular smooth muscle cell proliferation and migration and intimal hyperplasia by regulating WTAP/p16 signals via m6A modulation. Biomed Pharmacother. 124:1099352020. View Article : Google Scholar | |
Nakarai H, Yamashita A, Nagayasu S, Iwashita M, Kumamoto S, Ohyama H, Hata M, Soga Y, Kushiyama A, Asano T, et al: Adipocyte-macrophage interaction may mediate LPS-induced low-grade inflammation: Potential link with metabolic complications. Innate Immun. 18:164–170. 2012. View Article : Google Scholar | |
Rao DS, Sekhara NC, Satyanarayana MN and Srinivasan M: Effect of curcumin on serum and liver cholesterol levels in the rat. J Nutri. 100:1307–1315. 1970. View Article : Google Scholar | |
Lu N, Li X, Yu J, Li Y, Wang C, Zhang L, Wang T and Zhong X: Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6 A RNA methylation in piglets. Lipids. 53:53–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C and Yang CG: Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43:373–384. 2015. View Article : Google Scholar : | |
Li J, Chen Z, Chen F, Xie G, Ling Y, Peng Y, Lin Y, Luo N, Chiang CM and Wang H: Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res. 48:5684–5694. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N and Werb Z: Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 20:1349–1360. 2018. View Article : Google Scholar : PubMed/NCBI | |
Paramasivam A, Vijayashree Priyadharsini J and Raghunandhakumar S: N6-adenosine methylation (m6A): A promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 43:153–154. 2020. View Article : Google Scholar |