1
|
Sorokin I, Mamoulakis C, Miyazawa K,
Rodgers A, Talati J and Lotan Y: Epidemiology of stone disease
across the world. World J Urol. 35:1301–1320. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Scales CD Jr, Tasian GE, Schwaderer AL,
Goldfarb DS, Star RA and Kirkali Z: Urinary stone disease:
Advancing knowledge, patient care, and population health. Clin J Am
Soc Nephrol. 11:1305–1312. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tsujihata M: Mechanism of calcium oxalate
renal stone formation and renal tubular cell injury. Int J Urol.
15:115–120. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Amato M, Lusini ML and Nelli F:
Epidemiology of nephroli-thiasis today. Urol Int. 72(Suppl 1):
S1–S5. 2004. View Article : Google Scholar
|
5
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J,
Zhong M, Yuan H, Zhang L, Billiar TR, et al: The tumor suppressor
p53 limits ferrop-tosis by blocking DPP4 activity. Cell Rep.
20:1692–1704. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Koppula P, Zhang Y, Zhuang L and Gan B:
Amino acid trans-porter SLC7A11/xCT at the crossroads of regulating
redox homeostasis and nutrient dependency of cancer. Cancer Commun
(Lond). 38:122018. View Article : Google Scholar
|
8
|
Forcina GC and Dixon SJ: GPX4 at the
crossroads of lipid homeostasis and ferroptosis. Proteomics.
19:e18003112019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Homma T, Kobayashi S, Sato H and Fujii J:
Edaravone, a free radical scavenger, protects against ferroptotic
cell death in vitro. Exp Cell Res. 384:1115922019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian
D, Liu D, Zhang F, Ning S, Yao J and Tian X: Ischemia-induced ACSL4
activation contributes to ferroptosis-mediated tissue injury in
intestinal ischemia/reperfusion. Cell Death Differ. 26:2284–2299.
2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S,
Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 13:81–90. 2017. View Article : Google Scholar
|
12
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J
and Jiang X: Ferroptosis is an autophagic cell death process. Cell
Res. 26:1021–1032. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ohgami RS, Campagna DR, McDonald A and
Fleming MD: The steap proteins are metalloreductases. Blood.
108:1388–1394. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Y, Li D, He Z, Liu Q, Wu J, Guan X,
Tao Z and Deng Y: Inhibition of autophagy-attenuated calcium
oxalate crystal-induced renal tubular epithelial cell injury in
vivo and in vitro. Oncotarget. 9:4571–4582. 2017. View Article : Google Scholar
|
15
|
Liu Y, Liu Q, Wang X, He Z, Li D, Guan X,
Tao Z and Deng Y: Inhibition of autophagy attenuated ethylene
glycol induced crys-tals deposition and renal injury in a rat model
of nephrolithiasis. Kidney Blood Press Res. 43:246–255. 2018.
View Article : Google Scholar
|
16
|
Kang J, Sun Y, Deng Y, Liu Q, Li D, Liu Y,
Guan X, Tao Z and Wang X: Autophagy-endoplasmic reticulum stress
inhibition mechanism of superoxide dismutase in the formation of
calcium oxalate kidney stones. Biomed Pharmacother. 121:1096492020.
View Article : Google Scholar
|
17
|
Wang XF, Zhang BH, Lu XQ and Wang RQ:
Gastrin-releasing peptide receptor gene silencing inhibits the
development of the epithelial-mesenchymal transition and formation
of a calcium oxalate crystal in renal tubular epithelial cells in
mice with kidney stones via the PI3K/Akt signaling pathway. J Cell
Physiol. 234:1567–1577. 2019. View Article : Google Scholar
|
18
|
Kong Z, Liu R and Cheng Y: Artesunate
alleviates liver fibrosis by regulating ferroptosis signaling
pathway. Biomed Pharmacother. 109:2043–2053. 2019. View Article : Google Scholar
|
19
|
Gao M, Deng J, Liu F, Fan A, Wang Y, Wu H,
Ding D, Kong D, Wang Z, Peer D and Zhao Y: Triggered ferroptotic
polymer micelles for reversing multidrug resistance to
chemotherapy. Biomaterials. 223:1194862019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Park EJ, Park YJ, Lee SJ, Lee K and Yoon
C: Whole cigarette smoke condensates induce ferroptosis in human
bronchial epithelial cells. Toxicol Lett. 303:55–66. 2019.
View Article : Google Scholar
|
21
|
Khan SR: Reactive oxygen species as the
molecular modula-tors of calcium oxalate kidney stone formation:
Evidence from clinical and experimental investigations. J Urol.
189:803–811. 2013. View Article : Google Scholar
|
22
|
Miess H, Dankworth B, Gouw AM, Rosenfeldt
M, Schmitz W, Jiang M, Saunders B, Howell M, Downward J, Felsher
DW, et al: The glutathione redox system is essential to prevent
ferroptosis caused by impaired lipid metabolism in clear cell renal
cell carci-noma. Oncogene. 37:5435–5450. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jurisic V, Radenkovic S and Konjevic G:
The actual role of LDH as tumor marker, biochemical and clinical
aspects. Adv Exp Med Biol. 867:115–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Krych-Madej J and Gebicka L: Interactions
of nitrite with catalase: Enzyme activity and reaction kinetics
studies. J Inorg Biochem. 171:10–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Owen JB and Butterfield DA: Measurement of
oxidized/reduced glutathione ratio. Methods Mol Biol. 648:269–277.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Carillon J, Rouanet JM, Cristol JP and
Brion R: Superoxide dismutase administration, a potential therapy
against oxidative stress related diseases: Several routes of
supplementation and proposal of an original mechanism of action.
Pharm Res. 30:2718–2728. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Del Rio D, Stewart AJ and Pellegrini N: A
review of recent studies on malondialdehyde as toxic molecule and
biological marker of oxidative stress. Nutr Metab Cardiovasc Dis.
15:316–328. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang F, Lv H, Zhao B, Zhou L, Wang S, Luo
J, Liu J and Shang P: Iron and leukemia: New insights for future
treatments. J Exp Clin Cancer Res. 38:4062019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Masaldan S, Belaidi AA, Ayton S and Bush
AI: Cellular senescence and iron dyshomeostasis in Alzheimer's
disease. Pharmaceuticals (Basel). 12:E932019. View Article : Google Scholar
|
30
|
Alvarez SW, Sviderskiy VO, Terzi EM,
Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K
and Possemato R: NFS1 undergoes positive selection in lung tumours
and protects cells from ferroptosis. Nature. 551:639–643. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Stamenkovic A, Pierce GN and Ravandi A:
Phospholipid oxidation products in ferroptotic myocardial cell
death. Am J Physiol Heart Circ Physiol. 317:H156–H163. 2019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ng SW, Norwitz SG and Norwitz ER: The
impact of iron overload and ferroptosis on reproductive disorders
in humans: Implications for preeclampsia. Int J Mol Sci.
20:32832019. View Article : Google Scholar :
|
33
|
Yang WS and Stockwell BR: Ferroptosis:
Death by lipid peroxi-dation. Trends Cell Biol. 26:165–176. 2016.
View Article : Google Scholar
|
34
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Thévenod F: Iron and its role in cancer
defense: A double-edged sword. Met Ions Life Sci. View Article : Google Scholar
|
36
|
Li CY, Deng YL and Sun BH: Taurine
protected kidney from oxidative injury through mitochondrial-linked
pathway in a rat model of nephrolithiasis. Urol Res. 37:211–220.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Li CY, Deng YL and Sun BH: Effects of
apocynin and losartan treatment on renal oxidative stress in a rat
model of calcium oxalate nephrolithiasis. Int Urol Nephrol.
41:823–833. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ouyang JM, Yao XQ, Tan J and Wang FX:
Renal epithelial cell injury and its promoting role in formation of
calcium oxalate monohydrate. J Biol Inorg Chem. 16:405–416. 2011.
View Article : Google Scholar
|
39
|
Kandur Y, Gonen S, Fidan K and
Soylemezoglu O: Evaluation of urinary KIM-1, NGAL, and IL-18 levels
in determining early renal injury in pediatric cases with
hypercalciuria and/or renal calculi. Clin Nephrol. 86:62–69. 2016.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh
HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by
degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kang R, Zhu S, Zeh HJ, Klionsky DJ and
Tang D: BECN1 is a new driver of ferroptosis. Autophagy.
14:2173–2175. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang N, Zeng GZ, Yin JL and Bian ZX:
Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects
ferroptosis in Burkitt's lymphoma. Biochem Biophys Res Commun.
519:533–539. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Tang HM and Tang HL: Cell recovery by
reversal of ferroptosis. Biol Open. 8:bio0431822019. View Article : Google Scholar : PubMed/NCBI
|