Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2021 Volume 47 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 47 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review)

  • Authors:
    • Anna Yu. Korshunova
    • Mikhail L. Blagonravov
    • Ekaterina V. Neborak
    • Sergey P. Syatkin
    • Anastasia P. Sklifasovskaya
    • Said M. Semyatov
    • Enzo Agostinelli
  • View Affiliations / Copyright

    Affiliations: Department of Pathophysiology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation, Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation, Department of Obstetrics and Gynecology with the Course of Perinatology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation, Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I‑00161 Rome, Italy
    Copyright: © Korshunova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 23-36
    |
    Published online on: November 4, 2020
       https://doi.org/10.3892/ijmm.2020.4781
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The leading cause of death in developed countries is cardiovascular disease, where coronary heart disease is the main cause of death. Myocardial reperfusion is the most significant method to prevent cell death after ischemia. However, restoration of blood flow may paradoxically lead to myocardial ischemia‑reperfusion injury (MI/RI) accompanied by metabolic disturbances and cardiomyocyte death. As the myocardium has an extremely limited ability to regenerate, the mechanisms of regulated cell death, including apoptosis, are the most significant for contemporary research due to their reversibility. BCL2 is a key anti‑apoptotic protein. There are several signaling pathways and compounds regulating BCL2, including PI3K/AKT and MEK1/ERK1/2, JAK2/STAT3, endothelial nitric oxide synthase, PTEN, cardiac ankyrin repeat protein and microRNA, which can serve as targets for modern methods of cardioprotective therapy inhibiting intrinsic apoptosis and saving viable cardiomyocytes after MI/RI. The present review considers the mechanisms of Bcl2‑regulated apoptosis in the development and treatment of MI/RI.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI

2 

Rogalińska M: Alterations in cell nuclei during apoptosis. Cell Mol Biol Lett. 7:995–1018. 2002.

3 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Tait SW and Green DR: Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 11:621–632. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Kalkavan H and Green DR: MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25:46–55. 2018. View Article : Google Scholar

6 

Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar

7 

Galluzzi L, Kepp O and Kroemer G: Mitochondrial regulation of cell death: A phylogenetically conserved control. Microb Cell. 3:101–108. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Moldoveanu T, Follis AV, Kriwacki RW and Green DR: Many players in BCL-2 family affairs. Trends Biochem Sci. 39:101–111. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Shamas-Din A, Kale J, Leber B and Andrews DW: Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 5:a0087142013. View Article : Google Scholar : PubMed/NCBI

10 

Hardwick JM, Chen Y and Jonas EA: Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol. 22:318–328. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Pihán P, Carreras-Sureda A and Hetz C: BCL-2 family: Integrating stress responses at the ER to control cell demise. Cell Death Differ. 24:1478–1487. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Zhang J and Ney PA: Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16:939–946. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Zamorano S, Rojas-Rivera D, Lisbona F, Parra V, Court FA, Villegas R, Cheng EH, Korsmeyer SJ, Lavandero S and Hetz C: A BAX/BAK and cyclophilin D-independent intrinsic apoptosis pathway. PLoS One. 7:e377822012. View Article : Google Scholar : PubMed/NCBI

14 

Kilbride SM and Prehn JH: Central roles of apoptotic proteins in mitochondrial function. Oncogene. 32:2703–2711. 2013. View Article : Google Scholar

15 

Parsons M and Green D: Mitochondria in cell death. Essays Biochem. 47:99–114. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE and Oltvai ZN: BCL2/Bax: A rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 4:327–332. 1993.PubMed/NCBI

17 

Abbate A, Bussani R, Amin MS, Vetrovec GW and Baldi A: Acute myocardial infarction and heart failure: Role of apoptosis. Int J Biochem Cell Biol. 38:1834–1840. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Ahmad F, Lal H, Zhou J, Vagnozzi RJ, Yu JE, Shang X, Woodgett JR, Gao E and Force T: Cardiomyocyte-specific deletion of Gsk3α mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure. J Am Coll Cardiol. 64:696–706. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Chinda K, Sanit J, Chattipakorn S and Chattipakorn N: Dipeptidyl peptidase-4 inhibitor reduces infarct size and preserves cardiac function via mitochondrial protection in ischaemia-reperfusion rat heart. Diab Vasc Dis Res. 11:75–83. 2014. View Article : Google Scholar

20 

Gao CK, Liu H, Cui CJ, Liang ZG, Yao H and Tian Y: Roles of MicroRNA-195 in cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion injury. J Genet. 95:99–108. 2016. View Article : Google Scholar : PubMed/NCBI

21 

World Health Organization (WHO): World Health Statistics 2019: Monitoring health for the SDGs. WHO; Geneva: 2019

22 

Rajaleid K, Janszky I and Hallqvist J: Small birth size, adult over-weight, and risk of acute myocardial infraction. Epidemiology. 22:138–147. 2011. View Article : Google Scholar

23 

Minamino T: Cardioprotection from ischemia/reperfusion injury: Basic and translational research. Circ J. 76:1074–1082. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Li Z, Lu J, Luo Y, Li S and Chen M: High association between human circulating microRNA-497 and acute myocardial infarction. ScientificWorldJournal. 2014:9318452014.PubMed/NCBI

25 

Eltzschig HK and Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 17:1391–1401. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Jennings RB, Sommers HM, Smyth GA, Flack HA and Linn H: Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 70:68–78. 1960.PubMed/NCBI

27 

Bak MI and Ingwall JS: Contribution of Na+/H+ exchange to Na+ overload in the ischemic hypertrophied hyperthyroid rat heart. Cardiovasc Res. 57:1004–1014. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Murphy E and Steenbergen C: Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 88:581–609. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Budhram-Mahadeo V, Fujita R, Bitsi S, Sicard P and Heads R: Co-expression of POU4F2/Brn-3b with p53 may be important for controlling expression of pro-apoptotic genes in cardiomyocytes following ischaemic/hypoxic insults. Cell Death Dis. 5:e15032014. View Article : Google Scholar : PubMed/NCBI

30 

Fröhlich GM, Meier P, White SK, Yellon DM and Hausenloy DJ: Myocardial reperfusion injury: Looking beyond primary PCI. Eur Heart J. 34:1714–1722. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Chen S, Hua F, Lu J, Jiang Y, Tang Y, Tao L, Zou B and Wu Q: Effect of dexmedetomidine on myocardial ischemia-reperfusion injury. Int J Clin Exp Med. 8:21166–21172. 2015.

32 

Moens AL, Claeys MJ, Timmermans JP and Vrints CJ: Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol. 100:179–190. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Liu LF, Liang Z, Lv ZR, Liu XH, Bai J, Chen J, Chen C and Wang Y: MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. J Geriatr Cardiol. 9:28–32. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Brown DI and Griendling KK: Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res. 116:531–549. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Ischemia/reperfusion. Compr Physiol. 7:113–170. 2016. View Article : Google Scholar

36 

Neri M, Riezzo I, Pascale N, Pomara C and Turillazzi E: Ischemia/reperfusion injury following acute myocardial infarction: A critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017:70183932017. View Article : Google Scholar : PubMed/NCBI

37 

Wang X, Ha T, Zou J, Ren D, Liu L, Zhang X, Kalbfleisch J, Gao X, Williams D and Li C: MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-medi-ated apoptotic signalling and TRAF6. Cardiovasc Res. 102:385–395. 2014. View Article : Google Scholar : PubMed/NCBI

38 

LeBaron TW, Kura B, Kalocayova B, Tribulova N and Slezak J: A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules. 24:20762019. View Article : Google Scholar :

39 

Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Radomski MW, Palmer RM and Moncada S: Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 2:1057–1058. 1987. View Article : Google Scholar : PubMed/NCBI

41 

Xia Y and Zweier JL: Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J Biol Chem. 270:18797–18803. 1995. View Article : Google Scholar : PubMed/NCBI

42 

Zhang WP, Zong QF, Gao Q, Yu Y, Gu XY, Wang Y, Li ZH and Ge M: Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol Med Rep. 14:3992–3998. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Liu L, Zhang G, Liang Z, Liu X, Li T, Fan J, Bai J and Wang Y: MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis. 19:19–29. 2014. View Article : Google Scholar

44 

Li CM, Shen SW, Wang T and Zhang XH: Myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway. Int J Clin Exp Med. 8:15801–15807. 2015.PubMed/NCBI

45 

Liou SF, Ke HJ, Hsu JH, Liang JC, Lin HH, Chen IJ and Yeh JL: San-Huang-Xie-Xin-Tang prevents rat hearts from ischemia/reperfusion-induced apoptosis through eNOS and MAPK pathways. Evid Based Complement Alternat Med. 2011:9150512011. View Article : Google Scholar : PubMed/NCBI

46 

Chen Q and Lesnefsky EJ: Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett. 585:921–926. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Chen Q, Xu H, Xu A, Ross T, Bowler E, Hu Y and Lesnefsky EJ: Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria. PLoS One. 10:e01188342015. View Article : Google Scholar : PubMed/NCBI

48 

Gustafsson AB and Gottlieb RA: Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 292:C45–C51. 2007. View Article : Google Scholar

49 

Murphy E, Imahashi K and Steenbergen C: Bcl-2 regulation of mitochondrial energetics. Trends Cardiovasc Med. 15:283–290. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Qiao Z and Xu Y: Salvianolic acid b alleviating myocardium injury in ischemia reperfusion rats. Afr J Tradit Complement Altern Med. 13:157–161. 2016. View Article : Google Scholar

51 

Zhang HY, McPherson BC, Liu H, Baman TS, Rock P and Yao Z: H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via protein kinase C-epsilon in cardiomyocytes. Am J Physiol Heart Circ Physiol. 282:H1395–H1403. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Meng G, Wang J, Xiao Y, Bai W, Xie L, Shan L, Moore PK and Ji Y: GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res. 29:203–213. 2015.PubMed/NCBI

53 

Song T, Wang P, Yu X, Wang A, Chai G, Fan Y and Zhang Z: Systems analysis of phosphorylation-regulated Bcl-2 interactions establishes a model to reconcile the controversy over the significance of Bcl-2 phosphorylation. Br J Pharmacol. 176:491–504. 2019. View Article : Google Scholar

54 

Markou T, Dowling AA, Kelly T and Lazou A: Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes. Free Radic Res. 43:809–816. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Syeda MZ, Fasae MB, Yue E, Ishimwe AP, Jiang Y, Du Z, Yang B and Bai Y: Anthocyanidin attenuates myocardial ischemia induced injury via inhibition of ROS-JNK-BCL2 pathway: New mechanism of anthocyanidin action. Phytother Res. 33:3129–3139. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Zhang Z, Deng X, Liu Y, Liu Y, Sun L and Chen F: PKM2, function and expression and regulation. Cell Biosci. 9:522019. View Article : Google Scholar : PubMed/NCBI

57 

Menon MB and Dhamija S: Beclin 1 Phosphorylation-at the center of autophagy regulation. Front Cell Dev Biol. 6:1372018. View Article : Google Scholar

58 

Wei Y, Sinha S and Levine B: Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy. 4:949–951. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Schulman D, Latchman DS and Yellon DM: Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 283:H1481–H1488. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Hausenloy DJ, Tsang A, Mocanu MM and Yellon DM: Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 288:H971–H976. 2005. View Article : Google Scholar

61 

Carter AN, Born HA, Levine AT, Dao AT, Zhao AJ, Lee WL and Anderson AE: Wortmannin attenuates seizure-induced hyperactive PI3K/Akt/mTOR signaling, impaired memory, and spine dysmorphology in rats. eNeuro. 4. pp. ENEURO.0354–16.2017. 2017, View Article : Google Scholar

62 

Very N, Vercoutter-Edouart AS, Lefebvre T, Hardivillé S and El Yazidi-Belkoura I: Cross-dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR axis in human chronic diseases. Front Endocrinol (Lausanne). 9:6022018. View Article : Google Scholar

63 

Chi Y, Ma Q, Ding XQ, Qin X, Wang C and Zhang J: Research on protective mechanism of ibuprofen in myocardial ischemia-reperfusion injury in rats through the PI3K/Akt/mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 23:4465–4473. 2019.PubMed/NCBI

64 

Liang K, Ye Y, Wang Y, Zhang J and Li C: Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/BCL2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci. 344:100–104. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Yu LN, Yu J, Zhang FJ, Yang MJ, Ding TT, Wang JK, He W, Fang T, Chen G and Yan M: Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins. J Zhejiang Univ Sci B. 11:661–672. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, Hua F, Xu G and Yu P: Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep. 4:73172014. View Article : Google Scholar : PubMed/NCBI

67 

Keyes KT, Xu J, Long B, Zhang C, Hu Z and Ye Y: Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol. 298:H1198–H1208. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Zu L, Zheng X, Wang B, Parajuli N, Steenbergen C, Becker LC and Cai ZP: Ischemic preconditioning attenuates mitochondrial localization of PTEN induced by ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 300:H2177–H2186. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Zhu YB, Ding N, Yi HL and Li ZQ: The expression of overexpressed PTEN enhanced IR-induced apoptosis of myocardial cells. Eur Rev Med Pharmacol Sci. 23:4406–4413. 2019.PubMed/NCBI

70 

Robinson MJ and Cobb MH: Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 9:180–186. 1997. View Article : Google Scholar : PubMed/NCBI

71 

Hernández-Reséndiz S, Roldán FJ, Correa F, Martínez-Abundis E, Osorio-Valencia G, Ruíz-de-Jesús O, Alexánderson-Rosas E, Vigueras RM, Franco M and Zazueta C: Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J Card Fail. 19:135–146. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Holderfield M, Deuker MM, McCormick F and McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 14:455–467. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Balmanno K and Cook SJ: Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 16:368–377. 2009. View Article : Google Scholar

74 

Zhou QL, Teng F, Zhang YS, Sun Q, Cao YX and Meng GW: FPR1 gene silencing suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/reperfusion injury through the inhibition of MAPK signaling pathway. Exp Cell Res. 370:506–518. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Sun G, Ye N, Dai D, Chen Y, Li C and Sun Y: The protective role of the TOPK/PBK pathway in myocardial ischemia/reperfusion and H2O2-induced injury in H9C2 cardiomyocytes. Int J Mol Sci. 17:2672016. View Article : Google Scholar

76 

Sun MH, Chen XC, Han M, Yang YN, Gao XM, Ma X, Huang Y, Li XM, Gai MT, Liu F, et al: Cardioprotective effects of constitutively active MEK1 against H2O2-induced apoptosis and autophagy in cardiomyocytes via the ERK1/2 signaling pathway. Biochem Biophys Res Commun. 512:125–130. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Lee ML, Sulistyowati E, Hsu JH, Huang BY, Dai ZK, Wu BN, Chao YY and Yeh JL: KMUP-1 ameliorates ischemia-induced cardiomyocyte apoptosis through the NO−cGMP−MAPK signaling pathways. Molecules. 24:13762019. View Article : Google Scholar

78 

Razavi HM, Hamilton JA and Feng Q: Modulation of apoptosis by nitric oxide: Implications in myocardial ischemia and heart failure. Pharmacol Ther. 106:147–162. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Burley DS, Ferdinandy P and Baxter GF: Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: Opportunities and obstacles for survival signaling. Br J Pharmacol. 152:855–869. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA and Atochin DN: c-Jun N-Terminal Kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front Pharmacol. 9:7152018. View Article : Google Scholar : PubMed/NCBI

81 

Zhang W, Zhang Y, Ding K, Zhang H, Zhao Q, Liu Z and Xu Y: Involvement of JNK1/2-NF-κBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed Pharmacother. 106:1063–1071. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Wang Z, Huang H, He W, Kong B, Hu H, Fan Y, Liao J, Wang L, Mei Y, Liu W, et al: Regulator of G-protein signaling 5 protects cardiomyocytes against apoptosis during in vitro cardiac ischemia-reperfusion in mice by inhibiting both JNK1/2 and P38 signaling pathways. Biochem Biophys Res Commun. 473:551–557. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Chen Q, Xu T, Li D, Pan D, Wu P, Luo Y, Ma Y and Liu Y: JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: Effects of salvianolic acid A intervention. Am J Transl Res. 8:2534–2548. 2016.PubMed/NCBI

84 

Frias MA and Montessuit C: JAK-STAT signaling and myocardial glucose metabolism. JAKSTAT. 2:e264582013.

85 

Harhous Z, Booz GW, Ovize M, Bidaux G and Kurdi M: An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med. 6:1502019. View Article : Google Scholar : PubMed/NCBI

86 

Zhang WY, Zhang QL and Xu MJ: Effects of propofol on myocardial ischemia reperfusion injury through inhibiting the JAK/STAT pathway. Eur Rev Med Pharmacol Sci. 23:6339–6345. 2019.PubMed/NCBI

87 

Bolli R, Dawn B and Xuan YT: Emerging role of the JAK-STAT pathway as a mechanism of protection against ischemia/reperfusion injury. J Mol Cell Cardiol. 33:1893–1896. 2001. View Article : Google Scholar : PubMed/NCBI

88 

Liu Y, Che G, Di Z, Sun W, Tian J and Ren M: Calycosin-7-O- β-D-glucoside attenuates myocardial ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice. Mol Cell Biochem. 463:175–187. 2020. View Article : Google Scholar

89 

Bolli R, Dawn B and Xuan YT: Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med. 13:72–79. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY and Ji Y: Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res. 45:898–905. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G and Schulz R: Cardioprotection by ischemic post-conditioning is lost in aged and STAT3-deficient mice. Circ Res. 102:131–135. 2008. View Article : Google Scholar

92 

Lecour S: Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol. 47:32–40. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Myers MG Jr: Cell biology. Moonlighting in mitochondria. Science. 323:723–724. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Suleman N, Somers S, Smith R, Opie LH and Lecour SC: Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res. 79:127–133. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G and Schulz R: The myocardial JAK/STAT pathway: From protection to failure. Pharmacol Ther. 120:172–185. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Bolli R, Stein AB, Guo Y, Wang OL, Rokosh G, Dawn B, Molkentin JD, Sanganalmath SK, Zhu Y and Xuan YT: A murine model of inducible, cardiac-specific deletion of STAT3: Its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J Mol Cell Cardiol. 50:589–597. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA and Das DK: Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol. 33:1929–1936. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Shen P, Chen J and Pan M: The protective effects of total paeony glycoside on ischemia/reperfusion injury in H9C2 cells via inhibition of the PI3K/Akt signaling pathway. Mol Med Rep. 18:3332–3340. 2018.PubMed/NCBI

99 

Koeppen M, Lee JW, Seo SW, Brodsky KS, Kreth S, Yang IV, Buttrick PM, Eckle T and Eltzschig HK: Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat Commun. 9:8162018. View Article : Google Scholar : PubMed/NCBI

100 

Li T, Yu J, Chen R, Wu J, Fei J, Bo Q, Xue L and Li D: Mycophenolate mofetil attenuates myocardial ischemia-reperfusion injury via regulation of the TLR4/NF-κB signaling pathway. Pharmazie. 69:850–855. 2014.

101 

Lin J, Wang H, Li J, Wang Q, Zhang S, Feng N, Fan R and Pei J: κ-Opioid receptor stimulation modulates TLR4/NF-κB signaling in the rat heart subjected to ischemia-reperfusion. Cytokine. 61:842–848. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Li J, Xie C, Zhuang J, Li H, Yao Y, Shao C and Wang H: Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-κB signaling pathway. Mol Med Rep. 11:1120–1126. 2015.

103 

Gao Y, Song G, Cao YJ, Yan KP, Li B, Zhu XF, Wang YP, Xing ZY, Cui L, Wang XX and Zhu MJ: The Guizhi Gancao Decoction attenuates myocardial ischemia-reperfusion injury by suppressing inflammation and cardiomyocyte apoptosis. Evid Based Complement Alternat Med. 2019:19474652019. View Article : Google Scholar : PubMed/NCBI

104 

Zhang N, Ye F, Zhu W, Hu D, Xiao C, Nan J, Su S, Wang Y, Liu M, Gao K, et al: Cardiac ankyrin repeat protein attenuates cardiomyocyte apoptosis by upregulation of Bcl-2 expression. Biochim Biophys Acta. 1863:3040–3049. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Ibrahim A: Inhibition of α-SMA, Bax and increase of BCL2 expression in myocardiocytes as response to chitosan administration to hypercholesterolemic rats. World J Pharm Pharmac Sci. 5:164–176. 2016.

106 

Guo J, Li HZ, Wang LC, Zhang WH, Li GW, Xing WJ, Wang R and Xu CQ: Increased expression of calcium-sensing receptors in atherosclerosis confers hypersensitivity to acute myocardial infarction in rats. Mol Cell Biochem. 366:345–354. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Kuo WW, Hsu TC, Chain MH, Lai CH, Wang WH, Tsai FJ, Tsai CH, Wu CH, Huang CY and Tzang BS: Attenuated cardiac mitochondrial-dependent apoptotic effects by li-fu formula in hamsters fed with a hypercholesterol diet. Evid Based Complement Alternat Med. 2011:5303452011. View Article : Google Scholar :

108 

Latif N, Khan MA, Birks E, O'Farrell A, Westbrook J, Dunn MJ and Yacoub MH: Upregulation of the Bcl-2 family of proteins in end stage heart failure. J Am Coll Cardiol. 35:1769–1777. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Wang TD, Chen WJ, Su SS, Lo SC, Lin WW and Lee YT: Increased cardiomyocyte apoptosis following ischemia and reperfusion in diet-induced hypercholesterolemia: Relation to Bcl-2 and Bax proteins and caspase-3 activity. Lipids. 37:385–394. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Ye Y, Perez-Polo JR, Qian J and Birnbaum Y: The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics. 43:534–542. 2011. View Article : Google Scholar

111 

Tang R, Long T, Lui KO, Chen Y and Huang ZP: A roadmap for fixing the heart: RNA regulatory networks in cardiac disease. Mol Ther Nucleic Acids. 20:673–686. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Kukreja RC, Yin C and Salloum FN: MicroRNAs: New players in cardiac injury and protection. Mol Pharmacol. 80:558–564. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Çakmak HA and Demir M: MicroRNA and cardiovascular diseases. Balkan Med J. 37:60–71. 2020.PubMed/NCBI

114 

Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L and Congdon CB: Common features of microRNA target prediction tools. Front Genet. 5:232014. View Article : Google Scholar : PubMed/NCBI

115 

Cao L, Wang J and Wang PQ: MiR-326 is a diagnostic biomarker and regulates cell survival and apoptosis by targeting Bcl-2 in osteosarcoma. Biomed Pharmacother. 84:828–835. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S and Zhang C: A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 119:87–95. 2010. View Article : Google Scholar

117 

Dehaini H, Awada H, El-Yazbi A, Zouein FA, Issa K, Eid AA, Ibrahim M, Badran A, Baydoun E, Pintus G and Eid AH: MicroRNAs as potential pharmaco-targets in ischemia-reperfusion injury compounded by diabetes. Cells. 8:1522019. View Article : Google Scholar :

118 

Yan H, Li Y, Wang C, Zhang Y, Liu C, Zhou K and Hua Y: Contrary microRNA expression pattern between fetal and adult cardiac remodeling: Therapeutic value for heart failure. Cardiovasc Toxicol. 17:267–276. 2017. View Article : Google Scholar

119 

Tang Y, Zheng J, Sun Y, Wu Z, Liu Z and Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 50:377–387. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Xie XJ, Fan DM, Xi K, Chen YW, Qi PW, Li QH, Fang L and Ma LG: Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia. Biosci Rep. 37:BSR201701862017. View Article : Google Scholar : PubMed/NCBI

121 

Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, et al: Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 110:71–81. 2012. View Article : Google Scholar :

122 

Liu X, Nie J and Li C: Targeted regulation of Bcl 2 by miR-16 for cardiomyocyte apoptosis after cardiac infarction. Int J Clin Exp Pathol. 10:4626–4632. 2017.

123 

Yang W, Yang Y, Xia L, Yang Y, Wang F, Song M, Chen X, Liu J, Song Y, Zhao Y and Yang C: MiR-221 promotes Capan-2 pancreatic ductal adenocarcinoma cells proliferation by targeting PTEN-Akt. Cell Physiol Biochem. 38:2366–2374. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Ye Z, Hao R, Cai Y, Wang X and Huang G: Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumour Biol. 37:4509–4515. 2016. View Article : Google Scholar

125 

Kong QR, Ji DM, Li FR, Sun HY and Wang QX: MicroRNA-221 promotes myocardial apoptosis caused by myocardial ischemia-reperfusion by down-regulating PTEN. Eur Rev Med Pharmacol Sci. 23:3967–3975. 2019.PubMed/NCBI

126 

Li X, Zeng Z, Li Q, Xu Q, Xie J, Hao H, Luo G, Liao W, Bin J, Huang X and Liao Y: Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget. 6:18829–18844. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Yang Q, Yang K and Li A: microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med Rep. 9:2213–2220. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Fan ZX and Yang J: The role of microRNAs in regulating myocardial ischemia reperfusion injury. Saudi Med J. 36:787–793. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Yang J, Chen L, Yang J, Ding J, Li S, Wu H, Zhang J, Fan Z, Dong W and Li X: MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats. Mol Biol Rep. 41:555–561. 2014. View Article : Google Scholar

130 

Yang J, Fan Z, Yang J, Ding J, Yang C and Chen L: microRNA-22 attenuates myocardial ischemia-reperfusion injury via an anti-inflammatory mechanism in rats. Exp Ther Med. 12:3249–3255. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Liu S, Yang Y, Song YQ, Geng J and Chen QL: Protective effects of N(2)-L-alanyl-L-glutamine mediated by the JAK2/STAT3 signaling pathway on myocardial ischemia reperfusion. Mol Med Rep. 17:5102–5108. 2018.PubMed/NCBI

132 

Xu D, Li H, Zhao Y and Wang C: Downregulation of miR-34 a attenuates myocardial ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. Int J Clin Exp Pathol. 10:3865–3875. 2017.

133 

Kikuchi K and Poss KD: Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol. 28:719–741. 2012. View Article : Google Scholar : PubMed/NCBI

134 

Biala AK and Kirshenbaum LA: The interplay between cell death signaling pathways in the heart. Trends Cardiovasc Med. 24:325–331. 2014. View Article : Google Scholar : PubMed/NCBI

135 

McCully JD, Wakiyama H, Hsieh YJ, Jones M and Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 286:H1923–H1935. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Mocanu MM, Baxter GF and Yellon DM: Caspase inhibition and limitation of myocardial infarct size: Protection against lethal reperfusion injury. Br J Pharmacol. 130:197–200. 2000. View Article : Google Scholar : PubMed/NCBI

137 

Baxter G, Mocanu M, Brar B, Latchman D and Yellon D: Cardioprotective effects of transforming growth factor-beta1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J Cardiovasc Pharmacol. 38:930–939. 2001. View Article : Google Scholar : PubMed/NCBI

138 

Yellon DM and Baxter GF: Reperfusion injury revisited: Is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med. 9:245–249. 1999. View Article : Google Scholar

139 

Davidson SM, Ferdinandy P, Andreadou I, Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, et al: Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 73:89–99. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Soares ROS, Losada DM, Jordani MC, Évora P and Castro-E-Silva O: Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int J Mol Sci. 20:50342019. View Article : Google Scholar :

141 

Euler G: Good and bad sides of TGFβ-signaling in myocardial infarction. Front Physiol. 6:662015. View Article : Google Scholar

142 

Yellon DM and Hausenloy DJ: Myocardial reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI

143 

Mykytenko J, Kerendi F, Reeves JG, Kin H, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J and Zhao ZQ: Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol. 102:90–100. 2007. View Article : Google Scholar

144 

Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D and Ovize M: Postconditioning inhibits mitochondrial permeability transition. Circulation. 111:194–197. 2005. View Article : Google Scholar : PubMed/NCBI

145 

Pagliaro P, Femminò S, Popara J and Penna C: Mitochondria in cardiac postconditioning. Front Physiol. 9:2872018. View Article : Google Scholar : PubMed/NCBI

146 

Heusch G: Critical issues for the translation of cardioprotection. Circ Res. 120:1477–1486. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Heusch G: Cardioprotection research must leave its comfort zone. Eur Heart J. 39:3393–3395. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM and Garcia-Dorado D: Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: Trials and tribulations. Eur Heart J. 38:935–941. 2017.

149 

Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF and Schulz R: Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 66:1142–1174. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, et al: Novel targets and future strategies for acute cardioprotection: Position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 113:564–585. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Inserte J, Hernando V, Vilardosa Ú, Abad E, Poncelas-Nozal M and Garcia/Dorado D: Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative Stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc. 2:e0059752013. View Article : Google Scholar : PubMed/NCBI

152 

Kleinbongard P, Skyschally A and Heusch G: Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch. 469:159–181. 2017. View Article : Google Scholar

153 

Heusch G: Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 116:674–699. 2015. View Article : Google Scholar : PubMed/NCBI

154 

Murry CE, Jennings RB and Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 74:1124–1136. 1986. View Article : Google Scholar : PubMed/NCBI

155 

Wever KE, Hooijmans CR, Riksen NP, Sterenborg TB, Sena ES, Ritskes-Hoitinga M and Warlé MC: Determinants of the efficacy of cardiac ischemic preconditioning: A systematic review and meta-analysis of animal studies. PLoS One. 10:e01420212015. View Article : Google Scholar : PubMed/NCBI

156 

Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, Ritskes-Hoitinga M, Hooijmans CR and Warlé M: Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS One. 7:e322962012. View Article : Google Scholar : PubMed/NCBI

157 

Yellon DM, Alkhulaifi AM and Pugsley WB: Preconditioning the human myocardium. Lancet. 342:276–277. 1993. View Article : Google Scholar : PubMed/NCBI

158 

Rossello X and Yellon DM: The RISK pathway and beyond. Basic Res Cardiol. 113:22017. View Article : Google Scholar : PubMed/NCBI

159 

Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, et al: Ischaemic conditioning and targeting reperfusion injury: A 30 year voyage of discovery. Basic Res Cardiol. 111:702016. View Article : Google Scholar

160 

Sun XJ and Mao JR: Role of Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in cardioprotection of exercise preconditioning. Eur Rev Med Pharmacol Sci. 22:4975–4986. 2018.PubMed/NCBI

161 

Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z and Yi D: The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol. 107:2632012. View Article : Google Scholar : PubMed/NCBI

162 

Goodman MD, Koch SE, Afzal MR and Butler KL: STAT subtype specificity and ischemic preconditioning in mice: Is STAT-3 enough? Am J Physiol Heart Circ Physiol. 300:H522–H526. 2011. View Article : Google Scholar :

163 

Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, Wu WJ, Tan W and Bolli R: IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res. 64:61–71. 2004. View Article : Google Scholar : PubMed/NCBI

164 

Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO and Bolli R: Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation. 112:1971–1978. 2005. View Article : Google Scholar : PubMed/NCBI

165 

Chen TI, Shen YJ, Wang IC and Yang KT: Short-term exercise provides left ventricular myocardial protection against intermit-tent hypoxia-induced apoptosis in rats. Eur J Appl Physiol. 111:1939–1950. 2011. View Article : Google Scholar : PubMed/NCBI

166 

Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA and Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 285:H579–H588. 2003. View Article : Google Scholar : PubMed/NCBI

167 

Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, Cung TT, Bonnefoy E, Angoulvant D, Aupetit JF, et al: Long-term benefit of postconditioning. Circulation. 117:1037–1044. 2008. View Article : Google Scholar : PubMed/NCBI

168 

Zhao CM, Yang XJ, Yang JH, Cheng XJ, Zhao X, Zhou BY, Xu SD and Wang HF: Effect of ischaemic postconditioning on recovery of left ventricular contractile function after acute myocardial infarction. J Int Med Res. 40:1082–1088. 2012. View Article : Google Scholar : PubMed/NCBI

169 

Tian Y, Zhang W, Xia D, Modi P, Liang D and Wei M: Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a AK2-STAT3-BCL2 pathway. J Biomed Sci. 18:532011. View Article : Google Scholar

170 

Shyu WC, Lin SZ, Chiang MF, Chen DC, Su CY, Wang HJ, Liu RS, Tsai CH and Li H: Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest. 118:133–148. 2008. View Article : Google Scholar

171 

Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, et al: Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA. 104:7391–7396. 2007. View Article : Google Scholar : PubMed/NCBI

172 

Hausenloy DJ, Tsang A and Yellon DM: The reperfusion injury salvage kinase pathway: A common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 15:69–75. 2005. View Article : Google Scholar : PubMed/NCBI

173 

Jin YC, Lee YS, Kim YM, Seo HG, Lee JH, Kim HJ, Yun-Choi HS and Chang KC: (S)-1-(alpha-naphthylmethyl)-6,7-di hydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712) reduces rat myocardial apoptosis against ischemia and reperfusion injury by activation of phosphatidylinositol 3-kinase/Akt signaling and anti-inflammatory action in vivo. J Pharmacol Exp Ther. 330:440–448. 2009. View Article : Google Scholar : PubMed/NCBI

174 

Takahama H, Minamino T, Hirata A, Ogai A, Asanuma H, Fujita M, Wa keno M, Tsukamoto O, Okada K, Komamura K, et al: Granulocyte colony-stimulating factor mediates cardioprotection against ischemia/reperfusion injury via phosphatidylinositol-3-kinase/Akt pathway in canine hearts. Cardiovasc Drugs Ther. 20:159–165. 2006. View Article : Google Scholar : PubMed/NCBI

175 

Goodman MD, Koch SE, Fuller-Bicer GA and Butler KL: Regulating RISK: A role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol. 295:H1649–H1656. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Wu N, Zhang X, Jia P and Jia D: Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis. Exp Mol Pathol. 99:449–454. 2015. View Article : Google Scholar : PubMed/NCBI

177 

Luo T, Zeng X, Yang W and Zhang Y: Treatment with metformin prevents myocardial ischemia-reperfusion injury via STEAP4 signaling pathway. Anatol J Cardiol. 21:261–271. 2019.PubMed/NCBI

178 

Hu M, Ye P, Liao H, Chen M and Yang F: Metformin protects H9C2 cardiomyocytes from high-glucose and hypoxia/reoxygenation injury via inhibition of reactive oxygen species generation and inflammatory responses: Role of AMPK and JNK. J Diabetes Res. 2016:29619542016. View Article : Google Scholar : PubMed/NCBI

179 

Kahn BB, Alquier T, Carling D and Hardie DG: AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1:15–25. 2005. View Article : Google Scholar : PubMed/NCBI

180 

Wang Y, Liu J, Ma A and Chen Y: Cardioprotective effect of berberine against myocardial ischemia/reperfusion injury via attenuating mitochondrial dysfunction and apoptosis. Int J Clin Exp Med. 8:14513–14519. 2015.PubMed/NCBI

181 

Wang Y, Zhang H, Chai F, Liu X and Berk M: The effects of escitalopram on myocardial apoptosis and the expression of Bax and BCL2 during myocardial ischemia/reperfusion in a model of rats with depression. BMC Psychiatry. 14:3492014. View Article : Google Scholar

182 

Zhang SW, Liu Y, Wang F, Qiang J, Liu P, Zhang J and Xu JW: Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway. PLoS One. 12:e01709842017. View Article : Google Scholar : PubMed/NCBI

183 

Cheng X, Hu J, Wang Y, Ye H, Li X, Gao Q and Li Z: Effects of dexmedetomidine postconditioning on myocardial ischemia/reperfusion injury in diabetic rats: Role of the PI3K/Akt-dependent signaling pathway. J Diabetes Res. 2018:30719592018. View Article : Google Scholar : PubMed/NCBI

184 

Morris RE: Prevention and treatment of allograft rejection in vivo by rapamycin: Molecular and cellular mechanisms of action. Ann N Y Acad Sci. 685:68–72. 1993. View Article : Google Scholar : PubMed/NCBI

185 

Menown IBA, Mamas MA, Cotton JM, Hildick-Smith D, Eberli FR, Leibundgut G, Tresukosol D, Macaya C, Copt S, Sadozai Slama S and Stoll HP: First clinical evidence characterizing safety and efficacy of the new CoCr Biolimus-A9 eluting stent: The Biomatrix Alpha™ registry. Int J Cardiol Heart Vasc. 26:1004722020.

186 

Das A, Salloum FN, Durrant D, Ockaili R and Kukreja RC: Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway. J Mol Cell Cardiol. 53:858–869. 2012. View Article : Google Scholar : PubMed/NCBI

187 

Filippone SM, Samidurai A, Roh SK, Cain CK, He J, Salloum FN, Kukreja RC and Das A: Reperfusion therapy with rapamycin attenuates myocardial infarction through activation of AKT and ERK. Oxid Med Cell Longev. 2017:46197202017. View Article : Google Scholar : PubMed/NCBI

188 

Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z, Yu B, Ren K, et al: Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res. 63:2017. View Article : Google Scholar

189 

Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S and Sadoshima J: Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 122:2170–2182. 2010. View Article : Google Scholar : PubMed/NCBI

190 

Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, et al: Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: Role of SIRT1. J Pineal Res. 57:228–238. 2014. View Article : Google Scholar : PubMed/NCBI

191 

Hardi DG: Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface. 15:201707742018. View Article : Google Scholar

192 

Zhang M, Zhao Z, Shen M, Zhang Y, Duan J, Guo Y, Zhang D, Hu J, Lin J, Man W, et al: Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3. Biochim Biophys Acta Mol Basis Dis. 1863:1962–1972. 2017. View Article : Google Scholar

193 

Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, et al: Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: Role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep. 7:413372017. View Article : Google Scholar

194 

Yu L, Liang H, Lu Z, Zhao G, Zhai M, Yang Y, Yang J, Yi D, Chen W, Wang X, et al: Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia-reperfusion injury: In vivo and in vitro studies. J Pineal Res. 59:420–433. 2015. View Article : Google Scholar : PubMed/NCBI

195 

Heusch G: Myocardial ischaemia-reperfusion injury and cardio-protection in perspective. Nat Rev Cardiol. Jul 3–2020.Epub ahead of print. View Article : Google Scholar

196 

Gross A and Katz SG: Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ. 24:1348–1358. 2017. View Article : Google Scholar : PubMed/NCBI

197 

Chiu WT, Chang HA, Lin YH, Lin YS, Chang HT, Lin HH, Huang SC, Tang MJ and Shen MR: Bcl-2 regulates store-operated Ca2+ entry to modulate ER stress-induced apoptosis. Cell Death Discov. 4:372018. View Article : Google Scholar

198 

Bonneau B, Prudent J, Popgeorgiev N and Gillet G: Non-apoptotic roles of Bcl-2 family: The calcium connection. Biochim Biophys Acta. 1833:1755–176. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM and Agostinelli E: BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review). Int J Mol Med 47: 23-36, 2021.
APA
Korshunova, A.Y., Blagonravov, M.L., Neborak, E.V., Syatkin, S.P., Sklifasovskaya, A.P., Semyatov, S.M., & Agostinelli, E. (2021). BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review). International Journal of Molecular Medicine, 47, 23-36. https://doi.org/10.3892/ijmm.2020.4781
MLA
Korshunova, A. Y., Blagonravov, M. L., Neborak, E. V., Syatkin, S. P., Sklifasovskaya, A. P., Semyatov, S. M., Agostinelli, E."BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review)". International Journal of Molecular Medicine 47.1 (2021): 23-36.
Chicago
Korshunova, A. Y., Blagonravov, M. L., Neborak, E. V., Syatkin, S. P., Sklifasovskaya, A. P., Semyatov, S. M., Agostinelli, E."BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review)". International Journal of Molecular Medicine 47, no. 1 (2021): 23-36. https://doi.org/10.3892/ijmm.2020.4781
Copy and paste a formatted citation
x
Spandidos Publications style
Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM and Agostinelli E: BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review). Int J Mol Med 47: 23-36, 2021.
APA
Korshunova, A.Y., Blagonravov, M.L., Neborak, E.V., Syatkin, S.P., Sklifasovskaya, A.P., Semyatov, S.M., & Agostinelli, E. (2021). BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review). International Journal of Molecular Medicine, 47, 23-36. https://doi.org/10.3892/ijmm.2020.4781
MLA
Korshunova, A. Y., Blagonravov, M. L., Neborak, E. V., Syatkin, S. P., Sklifasovskaya, A. P., Semyatov, S. M., Agostinelli, E."BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review)". International Journal of Molecular Medicine 47.1 (2021): 23-36.
Chicago
Korshunova, A. Y., Blagonravov, M. L., Neborak, E. V., Syatkin, S. P., Sklifasovskaya, A. P., Semyatov, S. M., Agostinelli, E."BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review)". International Journal of Molecular Medicine 47, no. 1 (2021): 23-36. https://doi.org/10.3892/ijmm.2020.4781
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team