BCL2‑regulated apoptotic process in myocardial ischemia‑reperfusion injury (Review)
- Authors:
- Anna Yu. Korshunova
- Mikhail L. Blagonravov
- Ekaterina V. Neborak
- Sergey P. Syatkin
- Anastasia P. Sklifasovskaya
- Said M. Semyatov
- Enzo Agostinelli
-
Affiliations: Department of Pathophysiology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation, Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation, Department of Obstetrics and Gynecology with the Course of Perinatology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russian Federation, Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I‑00161 Rome, Italy - Published online on: November 4, 2020 https://doi.org/10.3892/ijmm.2020.4781
- Pages: 23-36
-
Copyright: © Korshunova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kerr JF, Wyllie AH and Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 26:239–257. 1972. View Article : Google Scholar : PubMed/NCBI | |
Rogalińska M: Alterations in cell nuclei during apoptosis. Cell Mol Biol Lett. 7:995–1018. 2002. | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tait SW and Green DR: Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 11:621–632. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kalkavan H and Green DR: MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25:46–55. 2018. View Article : Google Scholar | |
Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar | |
Galluzzi L, Kepp O and Kroemer G: Mitochondrial regulation of cell death: A phylogenetically conserved control. Microb Cell. 3:101–108. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moldoveanu T, Follis AV, Kriwacki RW and Green DR: Many players in BCL-2 family affairs. Trends Biochem Sci. 39:101–111. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shamas-Din A, Kale J, Leber B and Andrews DW: Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 5:a0087142013. View Article : Google Scholar : PubMed/NCBI | |
Hardwick JM, Chen Y and Jonas EA: Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol. 22:318–328. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pihán P, Carreras-Sureda A and Hetz C: BCL-2 family: Integrating stress responses at the ER to control cell demise. Cell Death Differ. 24:1478–1487. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J and Ney PA: Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16:939–946. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zamorano S, Rojas-Rivera D, Lisbona F, Parra V, Court FA, Villegas R, Cheng EH, Korsmeyer SJ, Lavandero S and Hetz C: A BAX/BAK and cyclophilin D-independent intrinsic apoptosis pathway. PLoS One. 7:e377822012. View Article : Google Scholar : PubMed/NCBI | |
Kilbride SM and Prehn JH: Central roles of apoptotic proteins in mitochondrial function. Oncogene. 32:2703–2711. 2013. View Article : Google Scholar | |
Parsons M and Green D: Mitochondria in cell death. Essays Biochem. 47:99–114. 2010. View Article : Google Scholar : PubMed/NCBI | |
Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE and Oltvai ZN: BCL2/Bax: A rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 4:327–332. 1993.PubMed/NCBI | |
Abbate A, Bussani R, Amin MS, Vetrovec GW and Baldi A: Acute myocardial infarction and heart failure: Role of apoptosis. Int J Biochem Cell Biol. 38:1834–1840. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ahmad F, Lal H, Zhou J, Vagnozzi RJ, Yu JE, Shang X, Woodgett JR, Gao E and Force T: Cardiomyocyte-specific deletion of Gsk3α mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure. J Am Coll Cardiol. 64:696–706. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chinda K, Sanit J, Chattipakorn S and Chattipakorn N: Dipeptidyl peptidase-4 inhibitor reduces infarct size and preserves cardiac function via mitochondrial protection in ischaemia-reperfusion rat heart. Diab Vasc Dis Res. 11:75–83. 2014. View Article : Google Scholar | |
Gao CK, Liu H, Cui CJ, Liang ZG, Yao H and Tian Y: Roles of MicroRNA-195 in cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion injury. J Genet. 95:99–108. 2016. View Article : Google Scholar : PubMed/NCBI | |
World Health Organization (WHO): World Health Statistics 2019: Monitoring health for the SDGs. WHO; Geneva: 2019 | |
Rajaleid K, Janszky I and Hallqvist J: Small birth size, adult over-weight, and risk of acute myocardial infraction. Epidemiology. 22:138–147. 2011. View Article : Google Scholar | |
Minamino T: Cardioprotection from ischemia/reperfusion injury: Basic and translational research. Circ J. 76:1074–1082. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Lu J, Luo Y, Li S and Chen M: High association between human circulating microRNA-497 and acute myocardial infarction. ScientificWorldJournal. 2014:9318452014.PubMed/NCBI | |
Eltzschig HK and Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 17:1391–1401. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jennings RB, Sommers HM, Smyth GA, Flack HA and Linn H: Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 70:68–78. 1960.PubMed/NCBI | |
Bak MI and Ingwall JS: Contribution of Na+/H+ exchange to Na+ overload in the ischemic hypertrophied hyperthyroid rat heart. Cardiovasc Res. 57:1004–1014. 2003. View Article : Google Scholar : PubMed/NCBI | |
Murphy E and Steenbergen C: Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 88:581–609. 2008. View Article : Google Scholar : PubMed/NCBI | |
Budhram-Mahadeo V, Fujita R, Bitsi S, Sicard P and Heads R: Co-expression of POU4F2/Brn-3b with p53 may be important for controlling expression of pro-apoptotic genes in cardiomyocytes following ischaemic/hypoxic insults. Cell Death Dis. 5:e15032014. View Article : Google Scholar : PubMed/NCBI | |
Fröhlich GM, Meier P, White SK, Yellon DM and Hausenloy DJ: Myocardial reperfusion injury: Looking beyond primary PCI. Eur Heart J. 34:1714–1722. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Hua F, Lu J, Jiang Y, Tang Y, Tao L, Zou B and Wu Q: Effect of dexmedetomidine on myocardial ischemia-reperfusion injury. Int J Clin Exp Med. 8:21166–21172. 2015. | |
Moens AL, Claeys MJ, Timmermans JP and Vrints CJ: Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol. 100:179–190. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu LF, Liang Z, Lv ZR, Liu XH, Bai J, Chen J, Chen C and Wang Y: MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. J Geriatr Cardiol. 9:28–32. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brown DI and Griendling KK: Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res. 116:531–549. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Ischemia/reperfusion. Compr Physiol. 7:113–170. 2016. View Article : Google Scholar | |
Neri M, Riezzo I, Pascale N, Pomara C and Turillazzi E: Ischemia/reperfusion injury following acute myocardial infarction: A critical issue for clinicians and forensic pathologists. Mediators Inflamm. 2017:70183932017. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ha T, Zou J, Ren D, Liu L, Zhang X, Kalbfleisch J, Gao X, Williams D and Li C: MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-medi-ated apoptotic signalling and TRAF6. Cardiovasc Res. 102:385–395. 2014. View Article : Google Scholar : PubMed/NCBI | |
LeBaron TW, Kura B, Kalocayova B, Tribulova N and Slezak J: A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules. 24:20762019. View Article : Google Scholar : | |
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI | |
Radomski MW, Palmer RM and Moncada S: Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 2:1057–1058. 1987. View Article : Google Scholar : PubMed/NCBI | |
Xia Y and Zweier JL: Substrate control of free radical generation from xanthine oxidase in the postischemic heart. J Biol Chem. 270:18797–18803. 1995. View Article : Google Scholar : PubMed/NCBI | |
Zhang WP, Zong QF, Gao Q, Yu Y, Gu XY, Wang Y, Li ZH and Ge M: Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol Med Rep. 14:3992–3998. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang G, Liang Z, Liu X, Li T, Fan J, Bai J and Wang Y: MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis. 19:19–29. 2014. View Article : Google Scholar | |
Li CM, Shen SW, Wang T and Zhang XH: Myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway. Int J Clin Exp Med. 8:15801–15807. 2015.PubMed/NCBI | |
Liou SF, Ke HJ, Hsu JH, Liang JC, Lin HH, Chen IJ and Yeh JL: San-Huang-Xie-Xin-Tang prevents rat hearts from ischemia/reperfusion-induced apoptosis through eNOS and MAPK pathways. Evid Based Complement Alternat Med. 2011:9150512011. View Article : Google Scholar : PubMed/NCBI | |
Chen Q and Lesnefsky EJ: Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett. 585:921–926. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Xu H, Xu A, Ross T, Bowler E, Hu Y and Lesnefsky EJ: Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria. PLoS One. 10:e01188342015. View Article : Google Scholar : PubMed/NCBI | |
Gustafsson AB and Gottlieb RA: Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 292:C45–C51. 2007. View Article : Google Scholar | |
Murphy E, Imahashi K and Steenbergen C: Bcl-2 regulation of mitochondrial energetics. Trends Cardiovasc Med. 15:283–290. 2005. View Article : Google Scholar : PubMed/NCBI | |
Qiao Z and Xu Y: Salvianolic acid b alleviating myocardium injury in ischemia reperfusion rats. Afr J Tradit Complement Altern Med. 13:157–161. 2016. View Article : Google Scholar | |
Zhang HY, McPherson BC, Liu H, Baman TS, Rock P and Yao Z: H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via protein kinase C-epsilon in cardiomyocytes. Am J Physiol Heart Circ Physiol. 282:H1395–H1403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Meng G, Wang J, Xiao Y, Bai W, Xie L, Shan L, Moore PK and Ji Y: GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res. 29:203–213. 2015.PubMed/NCBI | |
Song T, Wang P, Yu X, Wang A, Chai G, Fan Y and Zhang Z: Systems analysis of phosphorylation-regulated Bcl-2 interactions establishes a model to reconcile the controversy over the significance of Bcl-2 phosphorylation. Br J Pharmacol. 176:491–504. 2019. View Article : Google Scholar | |
Markou T, Dowling AA, Kelly T and Lazou A: Regulation of Bcl-2 phosphorylation in response to oxidative stress in cardiac myocytes. Free Radic Res. 43:809–816. 2009. View Article : Google Scholar : PubMed/NCBI | |
Syeda MZ, Fasae MB, Yue E, Ishimwe AP, Jiang Y, Du Z, Yang B and Bai Y: Anthocyanidin attenuates myocardial ischemia induced injury via inhibition of ROS-JNK-BCL2 pathway: New mechanism of anthocyanidin action. Phytother Res. 33:3129–3139. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Deng X, Liu Y, Liu Y, Sun L and Chen F: PKM2, function and expression and regulation. Cell Biosci. 9:522019. View Article : Google Scholar : PubMed/NCBI | |
Menon MB and Dhamija S: Beclin 1 Phosphorylation-at the center of autophagy regulation. Front Cell Dev Biol. 6:1372018. View Article : Google Scholar | |
Wei Y, Sinha S and Levine B: Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy. 4:949–951. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schulman D, Latchman DS and Yellon DM: Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol. 283:H1481–H1488. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ, Tsang A, Mocanu MM and Yellon DM: Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol. 288:H971–H976. 2005. View Article : Google Scholar | |
Carter AN, Born HA, Levine AT, Dao AT, Zhao AJ, Lee WL and Anderson AE: Wortmannin attenuates seizure-induced hyperactive PI3K/Akt/mTOR signaling, impaired memory, and spine dysmorphology in rats. eNeuro. 4. pp. ENEURO.0354–16.2017. 2017, View Article : Google Scholar | |
Very N, Vercoutter-Edouart AS, Lefebvre T, Hardivillé S and El Yazidi-Belkoura I: Cross-dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR axis in human chronic diseases. Front Endocrinol (Lausanne). 9:6022018. View Article : Google Scholar | |
Chi Y, Ma Q, Ding XQ, Qin X, Wang C and Zhang J: Research on protective mechanism of ibuprofen in myocardial ischemia-reperfusion injury in rats through the PI3K/Akt/mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 23:4465–4473. 2019.PubMed/NCBI | |
Liang K, Ye Y, Wang Y, Zhang J and Li C: Formononetin mediates neuroprotection against cerebral ischemia/reperfusion in rats via downregulation of the Bax/BCL2 ratio and upregulation PI3K/Akt signaling pathway. J Neurol Sci. 344:100–104. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yu LN, Yu J, Zhang FJ, Yang MJ, Ding TT, Wang JK, He W, Fang T, Chen G and Yan M: Sevoflurane postconditioning reduces myocardial reperfusion injury in rat isolated hearts via activation of PI3K/Akt signaling and modulation of Bcl-2 family proteins. J Zhejiang Univ Sci B. 11:661–672. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, Hua F, Xu G and Yu P: Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep. 4:73172014. View Article : Google Scholar : PubMed/NCBI | |
Keyes KT, Xu J, Long B, Zhang C, Hu Z and Ye Y: Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol. 298:H1198–H1208. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zu L, Zheng X, Wang B, Parajuli N, Steenbergen C, Becker LC and Cai ZP: Ischemic preconditioning attenuates mitochondrial localization of PTEN induced by ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 300:H2177–H2186. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu YB, Ding N, Yi HL and Li ZQ: The expression of overexpressed PTEN enhanced IR-induced apoptosis of myocardial cells. Eur Rev Med Pharmacol Sci. 23:4406–4413. 2019.PubMed/NCBI | |
Robinson MJ and Cobb MH: Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 9:180–186. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hernández-Reséndiz S, Roldán FJ, Correa F, Martínez-Abundis E, Osorio-Valencia G, Ruíz-de-Jesús O, Alexánderson-Rosas E, Vigueras RM, Franco M and Zazueta C: Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J Card Fail. 19:135–146. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holderfield M, Deuker MM, McCormick F and McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 14:455–467. 2014. View Article : Google Scholar : PubMed/NCBI | |
Balmanno K and Cook SJ: Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 16:368–377. 2009. View Article : Google Scholar | |
Zhou QL, Teng F, Zhang YS, Sun Q, Cao YX and Meng GW: FPR1 gene silencing suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/reperfusion injury through the inhibition of MAPK signaling pathway. Exp Cell Res. 370:506–518. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun G, Ye N, Dai D, Chen Y, Li C and Sun Y: The protective role of the TOPK/PBK pathway in myocardial ischemia/reperfusion and H2O2-induced injury in H9C2 cardiomyocytes. Int J Mol Sci. 17:2672016. View Article : Google Scholar | |
Sun MH, Chen XC, Han M, Yang YN, Gao XM, Ma X, Huang Y, Li XM, Gai MT, Liu F, et al: Cardioprotective effects of constitutively active MEK1 against H2O2-induced apoptosis and autophagy in cardiomyocytes via the ERK1/2 signaling pathway. Biochem Biophys Res Commun. 512:125–130. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee ML, Sulistyowati E, Hsu JH, Huang BY, Dai ZK, Wu BN, Chao YY and Yeh JL: KMUP-1 ameliorates ischemia-induced cardiomyocyte apoptosis through the NO−cGMP−MAPK signaling pathways. Molecules. 24:13762019. View Article : Google Scholar | |
Razavi HM, Hamilton JA and Feng Q: Modulation of apoptosis by nitric oxide: Implications in myocardial ischemia and heart failure. Pharmacol Ther. 106:147–162. 2005. View Article : Google Scholar : PubMed/NCBI | |
Burley DS, Ferdinandy P and Baxter GF: Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: Opportunities and obstacles for survival signaling. Br J Pharmacol. 152:855–869. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA and Atochin DN: c-Jun N-Terminal Kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front Pharmacol. 9:7152018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhang Y, Ding K, Zhang H, Zhao Q, Liu Z and Xu Y: Involvement of JNK1/2-NF-κBp65 in the regulation of HMGB2 in myocardial ischemia/reperfusion-induced apoptosis in human AC16 cardiomyocytes. Biomed Pharmacother. 106:1063–1071. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Huang H, He W, Kong B, Hu H, Fan Y, Liao J, Wang L, Mei Y, Liu W, et al: Regulator of G-protein signaling 5 protects cardiomyocytes against apoptosis during in vitro cardiac ischemia-reperfusion in mice by inhibiting both JNK1/2 and P38 signaling pathways. Biochem Biophys Res Commun. 473:551–557. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Xu T, Li D, Pan D, Wu P, Luo Y, Ma Y and Liu Y: JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: Effects of salvianolic acid A intervention. Am J Transl Res. 8:2534–2548. 2016.PubMed/NCBI | |
Frias MA and Montessuit C: JAK-STAT signaling and myocardial glucose metabolism. JAKSTAT. 2:e264582013. | |
Harhous Z, Booz GW, Ovize M, Bidaux G and Kurdi M: An update on the multifaceted roles of STAT3 in the heart. Front Cardiovasc Med. 6:1502019. View Article : Google Scholar : PubMed/NCBI | |
Zhang WY, Zhang QL and Xu MJ: Effects of propofol on myocardial ischemia reperfusion injury through inhibiting the JAK/STAT pathway. Eur Rev Med Pharmacol Sci. 23:6339–6345. 2019.PubMed/NCBI | |
Bolli R, Dawn B and Xuan YT: Emerging role of the JAK-STAT pathway as a mechanism of protection against ischemia/reperfusion injury. J Mol Cell Cardiol. 33:1893–1896. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Che G, Di Z, Sun W, Tian J and Ren M: Calycosin-7-O- β-D-glucoside attenuates myocardial ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice. Mol Cell Biochem. 463:175–187. 2020. View Article : Google Scholar | |
Bolli R, Dawn B and Xuan YT: Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med. 13:72–79. 2003. View Article : Google Scholar : PubMed/NCBI | |
Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY and Ji Y: Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res. 45:898–905. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G and Schulz R: Cardioprotection by ischemic post-conditioning is lost in aged and STAT3-deficient mice. Circ Res. 102:131–135. 2008. View Article : Google Scholar | |
Lecour S: Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J Mol Cell Cardiol. 47:32–40. 2009. View Article : Google Scholar : PubMed/NCBI | |
Myers MG Jr: Cell biology. Moonlighting in mitochondria. Science. 323:723–724. 2009. View Article : Google Scholar : PubMed/NCBI | |
Suleman N, Somers S, Smith R, Opie LH and Lecour SC: Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res. 79:127–133. 2008. View Article : Google Scholar : PubMed/NCBI | |
Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G and Schulz R: The myocardial JAK/STAT pathway: From protection to failure. Pharmacol Ther. 120:172–185. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bolli R, Stein AB, Guo Y, Wang OL, Rokosh G, Dawn B, Molkentin JD, Sanganalmath SK, Zhu Y and Xuan YT: A murine model of inducible, cardiac-specific deletion of STAT3: Its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J Mol Cell Cardiol. 50:589–597. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA and Das DK: Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol. 33:1929–1936. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shen P, Chen J and Pan M: The protective effects of total paeony glycoside on ischemia/reperfusion injury in H9C2 cells via inhibition of the PI3K/Akt signaling pathway. Mol Med Rep. 18:3332–3340. 2018.PubMed/NCBI | |
Koeppen M, Lee JW, Seo SW, Brodsky KS, Kreth S, Yang IV, Buttrick PM, Eckle T and Eltzschig HK: Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat Commun. 9:8162018. View Article : Google Scholar : PubMed/NCBI | |
Li T, Yu J, Chen R, Wu J, Fei J, Bo Q, Xue L and Li D: Mycophenolate mofetil attenuates myocardial ischemia-reperfusion injury via regulation of the TLR4/NF-κB signaling pathway. Pharmazie. 69:850–855. 2014. | |
Lin J, Wang H, Li J, Wang Q, Zhang S, Feng N, Fan R and Pei J: κ-Opioid receptor stimulation modulates TLR4/NF-κB signaling in the rat heart subjected to ischemia-reperfusion. Cytokine. 61:842–848. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li J, Xie C, Zhuang J, Li H, Yao Y, Shao C and Wang H: Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-κB signaling pathway. Mol Med Rep. 11:1120–1126. 2015. | |
Gao Y, Song G, Cao YJ, Yan KP, Li B, Zhu XF, Wang YP, Xing ZY, Cui L, Wang XX and Zhu MJ: The Guizhi Gancao Decoction attenuates myocardial ischemia-reperfusion injury by suppressing inflammation and cardiomyocyte apoptosis. Evid Based Complement Alternat Med. 2019:19474652019. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Ye F, Zhu W, Hu D, Xiao C, Nan J, Su S, Wang Y, Liu M, Gao K, et al: Cardiac ankyrin repeat protein attenuates cardiomyocyte apoptosis by upregulation of Bcl-2 expression. Biochim Biophys Acta. 1863:3040–3049. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim A: Inhibition of α-SMA, Bax and increase of BCL2 expression in myocardiocytes as response to chitosan administration to hypercholesterolemic rats. World J Pharm Pharmac Sci. 5:164–176. 2016. | |
Guo J, Li HZ, Wang LC, Zhang WH, Li GW, Xing WJ, Wang R and Xu CQ: Increased expression of calcium-sensing receptors in atherosclerosis confers hypersensitivity to acute myocardial infarction in rats. Mol Cell Biochem. 366:345–354. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kuo WW, Hsu TC, Chain MH, Lai CH, Wang WH, Tsai FJ, Tsai CH, Wu CH, Huang CY and Tzang BS: Attenuated cardiac mitochondrial-dependent apoptotic effects by li-fu formula in hamsters fed with a hypercholesterol diet. Evid Based Complement Alternat Med. 2011:5303452011. View Article : Google Scholar : | |
Latif N, Khan MA, Birks E, O'Farrell A, Westbrook J, Dunn MJ and Yacoub MH: Upregulation of the Bcl-2 family of proteins in end stage heart failure. J Am Coll Cardiol. 35:1769–1777. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang TD, Chen WJ, Su SS, Lo SC, Lin WW and Lee YT: Increased cardiomyocyte apoptosis following ischemia and reperfusion in diet-induced hypercholesterolemia: Relation to Bcl-2 and Bax proteins and caspase-3 activity. Lipids. 37:385–394. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Perez-Polo JR, Qian J and Birnbaum Y: The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics. 43:534–542. 2011. View Article : Google Scholar | |
Tang R, Long T, Lui KO, Chen Y and Huang ZP: A roadmap for fixing the heart: RNA regulatory networks in cardiac disease. Mol Ther Nucleic Acids. 20:673–686. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kukreja RC, Yin C and Salloum FN: MicroRNAs: New players in cardiac injury and protection. Mol Pharmacol. 80:558–564. 2011. View Article : Google Scholar : PubMed/NCBI | |
Çakmak HA and Demir M: MicroRNA and cardiovascular diseases. Balkan Med J. 37:60–71. 2020.PubMed/NCBI | |
Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L and Congdon CB: Common features of microRNA target prediction tools. Front Genet. 5:232014. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Wang J and Wang PQ: MiR-326 is a diagnostic biomarker and regulates cell survival and apoptosis by targeting Bcl-2 in osteosarcoma. Biomed Pharmacother. 84:828–835. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S and Zhang C: A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond). 119:87–95. 2010. View Article : Google Scholar | |
Dehaini H, Awada H, El-Yazbi A, Zouein FA, Issa K, Eid AA, Ibrahim M, Badran A, Baydoun E, Pintus G and Eid AH: MicroRNAs as potential pharmaco-targets in ischemia-reperfusion injury compounded by diabetes. Cells. 8:1522019. View Article : Google Scholar : | |
Yan H, Li Y, Wang C, Zhang Y, Liu C, Zhou K and Hua Y: Contrary microRNA expression pattern between fetal and adult cardiac remodeling: Therapeutic value for heart failure. Cardiovasc Toxicol. 17:267–276. 2017. View Article : Google Scholar | |
Tang Y, Zheng J, Sun Y, Wu Z, Liu Z and Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 50:377–387. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xie XJ, Fan DM, Xi K, Chen YW, Qi PW, Li QH, Fang L and Ma LG: Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia. Biosci Rep. 37:BSR201701862017. View Article : Google Scholar : PubMed/NCBI | |
Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, et al: Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 110:71–81. 2012. View Article : Google Scholar : | |
Liu X, Nie J and Li C: Targeted regulation of Bcl 2 by miR-16 for cardiomyocyte apoptosis after cardiac infarction. Int J Clin Exp Pathol. 10:4626–4632. 2017. | |
Yang W, Yang Y, Xia L, Yang Y, Wang F, Song M, Chen X, Liu J, Song Y, Zhao Y and Yang C: MiR-221 promotes Capan-2 pancreatic ductal adenocarcinoma cells proliferation by targeting PTEN-Akt. Cell Physiol Biochem. 38:2366–2374. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Hao R, Cai Y, Wang X and Huang G: Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumour Biol. 37:4509–4515. 2016. View Article : Google Scholar | |
Kong QR, Ji DM, Li FR, Sun HY and Wang QX: MicroRNA-221 promotes myocardial apoptosis caused by myocardial ischemia-reperfusion by down-regulating PTEN. Eur Rev Med Pharmacol Sci. 23:3967–3975. 2019.PubMed/NCBI | |
Li X, Zeng Z, Li Q, Xu Q, Xie J, Hao H, Luo G, Liao W, Bin J, Huang X and Liao Y: Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget. 6:18829–18844. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Yang K and Li A: microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol Med Rep. 9:2213–2220. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fan ZX and Yang J: The role of microRNAs in regulating myocardial ischemia reperfusion injury. Saudi Med J. 36:787–793. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Chen L, Yang J, Ding J, Li S, Wu H, Zhang J, Fan Z, Dong W and Li X: MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats. Mol Biol Rep. 41:555–561. 2014. View Article : Google Scholar | |
Yang J, Fan Z, Yang J, Ding J, Yang C and Chen L: microRNA-22 attenuates myocardial ischemia-reperfusion injury via an anti-inflammatory mechanism in rats. Exp Ther Med. 12:3249–3255. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yang Y, Song YQ, Geng J and Chen QL: Protective effects of N(2)-L-alanyl-L-glutamine mediated by the JAK2/STAT3 signaling pathway on myocardial ischemia reperfusion. Mol Med Rep. 17:5102–5108. 2018.PubMed/NCBI | |
Xu D, Li H, Zhao Y and Wang C: Downregulation of miR-34 a attenuates myocardial ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. Int J Clin Exp Pathol. 10:3865–3875. 2017. | |
Kikuchi K and Poss KD: Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol. 28:719–741. 2012. View Article : Google Scholar : PubMed/NCBI | |
Biala AK and Kirshenbaum LA: The interplay between cell death signaling pathways in the heart. Trends Cardiovasc Med. 24:325–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
McCully JD, Wakiyama H, Hsieh YJ, Jones M and Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 286:H1923–H1935. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mocanu MM, Baxter GF and Yellon DM: Caspase inhibition and limitation of myocardial infarct size: Protection against lethal reperfusion injury. Br J Pharmacol. 130:197–200. 2000. View Article : Google Scholar : PubMed/NCBI | |
Baxter G, Mocanu M, Brar B, Latchman D and Yellon D: Cardioprotective effects of transforming growth factor-beta1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J Cardiovasc Pharmacol. 38:930–939. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yellon DM and Baxter GF: Reperfusion injury revisited: Is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med. 9:245–249. 1999. View Article : Google Scholar | |
Davidson SM, Ferdinandy P, Andreadou I, Bøtker HE, Heusch G, Ibáñez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, et al: Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol. 73:89–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Soares ROS, Losada DM, Jordani MC, Évora P and Castro-E-Silva O: Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int J Mol Sci. 20:50342019. View Article : Google Scholar : | |
Euler G: Good and bad sides of TGFβ-signaling in myocardial infarction. Front Physiol. 6:662015. View Article : Google Scholar | |
Yellon DM and Hausenloy DJ: Myocardial reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mykytenko J, Kerendi F, Reeves JG, Kin H, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J and Zhao ZQ: Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol. 102:90–100. 2007. View Article : Google Scholar | |
Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D and Ovize M: Postconditioning inhibits mitochondrial permeability transition. Circulation. 111:194–197. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pagliaro P, Femminò S, Popara J and Penna C: Mitochondria in cardiac postconditioning. Front Physiol. 9:2872018. View Article : Google Scholar : PubMed/NCBI | |
Heusch G: Critical issues for the translation of cardioprotection. Circ Res. 120:1477–1486. 2017. View Article : Google Scholar : PubMed/NCBI | |
Heusch G: Cardioprotection research must leave its comfort zone. Eur Heart J. 39:3393–3395. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusch G, Ibanez B, Kloner RA, Ovize M, Yellon DM and Garcia-Dorado D: Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: Trials and tribulations. Eur Heart J. 38:935–941. 2017. | |
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF and Schulz R: Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 66:1142–1174. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ, Garcia-Dorado D, Bøtker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, et al: Novel targets and future strategies for acute cardioprotection: Position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res. 113:564–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Inserte J, Hernando V, Vilardosa Ú, Abad E, Poncelas-Nozal M and Garcia/Dorado D: Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative Stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc. 2:e0059752013. View Article : Google Scholar : PubMed/NCBI | |
Kleinbongard P, Skyschally A and Heusch G: Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch. 469:159–181. 2017. View Article : Google Scholar | |
Heusch G: Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 116:674–699. 2015. View Article : Google Scholar : PubMed/NCBI | |
Murry CE, Jennings RB and Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 74:1124–1136. 1986. View Article : Google Scholar : PubMed/NCBI | |
Wever KE, Hooijmans CR, Riksen NP, Sterenborg TB, Sena ES, Ritskes-Hoitinga M and Warlé MC: Determinants of the efficacy of cardiac ischemic preconditioning: A systematic review and meta-analysis of animal studies. PLoS One. 10:e01420212015. View Article : Google Scholar : PubMed/NCBI | |
Wever KE, Menting TP, Rovers M, van der Vliet JA, Rongen GA, Masereeuw R, Ritskes-Hoitinga M, Hooijmans CR and Warlé M: Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS One. 7:e322962012. View Article : Google Scholar : PubMed/NCBI | |
Yellon DM, Alkhulaifi AM and Pugsley WB: Preconditioning the human myocardium. Lancet. 342:276–277. 1993. View Article : Google Scholar : PubMed/NCBI | |
Rossello X and Yellon DM: The RISK pathway and beyond. Basic Res Cardiol. 113:22017. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ, Barrabes JA, Bøtker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, et al: Ischaemic conditioning and targeting reperfusion injury: A 30 year voyage of discovery. Basic Res Cardiol. 111:702016. View Article : Google Scholar | |
Sun XJ and Mao JR: Role of Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in cardioprotection of exercise preconditioning. Eur Rev Med Pharmacol Sci. 22:4975–4986. 2018.PubMed/NCBI | |
Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z and Yi D: The effects of curcumin post-treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol. 107:2632012. View Article : Google Scholar : PubMed/NCBI | |
Goodman MD, Koch SE, Afzal MR and Butler KL: STAT subtype specificity and ischemic preconditioning in mice: Is STAT-3 enough? Am J Physiol Heart Circ Physiol. 300:H522–H526. 2011. View Article : Google Scholar : | |
Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, Wu WJ, Tan W and Bolli R: IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res. 64:61–71. 2004. View Article : Google Scholar : PubMed/NCBI | |
Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO and Bolli R: Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation. 112:1971–1978. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen TI, Shen YJ, Wang IC and Yang KT: Short-term exercise provides left ventricular myocardial protection against intermit-tent hypoxia-induced apoptosis in rats. Eur J Appl Physiol. 111:1939–1950. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA and Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 285:H579–H588. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, Cung TT, Bonnefoy E, Angoulvant D, Aupetit JF, et al: Long-term benefit of postconditioning. Circulation. 117:1037–1044. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao CM, Yang XJ, Yang JH, Cheng XJ, Zhao X, Zhou BY, Xu SD and Wang HF: Effect of ischaemic postconditioning on recovery of left ventricular contractile function after acute myocardial infarction. J Int Med Res. 40:1082–1088. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Zhang W, Xia D, Modi P, Liang D and Wei M: Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a AK2-STAT3-BCL2 pathway. J Biomed Sci. 18:532011. View Article : Google Scholar | |
Shyu WC, Lin SZ, Chiang MF, Chen DC, Su CY, Wang HJ, Liu RS, Tsai CH and Li H: Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest. 118:133–148. 2008. View Article : Google Scholar | |
Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, et al: Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA. 104:7391–7396. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ, Tsang A and Yellon DM: The reperfusion injury salvage kinase pathway: A common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 15:69–75. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jin YC, Lee YS, Kim YM, Seo HG, Lee JH, Kim HJ, Yun-Choi HS and Chang KC: (S)-1-(alpha-naphthylmethyl)-6,7-di hydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712) reduces rat myocardial apoptosis against ischemia and reperfusion injury by activation of phosphatidylinositol 3-kinase/Akt signaling and anti-inflammatory action in vivo. J Pharmacol Exp Ther. 330:440–448. 2009. View Article : Google Scholar : PubMed/NCBI | |
Takahama H, Minamino T, Hirata A, Ogai A, Asanuma H, Fujita M, Wa keno M, Tsukamoto O, Okada K, Komamura K, et al: Granulocyte colony-stimulating factor mediates cardioprotection against ischemia/reperfusion injury via phosphatidylinositol-3-kinase/Akt pathway in canine hearts. Cardiovasc Drugs Ther. 20:159–165. 2006. View Article : Google Scholar : PubMed/NCBI | |
Goodman MD, Koch SE, Fuller-Bicer GA and Butler KL: Regulating RISK: A role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol. 295:H1649–H1656. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wu N, Zhang X, Jia P and Jia D: Hypercholesterolemia aggravates myocardial ischemia reperfusion injury via activating endoplasmic reticulum stress-mediated apoptosis. Exp Mol Pathol. 99:449–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luo T, Zeng X, Yang W and Zhang Y: Treatment with metformin prevents myocardial ischemia-reperfusion injury via STEAP4 signaling pathway. Anatol J Cardiol. 21:261–271. 2019.PubMed/NCBI | |
Hu M, Ye P, Liao H, Chen M and Yang F: Metformin protects H9C2 cardiomyocytes from high-glucose and hypoxia/reoxygenation injury via inhibition of reactive oxygen species generation and inflammatory responses: Role of AMPK and JNK. J Diabetes Res. 2016:29619542016. View Article : Google Scholar : PubMed/NCBI | |
Kahn BB, Alquier T, Carling D and Hardie DG: AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1:15–25. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu J, Ma A and Chen Y: Cardioprotective effect of berberine against myocardial ischemia/reperfusion injury via attenuating mitochondrial dysfunction and apoptosis. Int J Clin Exp Med. 8:14513–14519. 2015.PubMed/NCBI | |
Wang Y, Zhang H, Chai F, Liu X and Berk M: The effects of escitalopram on myocardial apoptosis and the expression of Bax and BCL2 during myocardial ischemia/reperfusion in a model of rats with depression. BMC Psychiatry. 14:3492014. View Article : Google Scholar | |
Zhang SW, Liu Y, Wang F, Qiang J, Liu P, Zhang J and Xu JW: Ilexsaponin A attenuates ischemia-reperfusion-induced myocardial injury through anti-apoptotic pathway. PLoS One. 12:e01709842017. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Hu J, Wang Y, Ye H, Li X, Gao Q and Li Z: Effects of dexmedetomidine postconditioning on myocardial ischemia/reperfusion injury in diabetic rats: Role of the PI3K/Akt-dependent signaling pathway. J Diabetes Res. 2018:30719592018. View Article : Google Scholar : PubMed/NCBI | |
Morris RE: Prevention and treatment of allograft rejection in vivo by rapamycin: Molecular and cellular mechanisms of action. Ann N Y Acad Sci. 685:68–72. 1993. View Article : Google Scholar : PubMed/NCBI | |
Menown IBA, Mamas MA, Cotton JM, Hildick-Smith D, Eberli FR, Leibundgut G, Tresukosol D, Macaya C, Copt S, Sadozai Slama S and Stoll HP: First clinical evidence characterizing safety and efficacy of the new CoCr Biolimus-A9 eluting stent: The Biomatrix Alpha™ registry. Int J Cardiol Heart Vasc. 26:1004722020. | |
Das A, Salloum FN, Durrant D, Ockaili R and Kukreja RC: Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway. J Mol Cell Cardiol. 53:858–869. 2012. View Article : Google Scholar : PubMed/NCBI | |
Filippone SM, Samidurai A, Roh SK, Cain CK, He J, Salloum FN, Kukreja RC and Das A: Reperfusion therapy with rapamycin attenuates myocardial infarction through activation of AKT and ERK. Oxid Med Cell Longev. 2017:46197202017. View Article : Google Scholar : PubMed/NCBI | |
Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z, Yu B, Ren K, et al: Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res. 63:2017. View Article : Google Scholar | |
Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S and Sadoshima J: Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 122:2170–2182. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Sun Y, Cheng L, Jin Z, Yang Y, Zhai M, Pei H, Wang X, Zhang H, Meng Q, et al: Melatonin receptor-mediated protection against myocardial ischemia/reperfusion injury: Role of SIRT1. J Pineal Res. 57:228–238. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hardi DG: Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface. 15:201707742018. View Article : Google Scholar | |
Zhang M, Zhao Z, Shen M, Zhang Y, Duan J, Guo Y, Zhang D, Hu J, Lin J, Man W, et al: Polydatin protects cardiomyocytes against myocardial infarction injury by activating Sirt3. Biochim Biophys Acta Mol Basis Dis. 1863:1962–1972. 2017. View Article : Google Scholar | |
Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, et al: Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: Role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep. 7:413372017. View Article : Google Scholar | |
Yu L, Liang H, Lu Z, Zhao G, Zhai M, Yang Y, Yang J, Yi D, Chen W, Wang X, et al: Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia-reperfusion injury: In vivo and in vitro studies. J Pineal Res. 59:420–433. 2015. View Article : Google Scholar : PubMed/NCBI | |
Heusch G: Myocardial ischaemia-reperfusion injury and cardio-protection in perspective. Nat Rev Cardiol. Jul 3–2020.Epub ahead of print. View Article : Google Scholar | |
Gross A and Katz SG: Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ. 24:1348–1358. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chiu WT, Chang HA, Lin YH, Lin YS, Chang HT, Lin HH, Huang SC, Tang MJ and Shen MR: Bcl-2 regulates store-operated Ca2+ entry to modulate ER stress-induced apoptosis. Cell Death Discov. 4:372018. View Article : Google Scholar | |
Bonneau B, Prudent J, Popgeorgiev N and Gillet G: Non-apoptotic roles of Bcl-2 family: The calcium connection. Biochim Biophys Acta. 1833:1755–176. 2013. View Article : Google Scholar : PubMed/NCBI |