Zinc and SARS‑CoV‑2: A molecular modeling study of Zn interactions with RNA‑dependent RNA‑polymerase and 3C‑like proteinase enzymes
- Authors:
- Ali Pormohammad
- Nadia K. Monych
- Raymond J. Turner
-
Affiliations: Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N4V8, Canada - Published online on: November 18, 2020 https://doi.org/10.3892/ijmm.2020.4790
- Pages: 326-334
-
Copyright: © Pormohammad et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Beyersmann D and Haase H: Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 14:331–341. 2001. View Article : Google Scholar | |
Marreiro D do N, Cruz KJ, Morais JB, Beserra JB, Severo JS and Soares de Oliveira AR: Zinc and oxidative stress: Current mechanisms. Antioxidants (Basel). 6:242017. View Article : Google Scholar | |
Maywald M, Wessels I and Rink L: Zinc signals and immunity. Int J Mol Sci. 18:22222017. View Article : Google Scholar : | |
Miller BD and Welch RM: Food system strategies for preventing micronutrient malnutrition. Food Policy. Wolters Kluwer-Medknow Publications; pp. 115–128. 2013, View Article : Google Scholar | |
Kochańczyk T, Drozd A and Krężel A: Relationship between the architecture of zinc coordination and zinc binding affinity in proteins-Insights into zinc regulation. Metallomics. 7:244–257. 2015. View Article : Google Scholar | |
Prasad AS: Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr. 28:257–265. 2009. View Article : Google Scholar | |
Read SA, Obeid S, Ahlenstiel C and Ahlenstiel G: The role of zinc in antiviral immunity. Adv Nutr. 10:696–710. 2019. View Article : Google Scholar : PubMed/NCBI | |
Korant BD and Butterworth BE: Inhibition by zinc of rhinovirus protein cleavage: Interaction of zinc with capsid polypeptides. J Virol. 18:298–306. 1976. View Article : Google Scholar : PubMed/NCBI | |
Kaushik N, Subramani C, Anang S, Muthumohan R, Shalimar, Nayak B, Ranjith-Kumar CT and Surjit M: Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol. 91:e00754–e00717. 2017. View Article : Google Scholar : PubMed/NCBI | |
Korant BD, Kauer JC and Butterworth BE: Zinc ions inhibit replication of rhinoviruses. Nature. 248:588–590. 1974. View Article : Google Scholar : PubMed/NCBI | |
te Velthuis AJ, van den Worml SH, Sims AC, Baric RS, Snijder EJ and van Hemert MJ: Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 6:e10011762010. View Article : Google Scholar | |
Hsu JTA, Kuo CJ, Hsieh HP, Wang YC, Huang KK, Lin CPC, Huang PF, Chen X and Liang PH: Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett. 574:116–120. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee CC, Kuo CJ, Hsu MF, Liang PH, Fang JM, Shie JJ and Wang AH: Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors. FEBS Lett. 581:5454–5458. 2007. View Article : Google Scholar : PubMed/NCBI | |
Krenn BM, Gaudernak E, Holzer B, Lanke K, Van Kuppeveld FJ and Seipelt J: Antiviral activity of the zinc ionophores pyrithione and hinokitiol against picornavirus infections. J Virol. 83:58–64. 2009. View Article : Google Scholar : | |
Lanke K, Krenn BM, Melchers WJ, Seipelt J and van Kuppeveld FJ: PDTC inhibits picornavirus polyprotein processing and RNA replication by transporting zinc ions into cells. J Gen Virol. 88:1206–1217. 2007. View Article : Google Scholar : PubMed/NCBI | |
Geist FC, Bateman JA and Hayden FG: In vitro activity of zinc salts against human rhinoviruses. Antimicrob Agents Chemother. 31:622–624. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hung M, Gibbs CS and Tsiang M: Biochemical characterization of rhinovirus RNA-dependent RNA polymerase. Antiviral Res. 56:99–114. 2002. View Article : Google Scholar : PubMed/NCBI | |
Krenn BM, Holzer B, Gaudernak E, Triendl A, van Kuppeveld FJ and Seipelt J: Inhibition of polyprotein processing and RNA replication of human rhinovirus by pyrrolidine dithiocarbamate involves metal ions. J Virol. 79:13892–13899. 2005. View Article : Google Scholar : PubMed/NCBI | |
Suara RO and Crowe JE: Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother. 48:783–790. 2004. View Article : Google Scholar : PubMed/NCBI | |
Srivastava V, Rawall S, Vijayan VK and Khanna M: Influenza a virus induced apoptosis: Inhibition of DNA laddering & caspase-3 activity by zinc supplementation in cultured HeLa cells. Indian J Med Res. 129:579–586. 2009.PubMed/NCBI | |
Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M, et al: Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine. J Biomed Sci. 26:702019. View Article : Google Scholar : PubMed/NCBI | |
Shankar AH and Prasad AS: Zinc and immune function: The biological basis of altered resistance to infection. Am J Clin Nutr. 68(Suppl 2): 447S–463S. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hulisz D: Efficacy of zinc against common cold viruses: An overview. J Am Pharm Assoc 2003. 44:594–603. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hemilä H, Fitzgerald JT, Petrus EJ and Prasad A: Zinc acetate lozenges may improve the recovery rate of common cold patients: An individual patient data meta-analysis. Open Forum Infect Dis. 4:ofx0592017. View Article : Google Scholar : PubMed/NCBI | |
Science M, Johnstone J, Roth DE, Guyatt G and Loeb M: Zinc for the treatment of the common cold: A systematic review and meta-analysis of randomized controlled trials. CMAJ. 184:E551–E561. 2012. View Article : Google Scholar : PubMed/NCBI | |
D'Cruze H, Arroll B and Kenealy T: Is intranasal zinc effective and safe for the common cold? A systematic review and meta-analysis. J Prim Health Care. 1:134–139. 2009. View Article : Google Scholar : PubMed/NCBI | |
Caruso TJ, Prober CG and Gwaltney JM Jr: Treatment of naturally acquired common colds with zinc: A structured review. Clin Infect Dis. 45:569–574. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Hou Y, Shen J, Huang Y, Martin W and Cheng F: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6:142020. View Article : Google Scholar : PubMed/NCBI | |
Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, Liu HT and Wu CY: The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol. 92:693–697. 2020. View Article : Google Scholar : PubMed/NCBI | |
Prentice E, McAuliffe J, Lu X, Subbarao K and Denison MR: Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol. 78:9977–9986. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, Lai B, Pei J, Liu Y, Chen J and Lai L: Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem. 279:1637–1642. 2004. View Article : Google Scholar | |
Subissi L, Imbert I, Ferron F, Collet A, Coutard B, Decroly E and Canard B: SARS-CoV ORF1b-encoded nonstructural proteins 12-16: Replicative enzymes as antiviral targets. Antiviral Res. 101:122–130. 2014. View Article : Google Scholar | |
Wu YS, Lin WH, Hsu JT and Hsieh HP: Antiviral drug discovery against SARS-CoV. Curr Med Chem. 13:2003–2020. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kirchdoerfer RN and Ward AB: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun. 10:23422019. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, et al: Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 368:779–782. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mesecar AD; Center for Structural Genomics of Infectious Diseases (CSGID): RCSB PDB-6W63: Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77. National Institutes of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID); 2020 | |
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (Review). Int J Mol Med. 46:467–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee CC, Kuo CJ, Ko TP, Hsu MF, Tsui YC, Chang SC, Yang S, Chen SJ, Chen HC, Hsu MC, et al: Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds. J Biol Chem. 284:7646–7655. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pormohammad A, Ghorbani S, Khatami A, Farzi R, Baradaran B, Turner DL, Turner RJ, Bahr NC and Idrovo JP: Comparison of confirmed COVID-19 with SARS and MERS cases-clinical characteristics, laboratory findings, radiographic signs and outcomes: A systematic review and meta-analysis. Rev Med Virol. 30:e21122020. View Article : Google Scholar | |
Pormohammad A, Ghorbani S, Khatami A, Razizadeh MH, Alborzi E, Zarei M, Idrovo JP and Turner RJ: Comparison of influenza type A and B with COVID-19: A global systematic review and meta-analysis on clinical, laboratory and radio-graphic findings. Rev Med Virol. Oct 9–2020.Epub ahead of print. View Article : Google Scholar | |
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Sun R, Tian Z, Xu X and Wei H: Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. Mar 13–2020.Epub ahead of print. View Article : Google Scholar | |
Conti P, Ronconi G, Caraffa A, Gallenga C, Ross R, Frydas I and Kritas S: Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J Biol Regul Homeost Agents. 34:327–331. 2020.PubMed/NCBI | |
Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G and Melino G: COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 27:14512020. View Article : Google Scholar : PubMed/NCBI | |
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ; HLH Across Speciality Collaboration, UK: COVID-19: Consider cytokine storm syndromes and immuno-suppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI | |
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for CoviD'19 (Review). Int J Mol Med. 46:17–26. 2020.PubMed/NCBI | |
Wessels I, Rolles B and Rink L: The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol. 11:17122020. View Article : Google Scholar : PubMed/NCBI | |
Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D and Richardson P: COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 20:400–402. 2020. View Article : Google Scholar : PubMed/NCBI | |
Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R and Caporali R: COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev. 19:1025232020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, et al: The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin Immunol. 214:1083932020. View Article : Google Scholar | |
Gammoh NZ and Rink L: Zinc in infection and inflammation. Nutrients. 9:6242017. View Article : Google Scholar : | |
Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K and Librowski T: Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 25:11–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Knoell DL, Smith DA, Sapkota M, Heires AJ, Hanson CK, Smith LM, Poole JA, Wyatt TA and Romberger DJ: Insufficient zinc intake enhances lung inflammation in response to agricultural organic dust exposure. J Nutr Biochem. 70:56–64. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fischer KJ, Yajjala VK, Bansal S, Bauer C, Chen R and Sun K: Monocytes represent one source of bacterial shielding from antibiotics following influenza virus infection. J Immunol. 202:2027–2034. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Forst CV, Gordon A, Gussin G, Geber AB, Fernandez PJ, Ding T, Lashua L, Wang M, Balmaseda A, et al: Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. Microbiome. 8:392020. View Article : Google Scholar : PubMed/NCBI | |
Llor C and Bjerrum L: Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 5:229–241. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kostoff RN, Briggs MB, Porter AL, Hernández AF, Abdollahi M, Aschner M and Tsatsakis A: The under-reported role of toxic substance exposures in the COVID-19 pandemic. Food Chem Toxicol. 145:1116872020. View Article : Google Scholar : PubMed/NCBI | |
Çaǧlayan Serin D, Pullukçu H, Çiçek C, Sipahi OR, Taşbakan S, Atalay S and Pneumonia Study Group: Bacterial and viral etiology in hospitalized community acquired pneumonia with molecular methods and clinical evaluation. J Infect Dev Ctries. 8:510–518. 2014. View Article : Google Scholar | |
Matson MJ, Stock F, Shupert WL, Bushmaker T, Feldmann F, Bishop WB, Frank KM, Dekker JP, Chertow DS and Munster VJ: Compatibility of maximum-containment virus-inactivation protocols with identification of bacterial coinfections by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Infect Dis. 218(Suppl 5): S297–S300. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stevens MP, Patel PK and Nori P: Involving antimicrobial stewardship programs in COVID-19 response efforts: All hands on deck. Infect Control Hosp Epidemiol. 41:744–745. 2020. View Article : Google Scholar : PubMed/NCBI | |
Essack S, Bell J, Burgoyne DS, Duerden M and Shephard A: Topical (local) antibiotics for respiratory infections with sore throat: An antibiotic stewardship perspective. J Clin Pharm Ther. 44:829–837. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C and Agha R: World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 76:71–76. 2020. View Article : Google Scholar : PubMed/NCBI | |
Denny KJ, De Wale J, Laupland KB, Harris PNA and Lipman J: When not to start antibiotics: Avoiding antibiotic overuse in the intensive care unit. Clin Microbiol Infect. 26:35–40. 2020. View Article : Google Scholar | |
Song Z, Hu Y, Zheng S, Yang L and Zhao R: Hospital pharmacists' pharmaceutical care for hospitalized patients with COVID-19: Recommendations and guidance from clinical experience. Res Social Adm Pharm. Apr 3–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Sakhuja A, Kumar G, McGrath E, Nanchal RS and Kashani KB: Culture-negative severe sepsis: Nationwide trends and outcomes. Chest. 150:1251–1259. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lemire JA, Harrison JJ and Turner RJ: Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat Rev Microbiol. 11:371–384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Turner RJ, Gugala N and Lemire J: Can metals replace traditional antibiotics? Adjac Gov. November;46–47. 2016. | |
Lemire JA and Turner RJ: Mechanisms underlying the anti-microbial capacity of metals. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria. John Wiley & Sons, Inc; Hoboken, NJ: pp. 215–224. 2016, View Article : Google Scholar | |
Turner RJ: Metal-based antimicrobial strategies. Microb Biotechnol. 10:1062–1065. 2017. View Article : Google Scholar : PubMed/NCBI | |
Monych NK, Gugala N and Turner RJ: Chapter 9. Metal-based Antimicrobials. Antimicrobial Materials for Biomedical Applications. Thomas Graham House; Cambridge: pp. 252–276. 2019, View Article : Google Scholar | |
Gugala N, Lemire JA and Turner RJ: The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. J Antibiot (Tokyo). 70:775–780. 2017. View Article : Google Scholar | |
Jesline A, John NP, Narayanan PM, Vani C and Murugan S: Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci. 5:157–162. 2015. View Article : Google Scholar | |
Wang X, Du Y and Liu H: Preparation, characterization and anti-microbial activity of chitosan-Zn complex. Carbohydr Polym. 56:21–26. 2004. View Article : Google Scholar | |
Gugala N, Vu D, Parkins MD and Turner RJ: Specificity in the susceptibilities of escherichia coli, pseudomonas aeruginosa and Staphylococcus aureus clinical isolates to six metal antimicrobials. Antibiotics (Basel). 8:512019. View Article : Google Scholar | |
National Institutes of Health: Vitamin K - Fact Sheet for Health Professionals. https://ods.od.nih.gov/factsheets/vita-minK-HealthProfessional/urisimplehttps://ods.od.nih.gov/factsheets/vita-minK-HealthProfessional/ Accessed June 3, 2020. | |
Plum LM, Rink L and Hajo H: The essential toxin: Impact of zinc on human health. Int J Environ Res Public Health. 7:1342–1365. 2010. View Article : Google Scholar : PubMed/NCBI |