1
|
Chen L, Xia HF, Shang Y and Yao SL:
Molecular mechanisms of ventilator-induced lung injury. Chin Med J
(Engl). 131:1225–1231. 2018. View Article : Google Scholar
|
2
|
Gadi J, Jung SH, Lee MJ, Jami A, Ruthala
K, Kim KM, Cho NH, Jung HS, Kim CH and Lim SK: The transcription
factor protein Sox11 enhances early osteoblast differentiation by
facilitating proliferation and the survival of mesenchymal and
osteoblast progenitors. J Biol Chem. 288:25400–25413. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mitamura Y, Nunomura S, Nanri Y, Arima K,
Yoshihara T, Komiya K, Fukuda S, Takatori H, Nakajima H, Furue M
and Izuhara K: Hierarchical control of interleukin 13 (IL-13)
signals in lung fibroblasts by STAT6 and SOX11. J Biol Chem.
293:14646–14658. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Castillo SD, Matheu A, Mariani N,
Carretero J, Lopez-Rios F, Lovell-Badge R and Sanchez-Cespedes M:
Novel transcriptional targets of the SRY-HMG box transcription
factor SOX4 link its expression to the development of small cell
lung cancer. Cancer Res. 72:176–186. 2012. View Article : Google Scholar
|
5
|
Ding Q, Subramanian I, Luchhardt TR, Che
P, Waghray M, Zhao XK, Bone N, Kurundkar AR, Hecher L, Hu M, et al:
Focal adhesion kinase signaling determines the fate of lung
epithelial cells in response to TGF-β. Am J Physiol Lung Cell Mol
Physiol. 312:L926–L935. 2017. View Article : Google Scholar
|
6
|
Gross CM, Kellner M, Wang T, Lu Q, Sun X,
Zemskov EA, Noonepalle S, Kangath A, Kumar S, Gonzalez-Garay M, et
al: LPS-induced acute lung injury involves NF-κB-mediated
down-regulation of SOX18. Am J Respir Cell Mol Biol. 58:614–624.
2018. View Article : Google Scholar :
|
7
|
Zhu Z, Dai J, Liao Y and Wang T: SOX9
protects against human lung fibroblast cell apoptosis induced by
LPS through activation of the AKT/GSK3β pathway.
Biochemistry(Mosc). 82:606–612. 2017.
|
8
|
Sock E, Retting SD, Enderich J, Bösl MR,
Tamm ER and Wegner M: Gene targeting reveals a widespread role for
the high-mobility-group transcription factor Sox11 in tissue
remodeling. Mol Cell Biol. 24:6635–6644. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Balsas P, Palomero J, Eguileor Á,
Rodriguez ML, Vegliante MC, Planas-Rigol E, Sureda-Gómez M, Cid MC,
Campo E and Amador V: SOX11 promotes tumor protective
microenvironment interactions through CXCR4 and FAK regulation in
mantle cell lymphoma. Blood. 130:501–513. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee BY, Timpson P, Horvath LG and Daly RJ:
FAK signaling in human cancer as a target for therapeutics.
Pharmacol Ther. 146:132–149. 2015. View Article : Google Scholar
|
11
|
Yang S, Yip R, Polena S, Gricius J, Desai
KJ, Sharma M, Ruby C, Gintautas J and Jerome H: Ischemia induced
focal adhesion kinase cleavage in rat lung. Proc West Pharmacol
Soc. 47:57–62. 2004.
|
12
|
Chen Q, Yi B, Ma J, Ning J, Wu L, Ma D, Lu
K and Gu J: α2-adrenoreceptor modulated FAK pathway induced by
dexmedetomidine attenuates pulmonary microvascular
hyper-permeability following kidney injury. Oncotarget.
7:55990–56001. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Infusino GA and Jacobson JR: Endothelial
FAK as a therapeutic target in disease. Microvasc Res. 83:89–96.
2012. View Article : Google Scholar
|
14
|
Wheaton AK, Agarwal M, Jia S and Kim KK:
Lung epithelial cell focal adhesion kinase signaling inhibits lung
injury and fibrosis. Am J Physiol Cell Mol Physiol. 312:L722–L730.
2017. View Article : Google Scholar
|
15
|
Fang M, Fan S, Yao X, Liu N, Gao J, Wang
Z, Xu T, Xian X and Li W: Transfection of Sox11 plasmid alleviates
ventilator-induced lung injury via Sox11 and FAK. Biochem Biophys
Res Commun. 512:182–188. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fang M, Liu N, Yao X, Xu T and Wang Z:
Enhancement of FAK alleviates ventilator-induced alveolar
epithelial cell injury. Sci Rep. 10:4192020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hide T, Takezaki T, Nakatani Y, Nakamura
H, Kuratsu J and Kondo T: Sox11 prevents tumorigenesis of
glioma-initiating cells by inducing neuronal differentiation.
Cancer Res. 69:7953–7959. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
19
|
Castranova V, Rabovsky J, Tucher JH and
Miles PR: The alveolar type II epithelial cell: A multifunctional
pneumocyte. Toxicol Appl Pharmacol. 93:472–483. 1988. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jansing NL, McClendon J, Henson PM, Tuder
RM, Hyde DM and Zemans RL: Unbiased quantitation of alveolar type
II to alveolar type I cell transdifferentiation during repair after
lung injury in mice. Am J Respir Cell Mol Biol. 57:519–526. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hallman M, Spragg R, Harrell JH, Moser KM
and Gluck L: Evidence of lung surfactant abnormality in respiratory
failure. Study of bronchoalveolar lavage phospholipids, surface
activity, phospholipase activity, band plasma myoinositol. J Clin
Invest. 70:673–683. 1982. View Article : Google Scholar : PubMed/NCBI
|
22
|
Edwards YS, Sutherland LM, Power JH,
Nicholas TE and Murray AW: Cyclic stretch induces both apoptosis
and secretion in rat alveolar type II cells. FEBS Lett.
448:127–130. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vlahakis NE and Hubmayr RD: Invited
review: Plasma membrane stress failure in alveolar epithelial
cells. J Appl Physiol 1985. 89:2490–2497. 2000.PubMed/NCBI
|
24
|
Tschumperlin DJ, Oswari J and Margulies
AS: Deformation-induced injury of alveolar epithelial cells. Effect
of frequency, duration, and amplitude. Am J Respir Crit Care Med.
162:357–362. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tschumperlin DJ and Margulies SS:
Equibiaxial deformation-induced injury of alveolar epithelial cells
in vitro. Am J Physiol. 275:L1173–L1183. 1988.
|
26
|
Birukov KG, Jacobson JR, Flores AA, Ye SQ,
Birukova AA, Verin AD and Garcia JG: Magnitude-dependent regulation
of pulmonary endothelial cell barrier function by cyclic stretch.
Am J Physiol Lung Cell Mol Physiol. 285:L785–L797. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Guo Y, Liu S, Zhang X, Wang L, Zhang X,
Hao A, Han A and Yang J: Sox11 promotes endogenous neurogenesis and
locomotor recovery in mice spinal cord injury. Biochem Biophys Res
Commun. 446:830–835. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Oliveira-Ferrer L, Hauschild J, Fiedler W,
Bokemeyer C, Nippgen J, Celik I and Schuch G: Cilengitide induces
cellular detachment and apoptosis in endothelial and glioma cells
mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Caner
Res. 27:862008. View Article : Google Scholar
|
29
|
Desai LP, White SR and Waters CM:
Mechanical stretch decreases FAK phosphorylation and reduces cell
migration through loss of JIP3-induced JNK phosphorylation in
airway epithelial cells. Am J Physiol Lung Cell Mol Physiol.
297:L520–L529. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Skubitz KM and Skubitz AP: Gene expression
in aggressive fibromatosis. J Lab Clin Med. 143:89–98. 2004.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Ahmed NN, Grimes A, Bellacosa TO, Chan TO
and Tsichlis PN: Transduction of interleukin-2 antiapoptotic and
proliferative signals via Akt protein kinase. Proc Natl Acad Sci
USA. 94:3627–3632. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li J, Dou X, Li D, He M, Han M and Zhang
H: Dexmedetomidine ameliorates post-CPB lung injury in rats by
activating the P13K/Akt pathway. J Invest Surg. 33:576–583. 2020.
View Article : Google Scholar
|
33
|
Wang Z, Wang Z, Li G, Wu H, Sun K, Chen J,
Feng Y, Chen C, Cai S, Xu J and He Y: CXCL1 from tumor-associated
lymphatic endothelial cells drives gastric cancer cell into
lymphatic system via activating integrin β1/FAK/AKT signaling.
Cancer Lett. 385:28–38. 2017. View Article : Google Scholar
|
34
|
Ji Y, Wang Z, Li Z, Huang N, Chen H, Li B
and Hui B: Silencing IGF-II impairs C-myc and N-ras expressions of
SMMC-7721 cells via suppressing FAK/PI3K/Akt signaling pathway.
Cytokine. 90:44–53. 2017. View Article : Google Scholar
|
35
|
Choi AR, Kim JH and Yoon S: Sensitization
of cancer cells through reduction of total Akt and downregulation
of salinomycin-induced pAkt, pGSk3β, pTSC2, and p4EBP1 by
cotreatment with MK-2206. Biomed Res Int. 2014:2967602014.
View Article : Google Scholar
|
36
|
Schlegel J, Peters I, Orrenius S, Miller
DK, Thornberry NA, Yamin TT and Nicholson DW: CPP32/apopain is a
key interleukin 1 beta converting enzyme-like protease involved in
Fas-mediated apoptosis. J Biol Chem. 271:1841–1844. 1996.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Rieber M and Rieber MS: Correspondence re:
S. Fulda et al, Betulinic acid triggers (Apo1/Fas)- and
p53-indepedent apoptosis via activation of caspases in
neuroctodernal tumors. Cancer Res. 58:5876–5877. 1998.PubMed/NCBI
|
38
|
Zhang R, Li L, Yuan L and Zhao M: Hypoxic
preconditioning protects cardiomyocytes against
hypoxia/reoxygenation-induced cell apoptosis via sphingosine kinase
2 and FAK/AKT pathway. Exp Mol Pathol. 100:51–58. 2016. View Article : Google Scholar
|