Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review)
- Authors:
- Ruiying Wang
- Min Wang
- Jingxue Ye
- Guibo Sun
- Xiaobo Sun
-
Affiliations: Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, P.R. China - Published online on: November 24, 2020 https://doi.org/10.3892/ijmm.2020.4798
- Pages: 65-76
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kobiyama K and Ley K: Atherosclerosis. Circ Res. 123:1118–1120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Spinelli FR, Barone F, Cacciapaglia F, Pecani A and Piga M: Atherosclerosis and autoimmunity. Mediators Inflamm. 2018:67304212018. View Article : Google Scholar : PubMed/NCBI | |
Lu H and Daugherty A: Atherosclerosis. Arterioscler Thromb Vasc Biol. 35:485–491. 2015. View Article : Google Scholar : PubMed/NCBI | |
Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L and Lewis EF: Atherosclerosis. Nat Rev Dis Primers. 5:562019. View Article : Google Scholar : PubMed/NCBI | |
Bories GFP and Leitinger N: Macrophage metabolism in athero-sclerosis. FEBS Lett. 591:3042–3060. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y and Shi D: Small rodent models of atherosclerosis. Biomed Pharmacother. 129:1104262020. View Article : Google Scholar : PubMed/NCBI | |
Goonewardena SN, Prevette LE and Desai AA: Metabolomics and atherosclerosis. Curr Atheroscler Rep. 12:267–272. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catapano A, Tramontana S, Perticone F, Naccarato P, Camici P, et al: From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 9:830–834. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen PY, Schwartz MA and Simons M: Endothelial-to-mesenchymal transition, vascular inflammation, and atherosclerosis. Front Cardiovasc Med. 7:532020. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Chen J and Zhu H: A potential strategy for treating athero-sclerosis: Improving endothelial function via AMP-activated protein kinase. Sci China Life Sci. 61:1024–1029. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pircher A, Treps L, Bodrug N and Carmeliet P: Endothelial cell metabolism: A novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis. 253:247–257. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Tan F, Cao X, Cao Z, Li B, Shen Z and Tian Y: PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 52:9–17. 2020. View Article : Google Scholar | |
Ilhan F and Kalkanli ST: Atherosclerosis and the role of immune cells. World J Clin Cases. 3:345–352. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Jia Z, Zhang Q, Wei C, Wang H and Wu Y: Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis. Mol Med Rep. 12:3315–3322. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dinh QN, Chrissobolis S, Diep H, Chan CT, Ferens D, Drummond GR and Sobey CG: Advanced atherosclerosis is associated with inflammation, vascular dysfunction and oxida-tive stress, but not hypertension. Pharmacol Res. 116:70–76. 2017. View Article : Google Scholar | |
Yang K, Zhang H, Luo Y, Zhang J, Wang M, Liao P, Cao L, Guo P, Sun G and Sun X: Gypenoside XVII prevents atherosclerosis by attenuating endothelial apoptosis and oxidative stress: Insight into the ERα-Mediated PI3K/Akt Pathway. Int J Mol Sci. 18:772017. View Article : Google Scholar | |
Feletou M, Cohen RA, Vanhoutte PM and Verbeuren TJ: TP receptors and oxidative stress hand in hand from endothelial dysfunction to atherosclerosis. Adv Pharmacol. 60:85–106. 2010.PubMed/NCBI | |
Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN and Rutledge JC: Angiogenesis and oxidative stress: Common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci. 63:1–9. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gupta M, Blumenthal C, Chatterjee S, Bandyopadhyay D, Jain V, Lavie CJ, Virani SS, Ray KK, Aronow WS and Ghosh RK: Novel emerging therapies in atherosclerosis targeting lipid metabolism. Expert Opin Investig Drugs. 29:611–622. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Jung S, Kim N, Shin MJ, Ryu DH and Hwang GS: Myocardial metabolic alterations in mice with diet-induced atherosclerosis: Linking sulfur amino acid and lipid metabolism. Sci Rep. 7:135972017. View Article : Google Scholar : PubMed/NCBI | |
Novák J, Olejníčková V, Tkáčová N and Santulli G: Mechanistic role of MicroRNAs in coupling lipid metabolism and atherosclerosis. Adv Exp Med Biol. 887:79–100. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shao D, Lian Z, Di Y, Zhang L, Rajoka MSR, Zhang Y, Kong J, Jiang C and Shi J: Dietary compounds have potential in controlling atherosclerosis by modulating macrophage cholesterol metabolism and inflammation via miRNA. NPJ Sci Food. 2:132018. View Article : Google Scholar | |
Giral H, Kratzer A and Landmesser U: MicroRNAs in lipid metabolism and atherosclerosis. Best Pract Res Clin Endocrinol Metab. 30:665–676. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gimbrone MA Jr and García-Cardeña G: Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mudau M, Genis A, Lochner A and Strijdom H: Endothelial dysfunction: The early predictor of atherosclerosis. Cardiovasc J Afr. 23:222–231. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brix B, Mesters JR, Pellerin L and Johren O: Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J Neurosci. 32:9727–9735. 2012. View Article : Google Scholar : PubMed/NCBI | |
Legein B, Temmerman L, Biessen EA and Lutgens E: Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci. 70:3847–3869. 2013. View Article : Google Scholar : PubMed/NCBI | |
Libby P and Hansson GK: Taming immune and inflammatory responses to treat atherosclerosis. J Am Coll Cardiol. 71:173–176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wolf D and Ley K: Immunity and Inflammation in atherosclerosis. Circ Res. 124:315–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hansson GK and Hermansson A: The immune system in athero-sclerosis. Nat Immunol. 12:204–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Iwata H and Nagai R: Novel immune signals and atherosclerosis. Curr Atheroscler Rep. 14:484–490. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kuosmanen SM, Kansanen E, Kaikkonen MU, Sihvola V, Pulkkinen K, Jyrkkänen HK, Tuoresmäki P, Hartikainen J, Hippeläinen M, Kokki H, et al: NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res. 46:1124–1138. 2018. View Article : Google Scholar : | |
Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, et al: MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 125:4334–4348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Kim CW, Simmons RD and Jo H: Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: Mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 34:2206–2216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Barton M: Mechanisms and therapy of atherosclerosis and its clinical complications. Curr Opin Pharmacol. 13:149–153. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez L and Trigatti BL: Macrophage apoptosis and necrotic core development in atherosclerosis: A rapidly advancing field with clinical relevance to imaging and therapy. Can J Cardiol. 33:303–312. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Wang Y, Cao Y, Wang Q, Anwaier G, Zhang Q and Qi R: Mechanisms underlying the inhibitory effects of probucol on elastase-induced abdominal aortic aneurysm in mice. Br J Pharmacol. 177:204–216. 2020. View Article : Google Scholar | |
Guo X, Wang L, Xia X, Wang P and Li X: Effects of atorvastatin and/or probucol on recovery of atherosclerosis in high-fat-diet-fed apolipoprotein E-deficient mice. Biomed Pharmacother. 109:1445–1453. 2019. View Article : Google Scholar | |
Profumo E, Buttari B, D'Arcangelo D, Tinaburri L, Dettori MA, Fabbri D, Delogu G and Riganò R: The nutraceutical dehydroz-ingerone and its dimer counteract inflammation- and oxidative stress-induced dysfunction of in vitro cultured human endothelial cells: A novel perspective for the prevention and therapy of atherosclerosis. Oxid Med Cell Longev. 2016:12464852016. View Article : Google Scholar | |
Jiang Y, Jin M, Chen J, Yan J, Liu P, Yao M, Cai W and Pi R: Discovery of a novel niacin-lipoic acid dimer N2L attenuating atherosclerosis and dyslipidemia with non-flushing effects. Eur J Pharmacol. 868:1728712020. View Article : Google Scholar | |
Ren Y, Qiao W, Fu D, Han Z, Liu W, Ye W and Liu Z: Traditional Chinese medicine protects against cytokine production as the potential immunosuppressive agents in atherosclerosis. J Immunol Res. 2017:74243072017. View Article : Google Scholar : PubMed/NCBI | |
Li TT, Wang ZB, Li Y, Cao F, Yang BY and Kuang HX: The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin J Nat Med. 17:401–412. 2019.PubMed/NCBI | |
Tian F, Gu L, Si A, Yao Q, Zhang X, Zhao J and Hu D: Metabolomic study on the faecal extracts of atherosclerosis mice and its application in a traditional Chinese Medicine. J Chromatogr B Analyt Technol Biomed Life Sci. 1007:140–148. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fan Q, Liu Y, Rao J, Zhang Z, Xiao W, Zhu T, Chai X, Ye K, Ning N, Yin Z, et al: Anti-atherosclerosis effect of angong niuhuang pill via regulating Th17/Treg immune balance and inhibiting chronic inflammatory on ApoE−/− mice model of early and mid-term atherosclerosis. Front Pharmacol. 10:15842020. View Article : Google Scholar | |
Zhu ZB, Song K, Huang WJ, Li H, Yang H, Bai YQ, Guo KT, Yang RB, Lou WJ, Xia CH, et al: Si-Miao-Yong-An (SMYA) decoction may protect the renal function through regulating the autophagy-mediated degradation of ubiquitinated protein in an atherosclerosis model. Front Pharmacol. 11:8372020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Yu AL, Wang ZL, Chen K, Zheng W, Zhou JJ, Xie Q, Yan HB, Ren P and Huang X: Chaihu-Shugan-San and absorbed meranzin hydrate induce anti-atherosclerosis and behavioral improvements in high-fat diet ApoE−/− mice via anti-inflammatory and BDNF-TrkB pathway. Biomed Pharmacother. 115:1088932019. View Article : Google Scholar | |
Haskard DO, Boyle JJ, Evans PC, Mason JC and Randi AM: Cytoprotective signaling and gene expression in endothelial cells and macrophages-lessons for atherosclerosis. Microcirculation. 20:203–216. 2013. View Article : Google Scholar | |
Dong Y, Fernandes C, Liu Y, Wu Y, Wu H, Brophy ML, Deng L, Song K, Wen A, Wong S, et al: Role of endoplasmic reticulum stress signalling in diabetic endothelial dysfunction and athero-sclerosis. Diab Vasc Dis Res. 14:14–23. 2017. View Article : Google Scholar | |
Chrysohoou C, Kollia N and Tousoulis D: The link between depression and atherosclerosis through the pathways of inflammation and endothelium dysfunction. Maturitas. 109:1–5. 2018. View Article : Google Scholar | |
Jensen HA and Mehta JL: Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther. 14:1021–1033. 2016. View Article : Google Scholar : PubMed/NCBI | |
Theodorou K and Boon RA: Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. 6:822018. View Article : Google Scholar : PubMed/NCBI | |
Verma I, Syngle A, Krishan P and Garg N: Endothelial progenitor cells as a marker of endothelial dysfunction and atherosclerosis in Ankylosing Spondylitis: A cross-sectional study. Int J Angiol. 26:36–42. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee DY and Chiu JJ: Atherosclerosis and flow: Roles of epigenetic modulation in vascular endothelium. J Biomed Sci. 26:562019. View Article : Google Scholar : PubMed/NCBI | |
Georgescu A, Alexandru N, Andrei E, Dragan E, Cochior D and Dias S: Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development. Biol Cell. 108:219–243. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiang W, Hu ZL, He XJ and Dang XQ: Intravenous transfusion of endothelial progenitor cells that overexpress vitamin D receptor inhibits atherosclerosis in apoE-deficient mice. Biomed Pharmacother. 84:1233–1242. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kong M, Zhao Y, Chen A and Lin A: The importance of physiologic ischemia training in preventing the development of atherosclerosis: The role of endothelial progenitor cells in athero-sclerotic rabbits. Coron Artery Dis. 30:377–383. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pákozdi A, Besenyei T, Paragh G, Koch AE and Szekanecz Z: Endothelial progenitor cells in arthritis-associated vasculogenesis and atherosclerosis. Joint Bone Spine. 76:581–583. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Cai X, Ma R, Fu W, Zhang C and Du X: Iron-load exacerbates the severity of atherosclerosis via inducing inflammation and enhancing the glycolysis in macrophages. J Cell Physiol. 234:18792–18800. 2019. View Article : Google Scholar : PubMed/NCBI | |
Flynn MC, Kraakman MJ, Tikellis C, Lee MKS, Hanssen NMJ, Kammoun HL, Pickering RJ, Dragoljevic D, Al-Sharea A, Barrett TJ, et al: Transient intermittent hyperglycemia accelerates atherosclerosis by promoting myelopoiesis. Circ Res. 127:877–892. 2020. View Article : Google Scholar : PubMed/NCBI | |
Matsuura Y, Yamashita A, Zhao Y, Iwakiri T, Yamasaki K, Sugita C, Koshimoto C, Kitamura K, Kawai K, Tamaki N, et al: Altered glucose metabolism and hypoxic response in alloxan-induced diabetic atherosclerosis in rabbits. PLoS One. 12:e01759762017. View Article : Google Scholar : PubMed/NCBI | |
Vojinovic D, van der Lee SJ, van Duijn CM, Vernooij MW, Kavousi M, Amin N, Demirkan A, Ikram MA, van der Lugt A and Bos D: Metabolic profiling of intra- and extracranial carotid artery atherosclerosis. Atherosclerosis. 272:60–65. 2018. View Article : Google Scholar : PubMed/NCBI | |
Akins NS, Nielson TC and Le HV: Inhibition of glycolysis and glutaminolysis: An emerging drug discovery approach to combat cancer. Curr Top Med Chem. 18:494–504. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, Zheng K, Lin W, Li X, Yao X, et al: Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics. 9:1001–1014. 2019. View Article : Google Scholar : PubMed/NCBI | |
Godfrey R and Quinlivan R: Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol. 12:393–402. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquière B, Cauwenberghs S, Kuchnio A, Wong BW, Quaegebeur A, Goveia J, et al: Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19:37–48. 2014. View Article : Google Scholar | |
Fernie AR, Carrari F and Sweetlove LJ: Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol. 7:254–261. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tang BL: Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol. 235:7653–7662. 2020. View Article : Google Scholar : PubMed/NCBI | |
Paik JY, Lee KH, Ko BH, Choe YS, Choi Y and Kim BT: Nitric oxide stimulates 18F-FDG uptake in human endothelial cells through increased hexokinase activity and GLUT1 expression. J Nucl Med. 46:365–370. 2005.PubMed/NCBI | |
Kim JW, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar : PubMed/NCBI | |
Song J, Li Y, Song J, Hou F, Liu B and Li A: Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells. Biochim Biophys Acta Mol Basis Dis. 1863:1829–1839. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Han X, Fu M, Wang J, Song Y, Liu Y, Zhang J, Zhou J and Ge J: Qiliqiangxin attenuates hypoxia-induced injury in primary rat cardiac microvascular endothelial cells via promoting HIF-1α-dependent glycolysis. J Cell Mol Med. 22:2791–2803. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wik JA, Lundbäck P, la Cour Poulsen L, Haraldsen G, Skålhegg BS and Hol J: 3PO inhibits inflammatory NFκB and stress-activated kinase signaling in primary human endothelial cells independently of its target PFKFB3. PLoS One. 15:e02293952020. View Article : Google Scholar | |
Zhang R, Li R, Liu Y, Li L and Tang Y: The glycolytic enzyme PFKFB3 controls TNF-α-induced endothelial proinflammatory responses. Inflammation. 42:146–155. 2019. View Article : Google Scholar | |
Lu S, Deng J, Liu H, Liu B, Yang J, Miao Y, Li J, Wang N, Jiang C, Xu Q, et al: PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl). 96:585–600. 2018. View Article : Google Scholar | |
Zhang X, Chen B, Wu J, Sha J, Yang B, Zhu J, Sun J, Hartung J and Bao E: Aspirin enhances the protection of Hsp90 from heat-stressed injury in cardiac microvascular endothelial cells through PI3K-Akt and PKM2 pathways. Cells. 9:2432020. View Article : Google Scholar : | |
Serganova I, Cohen IJ, Vemuri K, Shindo M, Maeda M, Mane M, Moroz E, Khanin R, Satagopan J, Koutcher JA and Blasberg R: LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response. PLoS One. 13:e02039652018. View Article : Google Scholar : PubMed/NCBI | |
Chen SF, Pan MX, Tang JC, Cheng J, Zhao D, Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, et al: Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol Brain. 13:632020. View Article : Google Scholar | |
Fernández-Hernando C, József L, Jenkins D, Di Lorenzo A and Sessa WC: Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis. Arterioscler Thromb Vasc Biol. 29:2033–2040. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pan C, Liu Q and Wu X: HIF1α/miR-520a-3p/AKT1/mTOR feedback promotes the proliferation and glycolysis of gastric cancer cells. Cancer Manag Res. 11:10145–10156. 2019. View Article : Google Scholar : | |
Zhong ZW, Zhou WC, Sun XF, Wu QC, Chen WK and Miao CH: Dezocine regulates the malignant potential and aerobic glycolysis of liver cancer targeting Akt1/GSK-3β pathway. Ann Transl Med. 8:4802020. View Article : Google Scholar | |
Zhao X, Wu X, Wang H, Yu H and Wang J: USP53 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through FKBP51-AKT1 signaling. Mol Carcinog. 59:1000–1011. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song L and Schindler C: IL-6 and the acute phase response in murine atherosclerosis. Atherosclerosis. 177:43–51. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Chen X, Zhang Y, Su H, Zhang Y, Zhou X, Sun M, Li L and Xu Z: Tet3 enhances IL-6 expression through up-regulation of 5-hmC in IL-6 promoter in chronic hypoxia induced athero-sclerosis in offspring rats. Life Sci. 232:1166012019. View Article : Google Scholar | |
Bozic M, Alvarez A, de Pablo C, Sanchez-Niño MD, Ortiz A, Dolcet X, Encinas M, Fernandez E and Valdivielso JM: Impaired vitamin D signaling in endothelial cell leads to an enhanced leukocyte-endothelium interplay: Implications for atheroscle-rosis development. PLoS One. 10:e01368632015. View Article : Google Scholar | |
Han J, Meng Q, Xi Q, Zhang Y, Zhuang Q, Han Y, Jiang Y, Ding Q and Wu G: Interleukin-6 stimulates aerobic glycolysis by regulating PFKFB3 at early stage of colorectal cancer. Int J Oncol. 48:215–224. 2016. View Article : Google Scholar | |
Li H, Liang Q and Wang L: Icaritin inhibits glioblastoma cell viability and glycolysis by blocking the IL-6/Stat3 pathway. J Cell Biochem. Nov 2–2018.Epub ahead of print. View Article : Google Scholar | |
Zhao N and Zhang J: Role of alternative splicing of VEGF-A in the development of atherosclerosis. Aging (Albany NY). 10:2695–2708. 2018. View Article : Google Scholar | |
Wang X, Hu Z, Wang Z, Cui Y and Cui X: Angiopoietin-like protein 2 is an important facilitator of tumor proliferation, metastasis, angiogenesis and glycolysis in osteosarcoma. Am J Transl Res. 11:6341–6355. 2019.PubMed/NCBI | |
Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, Bonar NA, McNulty MR, Ramsey KM and Bass J: Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 25:86–92. 2017. View Article : Google Scholar | |
Zhao M, Fan J, Liu Y, Yu Y, Xu J, Wen Q, Zhang J, Fu S, Wang B, Xiang L, et al: Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation. Int J Oncol. 48:756–764. 2016. View Article : Google Scholar | |
Ko YH, Domingo-Vidal M, Roche M, Lin Z, Whitaker-Menezes D, Seifert E, Capparelli C, Tuluc M, Birbe RC, Tassone P, et al: TP53-inducible glycolysis and apoptosis regulator (TIGAR) metabolically reprograms carcinoma and stromal cells in breast cancer. J Biol Chem. 291:26291–26303. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Yepuri G, Forbiteh M, Yu Y, Montani JP, Yang Z and Ming XF: ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy. 10:2223–2238. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wu L, Zopp M, Kopelov S and Du W: p53-TP53-Induced glycolysis regulator mediated glycolytic suppression attenuates DNA damage and genomic instability in fanconi anemia hematopoietic stem cells. Stem Cells. 37:937–947. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Lv J, Yang W, Xu B, Wang Z, Yu Z, Wu J, Yang Y and Han Y: Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics. 9:6424–6442. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Li D, Yan W and Li W: Pravastatin prevents aortic atherosclerosis via modulation of signal transduction and activation of transcription 3 (STAT3) to attenuate interleukin-6 (IL-6) action in ApoE knockout mice. Int J Mol Sci. 9:2253–2264. 2008. View Article : Google Scholar | |
Li Y, Wang Y, Liu Z, Guo X, Miao Z and Ma S: Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 signaling pathway in colorectal cancer cells. Front Pharmacol. 11:2732020. View Article : Google Scholar : PubMed/NCBI | |
Zheng M, Cao MX, Yu XH, Li L, Wang K, Wang SS, Wang HF, Tang YJ, Tang YL and Liang XH: STAT3 promotes invasion and aerobic glycolysis of human oral squamous cell carcinoma via inhibiting FoxO1. Front Oncol. 9:11752019. View Article : Google Scholar : PubMed/NCBI | |
Seki N, Hashimoto N, Taira M, Yagi S, Yoshida Y, Ishikawa K, Suzuki Y, Sano H, Horiuchi S, Yoshida S, et al: Regulation of Src homology 2-containing protein tyrosine phosphatase by advanced glycation end products: The role on atherosclerosis in diabetes. Metabolism. 56:1591–1598. 2007. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Lee S, Jeong AL, Han S, Ka HI, Lim JS, Lee MS, Yoon DY, Lee JH and Yang Y: Hypoxia-induced IL-32β increases glycolysis in breast cancer cells. Cancer Lett. 356:800–808. 2015. View Article : Google Scholar | |
Nam K, Oh S and Shin I: Ablation of CD44 induces glycolysis-to-oxidative phosphorylation transition via modulation of the c-Src-Akt-LKB1-AMPKα pathway. Biochem J. 473:3013–3030. 2016. View Article : Google Scholar : PubMed/NCBI | |
Byun S, Jung H, Chen J, Kim YC, Kim DH, Kong B, Guo G, Kemper B and Kemper JK: Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. J Biol Chem. 294:8732–8744. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lovren F, Pan Y, Shukla PC, Quan A, Teoh H, Szmitko PE, Peterson MD, Gupta M, Al-Omran M and Verma S: Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: Translational implications for atherosclerosis. Am J Physiol Endocrinol Metab. 296:1440–1449. 2009. View Article : Google Scholar | |
Gupta A, Mohanty P and Bhatnagar S: Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk. J Recept Signal Transduct Res. 35:149–164. 2015. View Article : Google Scholar | |
Perrotta P, Emini Veseli B, Van der Veken B, Roth L, Martinet W and De Meyer GRY: Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis. Vascul Pharmacol. 112:72–78. 2019. View Article : Google Scholar |