Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review)
- Authors:
- Wenwen Marin
- Dennis Marin
- Xiang Ao
- Ying Liu
-
Affiliations: Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China, Qingdao University of Science and Technology, Qingdao, Shandong 266061, P.R. China, School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China - Published online on: December 16, 2020 https://doi.org/10.3892/ijmm.2020.4823
- Pages: 485-499
-
Copyright: © Marin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Carlucci A, Adornetto A, Scorziello A, Viggiano D, Foca M, Cuomo O, Annunziato L, Gottesman M and Feliciello A: Proteolysis of AKAP121 regulates mitochondrial activity during cellular hypoxia and brain ischaemia. EMBO J. 27:1073–1084. 2008. View Article : Google Scholar : PubMed/NCBI | |
Haidarali S, Patil CR, Ojha S, Mohanraj R, Arya DS and Goyal SN: Targeting apoptotic pathways in myocardial infarction: Attenuated by phytochemicals. Cardiovasc Hematol Agents Med Chem. 12:72–85. 2014. View Article : Google Scholar | |
Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J and Ausserlechner MJ: The role of mitochon-dria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants (Basel). 8:4542019. View Article : Google Scholar | |
Yang M, Linn BS, Zhang Y and Ren J: Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 1865:2293–2302. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, Krieg T and Murphy MP: A unifying mechanism for mitochondrial superoxide production during ischemia-reperfu-sion injury. Cell Metab. 23:254–263. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lesnefsky EJ, Chen Q, Tandler B and Hoppel CL: Mitochondrial dysfunction and myocardial ischemia-reperfusion: Implications for novel therapies. Annu Rev Pharmacol Toxicol. 57:535–565. 2017. View Article : Google Scholar | |
Eltzschig HK and Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 17:1391–1401. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Fernandez-Sanz C and Sheu SS: Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart. Biochim Biophys Acta Mol Basis Dis. 1864:1991–2001. 2018. View Article : Google Scholar | |
Spinelli JB and Haigis MC: The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 20:745–754. 2018. View Article : Google Scholar : PubMed/NCBI | |
Niemann B, Schwarzer M and Rohrbach S: Heart and mitochondria: Pathophysiology and implications for cardiac surgeons. Thorac Cardiovasc Surg. 66:11–19. 2018. View Article : Google Scholar | |
Bender DA: Oxidative phosphorylation. Encyclopedia of food sciences and nutrition. Caballero B: 2nd edition. Academic Press; Oxford; pp. 4295–4301. 2003, View Article : Google Scholar | |
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar | |
Guzy RD, Sharma B, Bell E, Chandel NS and Schumacker PT: Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol. 28:718–731. 2008. View Article : Google Scholar : | |
Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, et al: Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 515:431–435. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pell VR, Chouchani ET, Frezza C, Murphy MP and Krieg T: Succinate metabolism: A new therapeutic target for myocardial reperfusion injury. Cardiovasc Res. 111:134–141. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bugger H and Pfeil K: Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis. 1866:1657682020. View Article : Google Scholar : PubMed/NCBI | |
Boengler K, Lochnit G and Schulz R: Mitochondria 'THE' target of myocardial conditioning. Am J Physiol Heart Circ Physiol. 315:H1215–H1231. 2018. View Article : Google Scholar | |
Lin MT and Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 443:787–795. 2006. View Article : Google Scholar : PubMed/NCBI | |
Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R and Leeuwenburgh C: Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: From mechanisms to therapeutics. Am J Physiol Heart Circ Physiol. 305:H459–H476. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nordberg J and Arner ES: Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med. 31:1287–1312. 2001. View Article : Google Scholar : PubMed/NCBI | |
Judge S and Leeuwenburgh C: Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol. 292:C1983–C1992. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Chen C, Wang J, Liu L, He Y and Chen Q: Mitophagy in cardiomyocytes and in platelets: A major mechanism of cardioprotection against ischemia/reperfusion injury. Physiology (Bethesda). 33:86–98. 2018. | |
Tahrir FG, Langford D, Amini S, Mohseni Ahooyi T and Khalili K: Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. J Cell Physiol. 234:8122–8133. 2019. View Article : Google Scholar : | |
Paradies G, Petrosillo G, Paradies V and Ruggiero FM: Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 45:643–650. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kay L, Nicolay K, Wieringa B, Saks V and Wallimann T: Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. J Biol Chem. 275:6937–6944. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dolder M, Wendt S and Wallimann T: Mitochondrial creatine kinase in contact sites: Interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage. Biol Signals Recept. 10:93–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Arslan F, de Kleijn DP and Pasterkamp G: Innate immune signaling in cardiac ischemia. Nat Rev Cardiol. 8:292–300. 2011. View Article : Google Scholar : PubMed/NCBI | |
James AM, Hoogewijs K, Logan A, Hall AR, Ding S, Fearnley IM and Murphy MP: Non-enzymatic N-acetylation of lysine residues by AcetylCoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Rep. 18:2105–2112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wagner GR, Bhatt DP, O'Connell TM, Thompson JW, Dubois LG, Backos DS, Yang H, Mitchell GA, Ilkayeva OR, Stevens RD, et al: A class of reactive Acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25:823–837.e8. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wagner GR and Hirschey MD: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell. 54:5–16. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW and Park CY: Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem. 25:66–72. 2014. View Article : Google Scholar | |
Carraro M and Bernardi P: Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast. Cell Calcium. 60:102–107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Giorgio V, Guo L, Bassot C, Petronilli V and Bernardi P: Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 70:56–63. 2018. View Article : Google Scholar | |
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T and Tsujimoto Y: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 434:652–658. 2005. View Article : Google Scholar : PubMed/NCBI | |
Martin JL, Gruszczyk AV, Beach TE, Murphy MP and Saeb-Parsy K: Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr Nephrol. 34:1167–1174. 2019. View Article : Google Scholar : | |
Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM and Hausenloy DJ: Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 121:2012–2022. 2010. View Article : Google Scholar : PubMed/NCBI | |
Din S, Mason M, Volkers M, Johnson B, Cottage CT, Wang Z, Joyo AY, Quijada P, Erhardt P, Magnuson NS, et al: Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proc Natl Acad Sci USA. 110:5969–5974. 2013. View Article : Google Scholar : PubMed/NCBI | |
Balaban RS: Cardiac energy metabolism homeostasis: Role of cytosolic calcium. J Mol Cell Cardiol. 34:1259–1271. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nan J, Zhu W, Rahman MS, Liu M, Li D, Su S, Zhang N, Hu X, Yu H, Gupta MP and Wang J: Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta Mol Cell Res. 1864:1260–1273. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ and Archer SL: Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: Therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J. 28:316–326. 2014. View Article : Google Scholar : | |
Murphy MP and Hartley RC: Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 17:865–886. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thomas LW and Ashcroft M: Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 76:1759–1777. 2019. View Article : Google Scholar : PubMed/NCBI | |
Song M, Mihara K, Chen Y, Scorrano L and Dorn GW II: Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 21:273–286. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu Y and Dorn GW II: Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 109:1327–1331. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song M, Gong G, Burelle Y, Gustafsson AB, Kitsis RN, Matkovich SJ and Dorn GW II: Interdependence of Parkin-Mediated mitophagy and mitochondrial fission in adult mouse hearts. Circ Res. 117:346–351. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sabbah HN: Targeting the mitochondria in heart failure: A trans-lational perspective. JACC Basic Transl Sci. 5:88–106. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ikeda Y, Shirakabe A, Brady C, Zablocki D, Ohishi M and Sadoshima J: Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardio-vascular system. J Mol Cell Cardiol. 78:116–122. 2015. View Article : Google Scholar | |
Große L, Wurm CA, Bruser C, Neumann D, Jans DC and Jakobs S: Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 35:402–413. 2016. View Article : Google Scholar | |
Kim H, Scimia MC, Wilkinson D, Trelles RD, Wood MR, Bowtell D, Dillin A, Mercola M and Ronai ZeA: Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol Cell. 44:532–544. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marin W: A-kinase anchoring protein 1 (AKAP1) and its role in some cardiovascular diseases. J Mol Cell Cardiol. 138:99–109. 2020. View Article : Google Scholar | |
Disatnik MH, Ferreira JC, Campos JC, Gomes KS, Dourado PM, Qi X and Mochly-Rosen D: Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2:e0004612013. View Article : Google Scholar : PubMed/NCBI | |
Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, et al: Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 116:264–278. 2015. View Article : Google Scholar | |
Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ and Mihara K: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol. 191:1141–1158. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J and Zhou H: DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol. 14:576–587. 2018. View Article : Google Scholar | |
Li J, Li Y, Jiao J, Wang J, Li Y, Qin D and Li P: Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol. 34:1788–1799. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Jiang H, Shen Z and Wang X: Activation of mitochon-drial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci USA. 111:14782–14787. 2014. View Article : Google Scholar | |
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV and Orekhov AN: The role of mitochondrial dysfunction in cardio-vascular disease: A brief review. Ann Med. 50:121–127. 2018. View Article : Google Scholar | |
Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, Poletti A, Krom S, Reits E, Kampinga HH and Carra S: BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: Implications for a proteasome-to-autophagy switch. Autophagy. 10:1603–1621. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hammerling BC and Gustafsson AB: Mitochondrial quality control in the myocardium: Cooperation between protein degradation and mitophagy. J Mol Cell Cardiol. 75:122–130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kocaturk NM and Gozuacik D: Crosstalk between mammalian autophagy and the Ubiquitin-Proteasome system. Front Cell Dev Biol. 6:1282018. View Article : Google Scholar : PubMed/NCBI | |
Escobar-Henriques M, Altin S and Brave FD: Interplay between the ubiquitin proteasome system and mitochondria for protein homeostasis. Curr Issues Mol Biol. 35:35–58. 2020. View Article : Google Scholar | |
Nishida K and Otsu K: Sterile inflammation and degradation systems in heart failure. Circ J. 81:622–628. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li J, Horak KM, Su H, Sanbe A, Robbins J and Wang X: Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J Clin Invest. 121:3689–3700. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu X and Kem DC: Proteasome inhibition during myocardial infarction. Cardiovasc Res. 85:312–320. 2010. View Article : Google Scholar | |
Zhou H and Toan S: Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular Ischemia/Reperfusion injury. Biomolecules. 10:852020. View Article : Google Scholar : | |
Morales PE, Arias-Duran C, Avalos-Guajardo Y, Aedo G, Verdejo HE, Parra V and Lavandero S: Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med. 71:1008222020. View Article : Google Scholar | |
Chen Y and Dorn GW II: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 340:471–475. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siddall HK, Yellon DM, Ong SB, Mukherjee UA, Burke N, Hall AR, Angelova PR, Ludtmann MH, Deas E, Davidson SM, et al: Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury. PLoS One. 8:e624002013. View Article : Google Scholar : PubMed/NCBI | |
Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN and Gustafsson AB: Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem. 288:915–926. 2013. View Article : Google Scholar : | |
Zhou H, Zhang Y, Hu S, Shi C, Zhu P, Ma Q, Jin Q, Cao F, Tian F and Chen Y: Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res. 63:e124132017. View Article : Google Scholar | |
Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, Tan J, Tan Y, Han H, Tian R, et al: BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem. 291:21616–21629. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Lin C, Wu K, Jiang L, Wang X, Li W, Zhuang H, Zhang X, Chen H, Li S, et al: FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35:1368–1384. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tahrir FG, Knezevic T, Gupta MK, Gordon J, Cheung JY, Feldman AM and Khalili K: Evidence for the role of BAG3 in mitochondrial quality control in cardiomyocytes. J Cell Physiol. 232:797–805. 2017. View Article : Google Scholar : | |
Schänzer A, Rupp S, Graf S, Zengeler D, Jux C, Akinturk H, Gulatz L, Mazhari N, Acker T, Van Coster R, et al: Dysregulated autophagy in restrictive cardiomyopathy due to Pro209Leu mutation in BAG3. Mol Genet Metab. 123:388–399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ong SB, Kalkhoran SB, Hernandez-Resendiz S, Samangouei P, Ong SG and Hausenloy DJ: Mitochondrial-shaping proteins in cardiac health and disease-the long and the short of it! Cardiovasc Drugs Ther. 31:87–107. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kuznetsov AV and Margreiter R: Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci. 10:1911–1929. 2009. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Hu Y, Wang H, Shi S, Shi J and Qiu Z: Deficiency of interfibrillar mitochondria in post-acute myocardial infarction heart failure. Pak J Pharm Sci. 30:1089–1094. 2017.PubMed/NCBI | |
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the American heart association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, Kim SJ, Shao YF and Zhang YH: Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 472:367–374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kohlhauer M, Pell VR, Burger N, Spiroski AM, Gruszczyk A, Mulvey JF, Mottahedin A, Costa ASH, Frezza C, Ghaleh B, et al: Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol. 114:182019. View Article : Google Scholar : PubMed/NCBI | |
Turton JA, Fagg R, Sones WR, Williams TC and Andrews CM: Characterization of the myelotoxicity of chloramphenicol succinate in the B6C3F1 mouse. Int J Exp Pathol. 87:101–112. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ambekar CS, Lee JS, Cheung BM, Chan LC, Liang R and Kumana CR: Chloramphenicol succinate, a competitive substrate and inhibitor of succinate dehydrogenase: Possible reason for its toxicity. Toxicol In Vitro. 18:441–447. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sala-Mercado JA, Wider J, Undyala VV, Jahania S, Yoo W, Mentzer RM Jr, Gottlieb RA and Przyklenk K: Profound cardio-protection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation. 122(11 Suppl): S179–S184. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS, et al: Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med. 19:753–759. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu A, Szczepanek K, Hu Y, Lesnefsky EJ and Chen Q: Cardioprotection by modulation of mitochondrial respiration during ischemia-reperfusion: Role of apoptosis-inducing factor. Biochem Biophys Res Commun. 435:627–633. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brand MD, Goncalves RL, Orr AL, Vargas L, Gerencser AA, Borch Jensen M, Wang YT, Melov S, Turk CN, Matzen JT, et al: Suppressors of superoxide-H2O2 production at site I(Q) of mitochondrial complex I protect against stem cell hyperplasia and ischemia-reperfusion injury. Cell Metab. 24:582–592. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zozina VI, Covantev S, Goroshko OA, Krasnykh LM and Kukes VG: Coenzyme Q10 in cardiovascular and metabolic diseases: Current state of the problem. Curr Cardiol Rev. 14:164–174. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZW, Xu XC, Liu T and Yuan S: Mitochondrion-permeable antioxidants to treat ROS-Burst-mediated acute diseases. Oxid Med Cell Longev. 2016:68595232016. | |
Di Lorenzo A, Iannuzzo G, Parlato A, Cuomo G, Testa C, Coppola M, D'Ambrosio G, Oliviero DA, Sarullo S, Vitale G, et al: Clinical evidence for Q10 coenzyme supple-mentation in heart failure: From energetics to functional improvement. J Clin Med. 9:12662020. View Article : Google Scholar | |
Mortensen AL, Rosenfeldt F and Filipiak KJ: Effect of coen-zyme Q10 in Europeans with chronic heart failure: A sub-group analysis of the Q-SYMBIO randomized double-blind trial. Cardiol J. 26:147–156. 2019. | |
Reily C, Mitchell T, Chacko BK, Benavides G, Murphy MP and Darley-Usmar V: Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol. 1:86–93. 2013. View Article : Google Scholar : PubMed/NCBI | |
Smith RA and Murphy MP: Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 1201:96–103. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee FY, Shao PL, Wallace CG, Chua S, Sung PH, Ko SF, Chai HT, Chung SY, Chen KH, Lu HI, et al: Combined therapy with SS31 and mitochondria mitigates myocardial ischemia-reperfusion injury in rats. Int J Mol Sci. 19:27822018. View Article : Google Scholar : | |
Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, Koomalsingh KJ, Gorman JH III, Sloan RC, Frasier CR, Watson CA, et al: Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide. J Am Heart Assoc. 1:e0016442012. View Article : Google Scholar : PubMed/NCBI | |
Botker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G and Ovize M: Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med. 24:2717–2729. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mailloux RJ: Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 22:4763–4779. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Empel VP, Bertrand AT, van Oort RJ, van der Nagel R, Engelen M, van Rijen HV, Doevendans PA, Crijns HJ, Ackerman SL, Sluiter W and De Windt LJ: EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J Am Coll Cardiol. 48:824–832. 2006. View Article : Google Scholar : PubMed/NCBI | |
Baguisi A, Casale RA, Kates SA, Lader AS, Stewart K and Beeuwkes R III: CMX-2043 efficacy in a rat model of cardiac ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther. 21:563–569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tsubota K: The first human clinical study for NMN has started in Japan. NPJ Aging Mech Dis. 2:160212016. View Article : Google Scholar | |
Hong W, Mo F, Zhang Z, Huang M and Wei X: Nicotinamide mononucleotide: A promising molecule for therapy of diverse diseases by targeting NAD+ metabolism. Front Cell Dev Biol. 8:2462020. View Article : Google Scholar : PubMed/NCBI | |
Irie J, Inagaki E, Fujita M, Nakaya H, Mitsuishi M, Yamaguchi S, Yamashita K, Shigaki S, Ono T, Yukioka H, et al: Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr J. 67:153–160. 2020. View Article : Google Scholar | |
Bendickova K, Tidu F and Fric J: Calcineurin-NFAT signalling in myeloid leucocytes: New prospects and pitfalls in immuno-suppressive therapy. EMBO Mol Med. 9:990–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M, Masson S, Barlera S, Milani V, Lombardi M, et al: Cyclosporine a in reperfused myocardial infarction: The multicenter, controlled, open-label CYCLE trial. J Am Coll Cardiol. 67:365–374. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ikeda G, Matoba T, Nakano Y, Nagaoka K, Ishikita A, Nakano K, Funamoto D, Sunagawa K and Egashira K: Nanoparticle-mediated targeting of cyclosporine a enhances cardioprotection against ischemia-reperfusion injury through inhibition of mitochondrial permeability transition pore opening. Sci Rep. 6:204672016. View Article : Google Scholar : PubMed/NCBI | |
Jahandiez V, Cour M, Bochaton T, Abrial M, Loufouat J, Gharib A, Varennes A, Ovize M and Argaud L: Fast therapeutic hypothermia prevents post-cardiac arrest syndrome through cyclophilin D-mediated mitochondrial permeability transition inhibition. Basic Res Cardiol. 112:352017. View Article : Google Scholar : PubMed/NCBI | |
Parodi-Rullán RM, Soto-Prado J, Vega-Lugo J, Chapa-Dubocq X, Díaz-Cordero SI and Javadov S: Divergent effects of cyclophilin-D inhibition on the female rat heart: Acute versus chronic post-myocardial infarction. Cell Physiol Biochem. 50:288–303. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khuchua Z, Glukhov AI, Strauss AW and Javadov S: Elucidating the beneficial role of PPAR agonists in cardiac diseases. Int J Mol Sci. 19:34642018. View Article : Google Scholar : | |
Lalloyer F and Staels B: Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol. 30:894–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Viscomi C, Bottani E, Civiletto G, Cerutti R, Moggio M, Fagiolari G, Schon EA, Lamperti C and Zeviani M: In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis. Cell Metab. 14:80–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Madrid-Miller A, Moreno-Ruiz LA, Borrayo-Sánchez G, Almeida-Gutiér rez E, Martínez-Gómez DF and Jáuregui-Aguilar R: Ipact of bezafibrate treatment in patients with hyperfibrinogenemia and ST-elevation acute myocardial infarction: A randomized clinical trial. Cir Cir. 78:229–237. 2010.PubMed/NCBI | |
Kernan WN, Inzucchi SE, Viscoli CM, Brass LM, Bravata DM, Shulman GI, McVeety JC and Horwitz RI: Pioglitazone improves insulin sensitivity among nondiabetic patients with a recent transient ischemic attack or ischemic stroke. Stroke. 34:1431–1436. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu J and Wang LN: Peroxisome proliferator-activated receptor gamma agonists for preventing recurrent stroke and other vascular events in people with stroke or transient ischaemic attack. Cochrane Database Syst Rev. 12:CD0106932017.PubMed/NCBI | |
Palee S, Weerateerangkul P, Surinkeaw S, Chattipakorn S and Chattipakorn N: Effect of rosiglitazone on cardiac electrophysi-ology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart. Exp Physiol. 96:778–789. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nissen SE and Wolski K: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 356:2457–2471. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sunaga H, Koitabashi N, Iso T, Matsui H, Obokata M, Kawakami R, Murakami M, Yokoyama T and Kurabayashi M: Activation of cardiac AMPK-FGF21 feed-forward loop in acute myocardial infarction: Role of adrenergic overdrive and lipolysis byproducts. Sci Rep. 9:118412019. View Article : Google Scholar : PubMed/NCBI | |
Zhang DS, Liang GY, Liu DX, Yu J and Wang F: Role of phosphorylated AMP-activated protein kinase (AMPK) in myocardial insulin resistance after myocardial ischemia-reperfusion during cardiopulmonary bypass surgery in dogs. Med Sci Monit. 25:4149–4158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Massey S, Story D and Li L: Metformin: An old drug with new applications. Int J Mol Sci. 19:28632018. View Article : Google Scholar : | |
Chin JT, Troke JJ, Kimura N, Itoh S, Wang X, Palmer OP, Robbins RC and Fischbein MP: A novel cardioprotective agent in cardiac transplantation: Metformin activation of AMP-activated protein kinase decreases acute ischemia-reperfusion injury and chronic rejection. Yale J Biol Med. 84:423–432. 2011.PubMed/NCBI | |
Palee S, Higgins L, Leech T, Chattipakorn SC and Chattipakorn N: Acute metformin treatment provides cardioprotection via improved mitochondrial function in cardiac ischemia / reperfusion injury. Biomed Pharmacother. 130:1106042020. View Article : Google Scholar : PubMed/NCBI | |
Holman RR, Paul SK, Bethel MA, Matthews DR and Neil HA: 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 359:1577–1589. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mellbin LG, Malmberg K, Norhammar A, Wedel H and Rydé L; DIGAMI 2 Investigators: The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: A report from the DIGAMI 2 trial. Eur Heart J. 29:166–176. 2008. View Article : Google Scholar | |
Hartman MHT, Prins JKB, Schurer RAJ, Lipsic E, Lexis CPH, van der Horst-Schrivers ANA, van Veldhuisen DJ, van der Horst ICC and van der Harst P: Two-year follow-up of 4 months metformin treatment vs. placebo in ST-elevation myocardial infarction: Data from the GIPS-III RCT. Clin Res Cardiol. 106:939–946. 2017. View Article : Google Scholar : PubMed/NCBI | |
Whitaker RM, Corum D, Beeson CC and Schnellmann RG: Mitochondrial biogenesis as a pharmacological target: A new approach to acute and chronic diseases. Annu Rev Pharmacol Toxicol. 56:229–249. 2016. View Article : Google Scholar | |
Kim H, Lee JY, Park KJ, Kim WH and Roh GS: A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci. 17:332016. View Article : Google Scholar : PubMed/NCBI | |
Veeranki S and Tyagi SC: Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiol Rep. 5:e132982017. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Chen W, Yan M, Liu J, Luo H, Wang C and Yang P: Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med. 45:195–209. 2020. | |
Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR and Li PF: miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 17:71–78. 2011. View Article : Google Scholar | |
Babot M, Birch A, Labarbuta P and Galkin A: Characterisation of the active/de-active transition of mitochondrial complex I. Biochim Biophys Acta. 1837:1083–1092. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gorenkova N, Robinson E, Grieve DJ and Galkin A: Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia. Antioxid Redox Signal. 19:1459–1468. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chouchani ET, James AM, Methner C, Pell VR, Prime TA, Erickson BK, Forkink M, Lau GY, Bright TP, Menger KE, et al: Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia. J Biol Chem. 292:14486–14495. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pan J and Carroll KS: Light-mediated sulfenic acid generation from photocaged cysteine sulfoxide. Org Lett. 17:6014–6017. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ukuwela AA, Bush AI, Wedd AG and Xiao Z: Reduction potentials of protein disulfides and catalysis of glutathionylation and deglutathionylation by glutaredoxin enzymes. Biochem J. 474:3799–3815. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kolluru GK, Shen X and Kevil CG: Reactive sulfur species: A new redox player in cardiovascular pathophysiology. Arterioscler Thromb Vasc Biol. 40:874–884. 2020. View Article : Google Scholar : PubMed/NCBI | |
Davalli P, Mitic T, Caporali A, Lauriola A and D'Arca D: ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016:35651272016. View Article : Google Scholar : PubMed/NCBI | |
Shahzad S, Hasan A, Faizy AF, Mateen S, Fatima N and Moin S: Elevated DNA damage, oxidative stress, and impaired response defense system inflicted in patients with myocardial infarction. Clin Appl Thromb Hemost. 24:780–789. 2018. View Article : Google Scholar | |
Dey S, DeMazumder D, Sidor A, Foster DB and O'Rourke B: Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res. 123:356–371. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gottlieb RA and Thomas A: Mitophagy and mitochondrial quality control mechanisms in the heart. Curr Pathobiol Rep. 5:161–169. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guan R, Zou W, Dai X, Yu X, Liu H, Chen Q and Teng W: Mitophagy, a potential therapeutic target for stroke. J Biomed Sci. 25:872018. View Article : Google Scholar : PubMed/NCBI | |
Andres AM, Tucker KC, Thomas A, Taylor DJ, Sengstock D, Jahania SM, Dabir R, Pourpirali S, Brown JA, Westbrook DG, et al: Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardio-pulmonary bypass. JCI Insight. 2:e893032017. View Article : Google Scholar | |
Moyzis AG, Sadoshima J and Gustafsson AB: Mending a broken heart: The role of mitophagy in cardioprotection. Am J Physiol Heart Circ Physiol. 308:H183–H192. 2015. View Article : Google Scholar : | |
Ding S, Wu D, Lu Q, Qian L, Ding Y, Liu G, Jia X, Zhang Y, Xiao W and Gong W: Angiopoietin-like 4 deficiency upregulates macrophage function through the dysregulation of cell-intrinsic fatty acid metabolism. Am J Cancer Res. 10:595–609. 2020.PubMed/NCBI | |
Cai J, Wang D, Zhao FQ, Liang S and Liu J: AMPK-mTOR pathway is involved in glucose-modulated amino acid sensing and utilization in the mammary glands of lactating goats. J Anim Sci Biotechnol. 11:322020. View Article : Google Scholar : PubMed/NCBI | |
Mackenzie RM, Salt IP, Miller WH, Logan A, Ibrahim HA, Degasperi A, Dymott JA, Hamilton CA, Murphy MP, Delles C and Dominiczak AF: Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Clin Sci (Lond). 124:403–411. 2013. View Article : Google Scholar | |
Zhao Y, Shang F, Shi W, Zhang J, Liu X, Li B, Hu X and Wang L: Angiotensin II receptor type 1 antagonists modulate vascular smooth muscle cell proliferation and migration via AMPK/mTOR. Cardiology. 143:1–10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gerczuk PZ and Kloner RA: An update on cardioprotection: A review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials. J Am Coll Cardiol. 59:969–978. 2012. View Article : Google Scholar : PubMed/NCBI | |
Obtułowicz K: Bradykinin-mediated angioedema. Pol Arch Med Wewn. 126:76–85. 2016. | |
Taddei S and Bortolotto L: Unraveling the pivotal role of bradykinin in ACE inhibitor activity. Am J Cardiovasc Drugs. 16:309–321. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lepelley M, Bernardeau C, Defendi F, Crochet J, Mallaret M and Bouillet L: Update on bradykinin-mediated angioedema in 2020. Therapie. 75:195–205. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koh JQS, Fernando H, Peter K and Stub D: Opioids and ST elevation myocardial infarction: A systematic review. Heart Lung Circ. 28:697–706. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tavenier AH, Hermanides RS, Ottervanger JP, Ter Horst PGJ, Kedhi E and van 't Hof AWJ: Risks of opioids in ST-elevation myocardial infarction: A review. Drug Saf. 41:1303–1308. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jones SP, Tang XL, Guo Y, Steenbergen C, Lefer DJ, Kukreja RC, Kong M, Li Q, Bhushan S, Zhu X, et al: The NHLBI-sponsored consortium for preclinicAl assESsment of cARdioprotective therapies (CAESAR): A new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ Res. 116:572–586. 2015. View Article : Google Scholar : |