An integrative look at SARS‑CoV‑2 (Review)
- Authors:
- Miguel A. Ortega
- Oscar Fraile‑Martínez
- Cielo García‑Montero
- Sandra García‑Gallego
- Lara Sánchez‑Trujillo
- Diego Torres‑Carranza
- Miguel Ángel Álvarez‑Mon
- Leonel Pekarek
- Natalio García‑Honduvilla
- Julia Bujan
- Melchor Álvarez‑Mon
- Ángel Asúnsolo
- Basilio De la Torre
-
Affiliations: Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain, Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid, Spain, First of May Health Centre, Health Area I, Rivas Vaciamadrid, 28521 Madrid, Spain - Published online on: December 22, 2020 https://doi.org/10.3892/ijmm.2020.4828
- Pages: 415-434
-
Copyright: © Ortega et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneu-monia. N Engl J Med. 382:1199–1207. 2020. View Article : Google Scholar : PubMed/NCBI | |
Woo PC, Huang Y, Lau SK and Yuen KY: Coronavirus genomics and bioinformatics analysis. Viruses. 2:1804–1820. 2010. View Article : Google Scholar : PubMed/NCBI | |
de Wit E, van Doremalen N, Falzarano D and Munster VJ: SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol. 14:523–534. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hasöksüz M, Kiliç S and Saraç F: Coronaviruses and SARS-COV-2. Turk J Med Sci. 50(SI-1): 549–556. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ashour HM, Elkhatib WF, Rahman MM and Elshabrawy HA: Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens. 9:1862020. View Article : Google Scholar : | |
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S and Yuen KY: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 9:221–236. 2020. View Article : Google Scholar : PubMed/NCBI | |
Banerjee A, Kulcsar K, Misra V, Frieman M and Mossman K: Bats and coronaviruses. Viruses. 11:412019. View Article : Google Scholar : | |
Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, Zhu J, Zhang Q, Wu J and Liu L: Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. 92:595–601. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y and Guo X: Systematic comparison of two animal-to-human trans-mitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 12:2442020. View Article : Google Scholar | |
Zheng J: SARS-CoV-2: An emerging coronavirus that causes a global threat. Int J Biol Sci. 16:1678–1685. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Peng F, Wang R, Yange M, Guan K, Jiang T, Xu G, Sun J and Chang C: The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 109:1024342020. View Article : Google Scholar : PubMed/NCBI | |
Yuen KS, Ye ZW, Fung SY, Chan CP and Jin DY: SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 10:402020. View Article : Google Scholar : PubMed/NCBI | |
Peyronnet V, Sibiude J, Deruelle P, Huissoud C, Lescure X, Lucet JC, Mandelbrot L, Nisand I, Vayssière C, Yazpandanah Y, et al: SARS-CoV-2 infection during pregnancy. Information and proposal of management care. CNGOF Gynecol Obstet Fertil Senol. 48:436–443. 2020.In French. | |
Jiang X, Rayner S and Luo MH: Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J Med Virol. 92:476–478. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lai A, Bergna A, Acciarri C, Galli M and Zehender G: Early phylogenetic estimate of the effective reproduction number of SARS-CoV-2. J Med Virol. 92:675–679. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lai CC, Shih TP, Ko WC, Tang HJ and Hsueh PR: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 55:1059242020. View Article : Google Scholar : PubMed/NCBI | |
Malik YA: Properties of coronavirus and SARS-CoV-2. Malays J Pathol. 42:3–11. 2020.PubMed/NCBI | |
Yu X and Yang R: COVID-19 transmission through asymptomatic carriers is a challenge to containment. Influenza Other Respir Viruses. 14:474–475. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baltimore D: Expression of animal virus genomes. Bacteriol Rev. 35:235–241. 1971. View Article : Google Scholar : PubMed/NCBI | |
Englund JA, Kim YJ and McIntosh K: Human coronaviruses, including Middle East respiratory syndrome coronavirus. Feigin and Cherry's textbook of pediatric infectious disease. Cherry J, Demmler Harrison GJ, Kaplan SL, Steinbach WJ and Hotez PJ: 8th edition. Elsevier Inc; Philadelphia, PA, pp: pp. 1846–1854. 2019 | |
Park SE: Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 63:119–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fehr AR and Perlman S: Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 1282:1–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Phan T: Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 81:1042602020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al: Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 181:894–904.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581:215–220. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, et al: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 370:856–860. 2020. View Article : Google Scholar : PubMed/NCBI | |
Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Antón-Plágaro C, Shoemark DK, Simón-Gracia L, Bauer M, Hollandi R, et al: Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 370:861–865. 2020. View Article : Google Scholar : PubMed/NCBI | |
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT and Veesler D: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181:281–292.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y and Gao GF: Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24:490–502. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elfiky AA: SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. J Biomol Struct Dyn. 1–9. 2020.Epub ahead of print. | |
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, et al: Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 82:289–293. 2020. View Article : Google Scholar | |
Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, et al: A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 174:11–22. 2011. View Article : Google Scholar | |
Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ and Rottier PJ: Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15:2020–2028. 1996. View Article : Google Scholar : PubMed/NCBI | |
Escors D, Ortego J, Laude H and Enjuanes L: The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol. 75:1312–1324. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, Bolling MC, Dijkstra G, Voors AA, Osterhaus AD, et al: Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 251:228–248. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Penninger JM, Li Y, Zhong N and Slutsky AS: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 46:586–590. 2020. View Article : Google Scholar : PubMed/NCBI | |
Castranova V, Rabovsky J, Tucker JH and Miles PR: The alveolar type II epithelial cell: A multifunctional pneumocyte. Toxicol Appl Pharmacol. 93:472–483. 1988. View Article : Google Scholar : PubMed/NCBI | |
Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, et al: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 368:1012–1015. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M, Veith C, Boots AW, et al: SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39:e1051142020. View Article : Google Scholar : PubMed/NCBI | |
Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, Shuai H, Yang D, Hu B, Huang X, et al: Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the patho-genesis of COVID-19. Clin Infect Dis. 71:1400–1409. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S, Ciccozzi M, Gallo RC, et al: Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 18:1792020. View Article : Google Scholar : PubMed/NCBI | |
Holmes EA, O'Connor RC, Perry VH, Tracey I, Wessely S, Arseneault L, Ballard C, Christensen H, Cohen Silver R, Everall I, et al: Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry. 7:547–560. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roussel Y, Giraud-Gatineau A, Jimeno MT, Rolain JM, Zandotti C, Colson P and Raoult D: SARS-CoV-2: Fear versus data. Int J Antimicrob Agents. 55:1059472020. View Article : Google Scholar : PubMed/NCBI | |
World Health Organization (WHO): WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/urisimplehttps://covid19.who.int/. Retrieved November 17, 2020. | |
Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C and Agha R: World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 76:71–76. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bulut C and Kato Y: Epidemiology of COVID-19. Turk J Med Sci. 50:563–570. 2020. View Article : Google Scholar : PubMed/NCBI | |
New York City Department of Health and Mental Hygiene (DOHMH) COVID-19 Response Team: Preliminary estimate of excess mortality during the COVID-19 outbreak-New York City, March 11-May 2, 2020. MMWR Morb Mortal Wkly Rep. 69:603–605. 2020. View Article : Google Scholar | |
The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 41:145–151. 2020.In Chinese. | |
Goh KJ, Choong MC, Cheong EH, Kalimuddin S, Duu Wen S, Phua GC, Chan KS and Haja Mohideen S: Rapid progression to acute respiratory distress syndrome: Review of current under-standing of critical illness from COVID-19 infection. Ann Acad Med Singap. 49:108–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Balasubramanian S, Rao NM, Goenka A, Roderick M and Ramanan AV: Coronavirus Disease 2019 (COVID-19) in children-what we know so far and what we do not? Indian Pediatr. 57:435–442. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zimmermann P and Curtis N: Coronavirus infections in children including COVID-19: An overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr Infect Dis J. 39:355–368. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sharma G, Volgman AS and Michos ED: Sex differences in mortality from COVID-19 pandemic: Are men vulnerable and women protected? JACC Case Rep. 2:1407–1410. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen H, Tang K and Guo Y: Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy. J Infect. Mar 4–2020.Epub ahead of print. | |
Rasmussen SA, Smulian JC, Lednicky JA, Wen TS and Jamieson DJ: Coronavirus Disease 2019 (COVID-19) and pregnancy: What obstetricians need to know. Am J Obstet Gynecol. 222:415–426. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lescure FX, Bouadma L, Nguyen D, Parisey M, Wicky PH, Behillil S, Gaymard A, Bouscambert-Duchamp M, Donati F, Le Hingrat Q, et al: Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect Dis. 20:697–706. 2020. View Article : Google Scholar : PubMed/NCBI | |
Remuzzi A and Remuzzi G: COVID-19 and Italy: What next? Lancet. 395:1225–1228. 2020. View Article : Google Scholar : PubMed/NCBI | |
Saglietto A, D'Ascenzo F, Zoccai GB and De Ferrari GM: COVID-19 in Europe: The Italian lesson. Lancet. 395:1110–1111. 2020. View Article : Google Scholar : PubMed/NCBI | |
COVID-19 Situazione in Italia. http://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCorona-virus.jsp?lingua=italiano&id=5351&area=nuovoCoronavirus&menu=vuotourisimplehttp://www.salute.gov.it/portale/nuovocoronavirus/dettaglioContenutiNuovoCorona-virus.jsp?lingua=italiano&id=5351&area=nuovoCoronavirus&menu=vuoto. Retrieved May 29, 2020. | |
Saez M, Tobias A, Varga D and Barceló MA: Effectiveness of the measures to flatten the epidemic curve of COVID-19. The case of Spain. Sci Total Environ. 727:1387612020. View Article : Google Scholar : PubMed/NCBI | |
Update no. 120. Coronavirus disease (COVID-19). 29–05. 2020, https://www.mscbs.gob.es/en/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Actualizacion_120_COVID-19.pdfurisimplehttps://www.mscbs.gob.es/en/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Actualizacion_120_COVID-19.pdf. Retrieved May 29, 2020. | |
Castaldi S, Romano L, Pariani E, Garbelli C and Biganzoli E: COVID-19: The end of lockdown what next? Acta Biomed. 91:236–238. 2020.PubMed/NCBI | |
Mateos R, Fernández M, Franco M and Sánchez M: COVID-19 in Spain. Coming back to the 'new normality' after 2 months of confinement. Int Psychogeriatr. 32:1169–1172. 2020. View Article : Google Scholar : PubMed/NCBI | |
World Health Organization (WHO): Dashboard Italy From January 29 to 17 November 2020. https://covid19.who.int/region/euro/country/iturisimplehttps://covid19.who.int/region/euro/country/it. | |
World Health Organization (WHO): Dashboard Spain From January 29 to 17 November 2020. https://covid19.who.int/region/euro/country/esurisimplehttps://covid19.who.int/region/euro/country/es. | |
International Monetary Fund Italy. https://www.imf.org/en/Countries/ITAurisimplehttps://www.imf.org/en/Countries/ITA. Retrieved 12 August 12, 2020. | |
International Monetary Fund Spain. https://www.imf.org/en/Countries/ESP#countrydataurisimplehttps://www.imf.org/en/Countries/ESP#countrydata. Retrieved August 12, 2020. | |
Nicola M, Alsafi Z, Sohrabi C, Kerwan A, Al-Jabir A, Iosifidis C, Agha M and Agha R: The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg. 78:185–193. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, Dhama K, Yatoo MI, Bonilla-Aldana DK and Rodriguez-Morales AJ: SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez Med. 28:174–184. 2020.PubMed/NCBI | |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associ-ated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, et al: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25:20000452020. View Article : Google Scholar : | |
Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou Z, Tsoi HW, et al: Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR assay validated in vitro and with clinical specimens. J Clin Microbiol. 58:e00310–20. 2020. View Article : Google Scholar : | |
Artika IM, Wiyatno A and Ma'roef CN: Pathogenic viruses: Molecular detection and characterization. Infect Genet Evol. 81:1042152020. View Article : Google Scholar : PubMed/NCBI | |
Dai WC, Zhang HW, Yu J, Xu HJ, Chen H, Luo SP, Zhang H, Liang LH, Wu XL, Lei Y and Lin F: CT Imaging and differential diagnosis of COVID-19. Can Assoc Radiol J. 71:195–200. 2020. View Article : Google Scholar : PubMed/NCBI | |
Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, Sun C, Sylvia S, Rozelle S, Raat H and Zhou H: Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect Dis Poverty. 9:292020. View Article : Google Scholar : PubMed/NCBI | |
Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, Zhao H, Lester E, Wu T and Pang CH: The First 75 Days of Novel Coronavirus (SARS-CoV-2) Outbreak: Recent advances, prevention, and treatment. Int J Environ Res Public Health. 17:23232020. View Article : Google Scholar : | |
Otter JA, Donskey C, Yezli S, Douthwaite S, Goldenberg SD and Weber DJ: Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: The possible role of dry surface contamination. J Hosp Infect. 92:235–250. 2016. View Article : Google Scholar | |
Dowell SF, Simmerman JM, Erdman DD, Wu JS, Chaovavanich A, Javadi M, Yang JY, Anderson LJ, Tong S and Ho MS: Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis. 39:652–657. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kampf G, Todt D, Pfaender S and Steinmann E: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 104:246–251. 2020. View Article : Google Scholar : PubMed/NCBI | |
World Health Organization (WHO): Novel Coronavirus (2019-nCoV) Advice for the public. WHO; Geneva: 2020 | |
Güner R, Hasanoğlu I and Aktaş F: COVID-19: Prevention and control measures in community. Turk J Med Sci. 50:571–577. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kwon KT, Ko JH, Shin H, Sung M and Kim JY: Drive-Through screening center for COVID-19: A safe and efficient screening system against massive community outbreak. J Korean Med Sci. 35:e1232020. View Article : Google Scholar : PubMed/NCBI | |
Lan L, Xu D, Ye G, Xia C, Wang S, Li Y and Xu H: Positive RT-PCR test results in patients recovered from COVID-19. JAMA. 323:1502–1503. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nikolich-Zugich J, Knox KS, Rios CT, Natt B, Bhattacharya D and Fain MJ: SARS-CoV-2 and COVID-19 in older adults: What we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience. 42:505–514. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tay MZ, Poh CM, Rénia L, MacAry PA and Ng LFP: The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol. 20:363–374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G and Melino G: COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 27:1451–1454. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmadpoor P and Rostaing L: Why the immune system fails to mount an adaptive immune response to a COVID-19 infection. Transpl Int. 33:824–825. 2020. View Article : Google Scholar : PubMed/NCBI | |
Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, O'Mahony L, Gao Y, Nadeau K and Akdis CA: Immune response to SARS-CoV-2 and mechanisms of immuno-pathological changes in COVID-19. Allergy. 75:1564–1581. 2020. View Article : Google Scholar : PubMed/NCBI | |
de Simone G and Mancusi C: Finding the right time for anti-inflammatory therapy in COVID-19. Int J Infect Dis. 101:247–248. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shah VK, Firmal P, Alam A, Ganguly D and Chattopadhyay S: Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front Immunol. 11:19492020. View Article : Google Scholar : PubMed/NCBI | |
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I and Kayhan S: Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 39:2085–2094. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siddiqi HK and Mehra MR: COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 39:405–407. 2020. View Article : Google Scholar : PubMed/NCBI | |
Prompetchara E, Ketloy C and Palaga T: Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 38:1–9. 2020.PubMed/NCBI | |
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, et al: Impaired type I interferon activity and exacerbated inflammatory responses in severe COVID-19 patients. Science. 369:718–724. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tufan A, Avanoğlu Güler A and Matucci-Cerinic M: COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turk J Med Sci. 50(SI-1): 620–632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gubernatorova EO, Gorshkova EA, Polinova AI and Drutskaya MD: IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 53:13–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associ-ated with acute respiratory distress syndrome. Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J, Song Q, Jia Q and Wang J: Clinical characteristics of 82 cases of death with COVID-19. PLoS One. 15:e02354582020. View Article : Google Scholar | |
He R, Lu Z, Zhang L, Fan T, Xiong R, Shen X, Feng H, Meng H, Lin W, Jiang W and Geng Q: The clinical course and its correlated immune status in COVID-19 pneumonia. J Clin Virol. 127:1043612020. View Article : Google Scholar : PubMed/NCBI | |
Coperchini F, Chiovato L, Croce L, Magri F and Rotondi M: The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 53:25–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ye Q, Wang B and Mao J: The pathogenesis and treatment of the ʻCytokine Storm' in COVID-19. J Infect. 80:607–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, Su X and Cao B: SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet. 395:1517–1520. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X and Ma X: Acute respiratory failure in COVID-19: Is it 'typical' ARDS? Crit Care. 24:1982020. View Article : Google Scholar | |
Hand TW, Vujkovic-Cvijin I, Ridaura VK and Belkaid Y: Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol Metab. 27:831–843. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stoian AP, Banerjee Y, Rizvi AA and Rizzo M: Diabetes and the COVID-19 pandemic: How insights from recent experience might guide future management. Metab Syndr Relat Disord. 18:173–175. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dietz W and Santos-Burgoa C: Obesity and its implications for COVID-19 mortality. Obesity (Silver Spring). 28:10052020. View Article : Google Scholar | |
Ryan PM and Caplice NM: Is adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in Coronavirus Disease 2019? Obesity (Silver Spring). 8:1191–1194. 2020. View Article : Google Scholar | |
Nikolich-Žugich J: The twilight of immunity: Emerging concepts in aging of the immune system. Nat Immunol. 19:10–19. 2018. View Article : Google Scholar | |
Butler MJ and Barrientos RM: The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun. 87:53–54. 2020. View Article : Google Scholar : PubMed/NCBI | |
Körner A, Schlegel M, Theurer J, Frohnmeyer H, Adolph M, Heijink M, Giera M, Rosenberger P and Mirakaj V: Resolution of inflammation and sepsis survival are improved by dietary Ω-3 fatty acids. Cell Death Differ. 25:421–431. 2018. View Article : Google Scholar | |
Panigrahy D, Gilligan MM, Huang S, Gartung A, Cortés-Puch I, Sime PJ, Phipps RP, Serhan CN and Hammock BD: Inflammation resolution: A dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev. 39:337–340. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Mao L, Nassis GP, Harmer P, Ainsworth BE and Li F: Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. J Sport Health Sci. 9:103–104. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R and Santulli G: Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 9:E14172020. View Article : Google Scholar : PubMed/NCBI | |
Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, Madhur MS, Tomaszewski M, Maffia P, D'Acquisto F, et al: COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 116:1666–1687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004. View Article : Google Scholar : PubMed/NCBI | |
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F and Moch H: Endothelial cell infection and endotheliitis in COVID-19. Lancet. 395:1417–1418. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alvarado-Moreno JA and Majluf-Cruz A: COVID-19 and dysfunctional endothelium: The Mexican Scenario. Arch Med Res. 51:587–588. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zhu J and Xu T: Clinical characteristics of corona-virus disease 2019 (COVID-19) patients with hypertension on renin-angiotensin system inhibitors. Clin Exp Hypertens. 42:656–660. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Nigoghossian C, Ageno W, Madjid M, Guo Y, et al: COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-Art Review. J Am Coll Cardiol. 75:2950–2973. 2020. View Article : Google Scholar : PubMed/NCBI | |
von Brühl ML, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M, et al: Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 209:819–835. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gunzer M: Escaping the traps of your own hunters. Science. 358:1126–1127. 2017. View Article : Google Scholar : PubMed/NCBI | |
de Bont CM, Boelens WC and Pruijn GJM: NETosis, complement, and coagulation: A triangular relationship. Cell Mol Immunol. 16:19–27. 2019. View Article : Google Scholar : | |
Merad M and Martin JC: Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat Rev Immunol. 20:355–362. 2020. View Article : Google Scholar : PubMed/NCBI | |
Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, et al: Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 16:887–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
Oehmcke S, Mörgelin M and Herwald H: Activation of the human contact system on neutrophil extracellular traps. J Innate Immun. 1:225–230. 2009. View Article : Google Scholar : PubMed/NCBI | |
Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL and Esmon CT: Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood. 118:1952–1961. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-Alcázar M, Rangaswamy C, Panda R, Bitterling J, Simsek YJ, Long AT, Bilyy R, Krenn V, Renné C, Renné T, et al: Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 358:1202–1206. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee KH, Cavanaugh L, Leung H, Yan F, Ahmadi Z, Chong BH and Passam F: Quantification of NETs-associated markers by flow cytometry and serum assays in patients with thrombosis and sepsis. Int J Lab Hematol. 40:392–399. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS, et al: Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 217:e202006522020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, Chen H, Ding X, Zhao H, Zhang H, et al: Coagulopathy and antiphos-pholipid antibodies in patients with covid-19. N Engl J Med. 382:e382020. View Article : Google Scholar | |
Escher R, Breakey N and Lämmle B: Severe COVID-19 infection associated with endothelial activation. Thromb Res. 190:622020. View Article : Google Scholar : PubMed/NCBI | |
Whyte CS, Morrow GB, Mitchell JL, Chowdary P and Mutch NJ: Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J Thromb Haemost. 18:1548–1555. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Zhong Z, Ji P, Li H, Li B, Pang J, Zhang J and Zhao C: Clinicopathological characteristics of 8697 patients with COVID-19 in China: A meta-analysis. Fam Med Community Health. 8:e0004062020. View Article : Google Scholar : PubMed/NCBI | |
Novel Coronavirus-China. http://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/urisimplewww.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/. Retrieved May 30, 2020. | |
Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, Zhu H, Zhao W, Han Y and Qin C: From SARS to MERS, thrusting coronavi-ruses into the spotlight. Viruses. 11:592019. View Article : Google Scholar | |
Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X, Chen H, Peng J and Fu J: Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 47:4383–4392. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hui KPY, Cheung MC, Perera RAPM, Ng KC, Bui CHT, Ho JCW, Ng MMT, Kuok DIT, Shih KC, Tsao SW, et al: Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: An analysis in ex-vivo and in-vitro cultures. Lancet Respir Med. 8:687–695. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T and Chen Q: High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 12:82020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, Li Z, Cui X, Xiao J, Zhan J, et al: Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut. 69:1010–1018. 2020. View Article : Google Scholar : | |
Gao Y, Li T, Han M, Li X, Wu D, Xu Y, Zhu Y, Liu Y, Wang X and Wang L: Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 92:791–796. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Kang H, Liu X and Tong Z: Asymptomatic cases with SARS-CoV-2 infection. J Med Virol. 92:1401–1403. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Wang B, Yuan T, Chen X, Ao Y, Fitzpatrick T, Li P, Zhou Y, Lin YF, Duan Q, et al: Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect. 80:656–665. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lian J, Jin X, Hao S, Jia H, Cai H, Zhang X, Hu J, Zheng L, Wang X, Zhang S, et al: Epidemiological, clinical, and virological characteristics of 465 hospitalized cases of coronavirus disease 2019 (COVID-19) from Zhejiang province in China. Influenza Other Respir Viruses. 14:564–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L and Camporota L: COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 46:1099–1102. 2020. View Article : Google Scholar : PubMed/NCBI | |
The European Society for Cardiology (ESC): ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. https://www.escardio.org/Education/COVID-19-and-Cardiology/ESCCOVID-19-Guidanceurisimplehttps://www.escardio.org/Education/COVID-19-and-Cardiology/ESCCOVID-19-Guidance. Last updated May 28, 2020. | |
Shang W, Dong J, Ren Y, Tian M, Li W, Hu J and Li Y: The value of clinical parameters in predicting the severity of COVID-19. J Med Virol. 92:2188–2192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q, He Q, Wang Z, Liu Y, Liu L, et al: Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 43:1392–1398. 2020. View Article : Google Scholar : PubMed/NCBI | |
Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, Southern WN and Mantzoros CS: Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 108:1542622020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Feng X, Zhang D, Jiang C, Mei H, Wang J, Zhang C, Li H, Xia X, Kong S, et al: Deep vein thrombosis in hospitalized patients with (COVID-19) in Wuhan, China: Prevalence, risk factors, and outcome. Circulation. 142:114–128. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stoneham SM, Milne KM, Nuttall E, Frew GH, Sturrock BR, Sivaloganathan H, Ladikou EE, Drage S, Phillips B, Chevassut TJ and Eziefula AC: Thrombotic risk in COVID-19: A case series and case-control study. Clin Med (Lond). 20:e76–e81. 2020. View Article : Google Scholar | |
Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, Hao SR, Jia HY, Cai H, Zhang XL, et al: Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 69:1002–1009. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, Gu Z, Gao L, Shi H, Mai L, et al: Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 69:997–1001. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J, Shen J, Zhu LR, Chen Y, Iacucci M, et al: Manifestations and prognosis of gastro-intestinal and liver involvement in patients with COVID-19: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 5:667–678. 2020. View Article : Google Scholar : PubMed/NCBI | |
To KK, Tsang OT, Yip CC, Chan KH, Wu TC, Chan JM, Leung WS, Chik TS, Choi CY, Kandamby DH, et al: Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 71:841–843. 2020. View Article : Google Scholar : PubMed/NCBI | |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 395:1054–1062. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang SQ, Huang QF, Xie WM, Lv C and Quan XQ: The association between severe COVID-19 and low platelet count: Evidence from 31 observational studies involving 7613 participants. Br J Haematol. 190. pp. e29–e33. 2020, View Article : Google Scholar | |
Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL and Lazartigues E: Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 292:R373–R381. 2007. View Article : Google Scholar : | |
Liguori C, Pierantozzi M, Spanetta M, Sarmati L, Cesta N, Iannetta M, Ora J, Mina GG, Puxeddu E, Balbi O, et al: Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav Immun. 88:11–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim GU, Kim MJ, Ra SH, Lee J, Bae S, Jung J and Kim SH: Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin Microbiol Infect. 26:948.e1–948.e3. 2020. View Article : Google Scholar | |
Ye M, Ren Y and Lv T: Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 88:945–946. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bernard-Valnet R, Pizzarotti B, Anichini A, Demars Y, Russo E, Schmidhauser M, Cerutti-Sola J, Rossetti AO and Du Pasquier R: Two patients with acute meningoencephalitis concomitant to SARS-CoV-2 infection. Eur J Neurol. 27:e43–e44. 2020. View Article : Google Scholar | |
Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, Ueno M, Sakata H, Kondo K, Myose N, et al: A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 94:55–58. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, Ma Z, Huang Y, Liu W, Yao Y, et al: Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 31:1157–1165. 2020. View Article : Google Scholar : PubMed/NCBI | |
Galván Casas C, Català A, Carretero Hernández G, Rodríguez-Jiménez P, Fernández Nieto D, Rodríguez-Villa Lario A, Navarro Fernández I, Ruiz-Villaverde R, Falkenhain-López D, Llamas Velasco M, et al: Classification of the cutaneous manifestations of COVID-19: A rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol. 183:71–77. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang K, Wang Y, Zhang H, Zheng Q, Fang R and Sun Q: Cutaneous manifestations of the Coronavirus Disease 2019 (COVID-19): A brief review. Dermatol Ther. 33:e135282020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Deng C, Chen X, Zhang X, Chen B, Yu H, Qin Y, Xiao K, Zhang H and Sun X: Ocular manifestations and clinical characteristics of 535 cases of COVID-19 in Wuhan, China: a cross-sectional study. Acta Ophthalmol. 98:e951–e959. 2020. View Article : Google Scholar : PubMed/NCBI | |
Loffredo L, Pacella F, Pacella E, Tiscione G, Oliva A and Violi F: Conjunctivitis and COVID-19: A meta-analysis. J Med Virol. 92:1413–1414. 2020. View Article : Google Scholar : PubMed/NCBI | |
Panahi L, Amiri M and Pouy S: Clinical characteristics of COVID-19 infection in newborns and pediatrics: A systematic review. Arch Acad Emerg Med. 8:e502020.PubMed/NCBI | |
Mustafa NM and A Selim L: Characterisation of COVID-19 Pandemic in Paediatric Age Group: A systematic review and meta-analysis. J Clin Virol. 128:1043952020. View Article : Google Scholar : PubMed/NCBI | |
Liguoro I, Pilotto C, Bonanni M, Ferrari ME, Pusiol A, Nocerino A, Vidal E and Cogo P: SARS-COV-2 infection in children and newborns: A systematic review. Eur J Pediatr. 179:1029–1046. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Li H, Lu XX, Xiao H, Ren J, Zhang FR and Liu ZS: Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center's observational study. World J Pediatr. 16:251–259. 2020. View Article : Google Scholar : PubMed/NCBI | |
Juan J, Gil MM, Rong Z, Zhang Y, Yang H and Poon LC: Effects of coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal outcomes: A systematic review. Ultrasound Obstet Gynecol. 56:15–27. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alzamora MC, Paredes T, Caceres D, Webb CM, Valdez LM and La Rosa M: Severe COVID-19 during pregnancy and possible vertical transmission. Am J Perinatol. 37:861–865. 2020. View Article : Google Scholar : PubMed/NCBI | |
Valdés G, Neves LA, Anton L, Corthorn J, Chacón C, Germain AM, Merrill DC, Ferrario CM, Sarao R, Penninger J and Brosnihan KB: Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta. 27:200–207. 2006. View Article : Google Scholar | |
Spanish Ministry: Available treatments subjected to special access conditions for the managing of the respiratory infection by SARS-CoV-2. Spanish Agency for Medicines and Health Products; 2020, https://www.aemps.gob.es/la-aemps/ultima-informacion-de-la-aemps-acerca-del-covid%E2%80%9119/tratamientos-disponibles-para-el-manejo-de-la-infeccion-respiratoria-por-sars-cov-2/?lang=enurisimplehttps://www.aemps.gob.es/la-aemps/ultima-informacion-de-la-aemps-acerca-del-covid%E2%80%9119/tratamientos-disponibles-para-el-manejo-de-la-infeccion-respiratoria-por-sars-cov-2/?lang=en. Retrieved May 28, 2020. | |
World Health Organization (WHO): Clinical management of COVID-19: interim guidance. https://apps.who.int/iris/handle/10665/332196urisimplehttps://apps.who.int/iris/handle/10665/332196. License: CC BY-NC-SA 3.0 IGO Accessed May 27, 2020. | |
Wu R, Wang L, Kuo HD, Shannar A, Peter R, Chou PJ, Li S, Hudlikar R, Liu X, Liu Z, et al: An update on current therapeutic drugs treating COVID-19. Curr Pharmacol Rep. May 11–2020.Epub ahead for print. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Zhang X and Qu J: Coronavirus disease 2019 (COVID-19): A clinical update. Front Med. 14:126–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dima A, Balaban DV, Jurcut C, Berza I, Jurcut R and Jinga M: Physicians' Perspectives on COVID-19: An International Survey. Healthcare (Basel). 8:2502020. View Article : Google Scholar | |
Jawhara S: Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 21:22722020. View Article : Google Scholar : | |
Qiu T, Liang S, Dabbous M, Wang Y, Han R and Toumi M: Chinese guidelines related to novel coronavirus pneumonia. J Mark Access Health Policy. 8:18184462020. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez-Lorenzo M and Cuadros-Martínez CM: Baricitinib in treatment of SARS-CoV-2 infection. Rev Esp Quimioter. 33:294–295. 2020.In Spanish. View Article : Google Scholar | |
Singh AK, Majumdar S, Singh R and Misra A: Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician's perspective. Diabetes Metab Syndr. 14:971–978. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi D, Lusakibanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A, et al: A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 381:2293–2303. 2019. View Article : Google Scholar : PubMed/NCBI | |
de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T and Feldmann H: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. 117:6771–6776. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lo MK, Feldmann F, Gary JM, Jordan R, Bannister R, Cronin J, Patel NR, Klena JD, Nichol ST, Cihlar T, et al: Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci Transl Med. 11:eaau92422019. View Article : Google Scholar : PubMed/NCBI | |
Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescure FX, et al: Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 382:2327–2336. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ferner RE and Aronson JK: Remdesivir in covid-19. BMJ. m1610:3692020. | |
Jean SS, Lee PI and Hsueh PR: Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 53:436–443. 2020. View Article : Google Scholar : PubMed/NCBI | |
Groneberg DA, Poutanen SM, Low DE, Lode H, Welte T and Zabel P: Treatment and vaccines for severe acute respiratory syndrome. Lancet Infect Dis. 5:147–155. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, et al: A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 382:1787–1799. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kunz KM: A Trial of Lopinavir-Ritonavir in Covid-19. N Engl J Med. 382:e682020. View Article : Google Scholar : PubMed/NCBI | |
Statement from the Chief Investigators of the Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial on lopinavir-ritonavir. https://www.recoverytrial.net/files/lopi-navir-ritonavir-recovery-statement-29062020_final.pdfurisimplehttps://www.recoverytrial.net/files/lopi-navir-ritonavir-recovery-statement-29062020_final.pdf Accessed June 29, 2020. | |
Al-Bari MA: Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 70:1608–1621. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG and Nichol ST: Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2:692005. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30:269–271. 2020. View Article : Google Scholar : PubMed/NCBI | |
Andreani J, Le Bideau M, Duflot I, Jardot P, Rolland C, Boxberger M, Wurtz N, Rolain JM, Colson P, La Scola B and Raoult D: In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog. 145:1042282020. View Article : Google Scholar : PubMed/NCBI | |
Gautret P, Lagier JC, Parola P, Hoang V, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira V, et al: Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open- label non-randomized clinical trial. Int J Antimicrob Agents. 56:1059492020. View Article : Google Scholar | |
Molina JM, Delaugerre C, Goff JL, Mela-Lima B, Ponscarme D, Goldwirt L and de Castro N: No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxy-chloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 50:3842020. View Article : Google Scholar | |
Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, Weinberg P, Kirkwood J, Muse A, DeHovitz J, et al: Association of treatment with hydroxychloroquine or azithro-mycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. 323:2493–2502. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hornby P and Landray M: Statement from the Chief Investigators of the Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial on hydroxychloroquine. https://www.recov-erytrial.net/files/hcq-recovery-statement-050620-final-002.pdfurisimplehttps://www.recov-erytrial.net/files/hcq-recovery-statement-050620-final-002.pdf. Accessed June 5, 2020. | |
Mansourabadi AH, Sadeghalvad M, Mohammadi-Motlagh HR and Rezaei N: The immune system as a target for therapy of SARS-CoV-2: A systematic review of the current immunotherapies for COVID-19. Life Sci. 258:1181852020. View Article : Google Scholar : PubMed/NCBI | |
Aouba A, Baldolli A, Geffray L, Verdon R, Bergot E, Martin-Silva N and Justet A: Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneu-monia: Case series. Ann Rheum Dis. 79:1381–1382. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wu Z, Li JW, Zhao H and Wang GQ: Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antago-nist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 55:1059542020. View Article : Google Scholar | |
Sheppard M, Laskou F, Stapleton PP, Hadavi S and Dasgupta B: Tocilizumab (Actemra). Hum Vaccin Immunother. 13:1972–1988. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vastert SJ, Jamilloux Y, Quartier P, Ohlman S, Osterling Koskinen L, Kullenberg T, Franck-Larsson K, Fautrel B and de Benedetti F: Anakinra in children and adults with Still's disease. Rheumatology (Oxford). 58(Suppl 6): vi9–vi22. 2018. View Article : Google Scholar | |
Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, et al: Tocilizumab in patients with severe COVID-19: A retrospective cohort study. Lancet Rheumatol. 2:e474–e484. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tomasiewicz K, Piekarska A, Stempkowska-Rejek J, Serafińska S, Gawkowska A, Parczewski M, Niścigorska-Olsen J, Lstrok;apiński TW, Zarębska-Michaluk D, Kowalska JD, et al: Tocilizumab for patients with severe COVID-19: A retrospective, multi-center study. Expert Rev Anti Infect Ther. Aug 1–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Cauchois R, Koubi M, Delarbre D, Manet C, Carvelli J, Blasco VB, Jean R, Fouche L, Bornet C, Pauly V, et al: Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc Natl Acad Sci USA. 117:18951–18953. 2020. View Article : Google Scholar : PubMed/NCBI | |
McGonagle D, Sharif K, O'Regan A and Bridgewood C: The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 19:1025372020. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, et al: Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 117:10970–10975. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alzghari SK and Acuña VS: Supportive treatment with tocilizumab for COVID-19: A systematic review. J Clin Virol. 127:1043802020. View Article : Google Scholar : PubMed/NCBI | |
Galimberti S, Baldini C, Baratè C, Ricci F, Balducci S, Grassi S, Ferro F, Buda G, Benedetti E, Fazzi R, et al: The CoV-2 outbreak: How hematologists could help to fight Covid-19. Pharmacol Res. 157:1048662020. View Article : Google Scholar : PubMed/NCBI | |
Peterson D, Damsky W and King B: The use of Janus kinase inhibitors in the time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Am Acad Dermatol. 82:e223–e226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chang R, Ng TB and Sun WZ: Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int J Antimicrob Agents. 56:1061182020. View Article : Google Scholar : PubMed/NCBI | |
Ucciferri C, Barone M, Vecchiet J and Falasca K: Pidotimod in paucisymptomatic SARS-CoV2 infected patients. Mediterr J Hematol Infect Dis. 12:e20200482020. View Article : Google Scholar : PubMed/NCBI | |
Colunga Biancatelli RML, Berrill M, Catravas JD and Marik PE: Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol. 11:14512020. View Article : Google Scholar : PubMed/NCBI | |
Mettenleiter TC: Chapter One-The First 'Virus Hunters'. Advances in Virus Research. Beer M and Höper D: Academic Press; pp. 1–16. 2017 | |
Goldsmith CS and Miller SE: Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev. 22:552–563. 2009. View Article : Google Scholar : PubMed/NCBI | |
Singh L, Kruger HG, Maguire GEM, Govender T and Parboosing R: The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. 4:105–131. 2017.PubMed/NCBI | |
Sivasankarapillai VS, Pillai AM, Rahdar A, Sobha AP, Das SS, Mitropoulos AC, Mokarrar MH and Kyzas GZ: On facing the SARS-CoV-2 (COVID-19) with combination of nanomaterials and medicine: Possible strategies and first challenges. Nanomaterials (Basel). 10:8522020. View Article : Google Scholar | |
Kostarelos K: Nanoscale nights of COVID-19. Nat Nanotechnol. 15:343–344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patra JK, Das G, Fraceto LF, Campos EV R, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al: Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology. 16:712018. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Liang J: An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl. 112:1109242020. View Article : Google Scholar : PubMed/NCBI | |
Cui H, Webber MJ and Stupp SI: Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers. 94:1–18. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dormont F, Brusini R, Cailleau C, Reynaud F, Peramo A, Gendron A, Mougin J, Gaudin F, Varna M and Couvreur P: Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation. Sci Adv. 6:eaaz54662020. View Article : Google Scholar | |
Hu Y, Liu C and Muyldermans S: Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol. 8:14422017. View Article : Google Scholar : PubMed/NCBI | |
Walter JD, Hutter CAJ, Zimmermann I, Earp J, Egloff P, Sorgenfrei M, Hürlimann LM, Gonda I, Meier G, Remm S, et al: Synthetic nanobodies targeting the SARS-CoV-2 receptor-binding domain. BioRxiv. 1–18. 2020. | |
Ura T, Okuda K and Shimada M: Developments in viral vector-based vaccines. Vaccines (Basel). 2:624–641. 2014. View Article : Google Scholar | |
Xu H, Li Z and Si J: Nanocarriers in gene therapy: A review. J Biomed Nanotechnol. 10:3483–3507. 2014. View Article : Google Scholar | |
Feldman RA, Fuhr R, Smolenov I, Ribeiro A, Panther L, Watson M, Senn JJ, Smith M, Almarsson Ӧ, Pujar HS, et al: mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 37:3326–3334. 2019. View Article : Google Scholar : PubMed/NCBI | |
McKay PF, Hu K, Blakney AK, Samnuan K, Bouton CR, Rogers P, Polra K, Lin PJC, Barbosa C, Tam Y and Shattock RJ: Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine induces equivalent preclinical antibody titers and viral neutralization to recovered COVID-19 patients. https://doi.org/10.1101/2020.04.22.055608urisimplehttps://doi.org/10.1101/2020.04.22.055608. | |
Raghunandan R, Lu H, Zhou B, Xabier MG, Massare MJ, Flyer DC, Fries LF, Smith GE and Glenn GM: An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine. 32:6485–6492. 2014. View Article : Google Scholar : PubMed/NCBI | |
He L, de Val N, Morris CD, Vora N, Thinnes TC, Kong L, Azadnia P, Sok D, Zhou B, Burton DR, et al: Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nat Commun. 7:120412016. View Article : Google Scholar : PubMed/NCBI | |
Foundation TWN: COVID-19 testing report & analysis, 2020. http://www.worldnanofoundation.com/covid-19-report-analysisurisimplewww.worldnanofoundation.com/covid-19-report-analysis Accessed July 24, 2020. | |
Zhao Z, Cui H, Song W, Ru X, Zhou W and Yu X: A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2020.02.22.961268urisimplehttps://doi.org/10.1101/2020.02.22.961268. | |
Wang M, Fu A, Hu B, Tong Y, Liu R, Liu Z, Gu J, Xiang B, Liu J, Jiang W, et al: Nanopore target sequencing for accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small. 16:e20021692020. View Article : Google Scholar | |
Lüthy IA, Ritacco V and Kantor IN: One hundred years after the 'Spanish' flu. Medicina (B Aires). 78:113–118. 2018.In Spanish. |
Related Articles
- Severe acute respiratory syndrome coronavirus 2 for physicians: Molecular characteristics and host immunity (Review)
- Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review)
- Immunoregulatory therapy strategies that target cytokine storms in patients with COVID‑19 (Review)
- Public health perspective of the COVID‑19 pandemic: Host characteristics and prevention of COVID‑19 in the community (Review)
- An increase in elastogenic components in the placental villi of women with chronic venous disease during pregnancy is associated with decreased EGFL7 expression level