1
|
Ghartavol MM, Gholizadeh-Ghaleh S, Babaei
G, Farjah GH and Ansari MH: The protective impact of betaine on the
tissue structure and renal function in isoproterenol-induced
myocardial infarction in rat. Mol Genet Genomic Med. 7:e005792019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yang S, Fan T, Hu Q, Xu W, Yang J, Xu C,
Zhang B, Chen J and Jiang H: Downregulation of microRNA-17-5p
improves cardiac function after myocardial infarction via
attenuation of apop-tosis in endothelial cells. Mol Genet Genomics.
293:883–894. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang J, Brown ME, Zhang H, Martinez M,
Zhao Z, Bhutani S, Yin S, Trac D, Xi JJ and Davis ME:
High-Throughput screening identifies microRNAs that target nox2 and
improve function after acute myocardial infarction. Am J Physiol
Heart Circ Physiol. 312:H1002–H1012. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X,
Yu H, Miao J, Kao R, Kalbfleisch J, et al: Attenuation of cardiac
dysfunction and remodeling of myocardial infarction by
microRNA-130a are mediated by suppression of PTEN and activation of
PI3K dependent signaling. J Mol Cell Cardiol. 89:87–97. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Vignoli A, Tenori L, Giusti B, Takis PG,
Valente S, Carrabba N, Balzi D, Barchielli A, Marchionni N, Gensini
GF, et al: NMR-Based metabolomics identifies patients at high risk
of death within two years after acute myocardial infarction in the
AMI-Florence II cohort. BMC Med. 17:32019. View Article : Google Scholar : PubMed/NCBI
|
6
|
He JG, Li HR, Li BB, Xie QL, Yan D and
Wang XJ: Bone marrow mesenchymal stem cells overexpressing GATA-4
improve cardiac function following myocardial infarction.
Perfusion. 34:696–704. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen S and Grayburn PA:
Ultrasound-Targeted microbubble destruction for cardiac gene
delivery. Methods Mol Biol. 1521:205–218. 2017. View Article : Google Scholar
|
8
|
Jayasankar V, Woo YJ, Bish LT, Pirolli TJ,
Chatterjee S, Berry MF, Burdick J, Gardner TJ and Sweeney HL: Gene
transfer of hepatocyte growth factor attenuates postinfarction
heart failure. Circulation. 108:II230–II236. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yau TM, Fung K, Weisel RD, Fujii T, Mickle
DA and Li RK: Enhanced myocardial angiogenesis by gene transfer
with trans-planted cells. Circulation. 104:I218–I222. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun W, Li Z, Zhou X, Yang G and Yuan L:
Efficient exosome delivery in refractory tissues assisted by
ultrasound-targeted microbubble destruction. Drug Deliv. 26:45–50.
2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Fujii H, Sun Z, Li SH, Wu J, Fazel S,
Weisel RD, Rakowski H, Lindner J and Li RK: Ultrasound-Targeted
gene delivery induces angiogenesis after a myocardial infarction in
mice. JACC Cardiovasc Imaging. 2:869–879. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hernot S, Cosyns B, Droogmans S, Garbar C,
Couck P, Vanhove C, Caveliers V, Van Camp G, Bossuyt A and Lahoutte
T: Effect of high-intensity ultrasound-targeted micro-bubble
destruction on perfusion and function of the rat heart assessed by
pinhole-gated SPECT. Ultrasound Med Biol. 36:158–165. 2010.
View Article : Google Scholar
|
13
|
Karetnikova V, Osokina A, Gruzdeva O,
Uchasova E, Zykov M, Kalaeva V, Kashtalap V, Shafranskaya K,
Hryachkova O and Barbarash O: Serum galectin and renal dysfunction
in ST-segment elevation myocardial infarction. Dis Markers.
2016:15490632016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Advedissian T, Deshayes F and Viguier M:
Galectin-7 in epithelial homeostasis and carcinomas. Int J Mol Sci.
18:2017.PubMed/NCBI
|
15
|
Saussez S and Kiss R: Galectin-7. Cell Mol
Life Sci. 63:686–697. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen HL, Chiang PC, Lo CH, Lo YH, Hsu DK,
Chen HY and Liu FT: Galectin-7 regulates keratinocyte proliferation
and differentiation through JNK-miR-203-p63 signaling. J Invest
Dermatol. 136:182–191. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Al-Salam S and Hashmi S: Galectin-1 in
early acute myocardial infarction. PLoS One. 9:e869942014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shirakawa K, Endo J, Kataoka M, Katsumata
Y, Yoshida N, Yamamoto T, Isobe S, Moriyama H, Goto S, Kitakata H,
et al: IL (Interleukin)-10-STAT3-Galectin-3 axis is essential for
osteopontin-producing reparative macrophage polarization after
myocardial infarction. Circulation. 138:2021–2035. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Luo Z, Ji Y, Tian D, Zhang Y, Chang S,
Yang C, Zhou H and Chen ZK: Galectin-7 promotes proliferation and
Th1/2 cells polarization toward Th1 in activated CD4+ T cells by
inhib-iting The TGFβ/Smad3 pathway. Mol Immunol. 101:80–85. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Villeneuve C, Baricault L, Canelle L,
Barboule N, Racca C, Monsarrat B, Magnaldo T and Larminat F:
Mitochondrial proteomic approach reveals galectin-7 as a novel
BCL-2 binding protein in human cells. Mol Biol Cell. 22:999–1013.
2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tran BH, Yu Y, Chang L, Tan B, Jia W,
Xiong Y, Dai T, Zhong R, Zhang W, Le VM, et al: A novel liposomal
S-propargyl-cysteine: A sustained release of hydrogen sulfide
reducing myocardial fibrosis via TGF-beta1/smad Pathway. Int J
Nanomedicine. 14:10061–10077. 2019. View Article : Google Scholar
|
22
|
Guide for the Care and use of Laboratory
Animals: National Research Council (US) Committee for the Update of
the Guide for the Care and Use of Laboratory Animals. 8th edition.
National Academies Press; Washington, DC: 2011
|
23
|
Lu D, Liao Y, Zhu SH, Chen QC, Xie DM,
Liao JJ, Feng X, Jiang MH and He W: Bone-Derived nestin-positive
mesenchymal stem cells improve cardiac function via recruiting
cardiac endothelial cells after myocardial infarction. Stem Cell
Res Ther. 10:1272019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Olivetti G, Capasso JM, Meggs LG,
Sonnenblick EH and Anversa P: Cellular basis of chronic ventricular
remodeling after myocardial infarction in rats. Circ Res.
68:856–869. 1991. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zatroch KK, Knight CG, Reimer JN and Pang
DS: Refinement of intraperitoneal injection of sodium pentobarbital
for euthanasia in laboratory rats (Rattus norvegicus). BMC Vet Res.
13:602017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
27
|
Nguyen PK, Rhee JW and Wu JC: Adult stem
cell therapy and heart failure, 2000 to 2016: A systematic review.
JAMA Cardiol. 1:831–841. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen Z, Zeng C and Wang WE: Progress of
stem cell transplantation for treating myocardial infarction. Curr
Stem Cell Res Ther. 12:624–636. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mangi AA, Noiseux N, Kong D, He H, Rezvani
M, Ingwall JS and Dzau VJ: Mesenchymal stem cells modified with akt
prevent remodeling and restore performance of infarcted hearts. Nat
Med. 9:1195–1201. 2003. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Leung VY, Aladin DM, Lv F, Tam V, Sun Y,
Lau RY, Hung SC, Ngan AH, Tang B, Lim CT, et al: Mesenchymal stem
cells reduce intervertebral disc fibrosis and facilitate repair.
Stem Cells. 32:2164–2177. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li D, Wang N, Zhang L, Hanyu Z, Xueyuan B,
Fu B, Shaoyuan C, Zhang W, Xuefeng S, Li R and Chen X: Mesenchymal
stem cells protect podocytes from apoptosis induced by high glucose
via secretion of epithelial growth factor. Stem Cell Res Ther.
4:1032013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu H, Liu S, Li Y, Wang X, Xue W, Ge G
and Luo X: The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic
effects of hypoxia-preconditioned mesenchymal stem cells for renal
ischemia/reperfusion injury. PLoS One. 7:e346082012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH,
Jun JA, Oh JH, Park SH, Oh WI and Jeun SS: Migration of human
umbilical cord blood mesenchymal stem cells mediated by stromal
cell-derived factor-1/CXCR4 axis via akt, ERK, and p38 signal
transduction pathways. Biochem Biophys Res Commun. 398:105–110.
2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gul-Uludag H, Xu P, Marquez-Curtis LA,
Xing J, Janowska-Wieczorek A and Chen J: Cationic liposome-mediated
CXCR4 gene delivery into hematopoietic stem/progenitor cells:
Implications for clinical transplantation and gene therapy. Stem
Cells Dev. 21:1587–1596. 2012. View Article : Google Scholar :
|
35
|
Deak E, Seifried E and Henschler R: Homing
pathways of mesenchymal stromal cells (MSCs) and their role in
clinical applications. Int Rev Immunol. 29:514–529. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Karp JM and Teo GS: Mesenchymal stem cell
homing: The devil is in the details. Cell Stem Cell. 4:206–216.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chamberlain G, Wright K, Rot A, Ashton B
and Middleton J: Murine mesenchymal stem cells exhibit a restricted
repertoire of functional chemokine receptors: Comparison with
human. PLoS One. 3:e29342008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li L and Jiang J: Regulatory factors of
mesenchymal stem cell migration into injured tissues and their
signal transduction mechanisms. Front Med. 5:33–39. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Lotfinegad P, Shamsasenjan K,
Movassaghpour A, Majidi J and Baradaran B: Immunomodulatory nature
and site specific affinity of mesenchymal stem cells: A hope in
cell therapy. Adv Pharm Bull. 4:5–13. 2014.PubMed/NCBI
|
40
|
Fujii H, Li SH, Wu J, Miyagi Y, Yau TM,
Rakowski H, Egashira K, Guo J, Weisel RD and Li RK: Repeated and
targeted transfer of angiogenic plasmids into the infarcted rat
heart via ultrasound targeted microbubble destruction enhances
cardiac repair. Eur Heart J. 32:2075–2084. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang SL, Mu YM, Tang KQ, Jiang XK, Bai WK,
Shen E and Hu B: Enhancement of recombinant adeno-associated virus
mediated transgene expression by targeted echo-contrast agent.
Genet Mol Res. 12:1318–1326. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Imada T, Tatsumi T, Mori Y, Nishiue T,
Yoshida M, Masaki H, Okigaki M, Kojima H, Nozawa Y, Nishiwaki Y, et
al: Targeted delivery of bone marrow mononuclear cells by
ultrasound destruction of microbubbles induces both angiogenesis
and arteriogenesis response. Arterioscler Thromb Vasc Biol.
25:2128–2134. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang G, Zhang Q, Zhuo Z, Wu S, Xu Y, Zou
L, Gan L, Tan K, Xia H, Liu Z and Gao Y: Enhanced homing of CXCR-4
modified bone marrow-derived mesenchymal stem cells to acute kidney
injury tissues by micro-bubble-mediated ultrasound exposure.
Ultrasound Med Biol. 42:539–548. 2016. View Article : Google Scholar
|
44
|
Enomoto S, Yoshiyama M, Omura T, Matsumoto
R, Kusuyama T, Nishiya D, Izumi Y, Akioka K, Iwao H, Takeuchi K and
Yoshikawa J: Microbubble destruction with ultrasound augments
neovascularisation by bone marrow cell transplantation in rat hind
limb ischaemia. Heart. 92:515–520. 2006. View Article : Google Scholar
|
45
|
Wu S, Li L, Wang G, Shen W, Xu Y, Liu Z,
Zhuo Z, Xia H, Gao Y and Tan K: Ultrasound-Targeted stromal
cell-derived factor-1-loaded microbubble destruction promotes
mesenchymal stem cell homing to kidneys in diabetic nephropathy
rats. Int J Nanomedicine. 9:5639–5651. 2014.PubMed/NCBI
|
46
|
Zhong S, Shu S, Wang Z, Luo J, Zhong W,
Ran H, Zheng Y, Yin Y and Ling Z: Enhanced homing of mesenchymal
stem cells to the ischemic myocardium by ultrasound-targeted
microbubble destruction. Ultrasonics. 52:281–286. 2012. View Article : Google Scholar
|
47
|
Li P, Gao Y, Liu Z, Tan K, Zuo Z, Xia H,
Yang D, Zhang Y and Lu D: DNA transfection of bone marrow stromal
cells using microbubble-mediated ultrasound and polyethylenimine:
An in vitro study. Cell Biochem Biophys. 66:775–786. 2013.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Belema-Bedada F, Uchida S, Martire A,
Kostin S and Braun T: Efficient homing of multipotent adult
mesenchymal stem cells depends on FROUNT-mediated clustering of
CCR2. Cell Stem Cell. 2:566–575. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kuo TK, Hung SP, Chuang CH, Chen CT, Shih
YR, Fang SC, Yang VW and Lee OK: Stem cell therapy for liver
disease: Parameters governing the success of using bone marrow
mesen-chymal stem cells. Gastroenterology. 134:2111–2121. 2008.
View Article : Google Scholar
|
50
|
Togel FE and Westenfelder C: Role of SDF-1
as a regulatory chemokine in renal regeneration after acute kidney
injury. Kidney Int Suppl. 2011:87–89. 2011. View Article : Google Scholar
|
51
|
Sun T, Gao F, Li X, Cai Y, Bai M, Li F and
Du L: A combination of ultrasound-targeted microbubble destruction
with transplantation of bone marrow mesenchymal stem cells promotes
recovery of acute liver injury. Stem Cell Res Ther. 9:3562018.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Li L, Wu S, Li P, Zhuo L, Gao Y and Xu Y:
Hypoxic precondi-tioning combined with microbubble-mediated
ultrasound effect on MSCs promote SDF-1/CXCR4 expression and its
migration ability: An in vitro study. Cell Biochem Biophys.
73:749–757. 2015. View Article : Google Scholar
|
53
|
Zhang Y, Ye C, Wang G, Gao Y, Tan K, Zhuo
Z, Liu Z, Xia H, Yang D and Li P: Kidney-targeted transplantation
of mesenchymal stem cells by ultrasound-targeted microbubble
destruction promotes kidney repair in diabetic nephropathy rats.
Biomed Res Int. 2013:5263672013.PubMed/NCBI
|
54
|
Wang G, Zhang Q, Zhuo Z, Wu S, Liu Z, Xia
H, Tan K, Zou L, Gan L and Gao Y: Effects of diagnostic
ultrasound-targeted microbubble destruction on the homing ability
of bone marrow stromal cells to the kidney parenchyma. Eur Radiol.
26:3006–3016. 2016. View Article : Google Scholar
|
55
|
Qian J, Wang L, Li Q, Sha D, Wang J, Zhang
J, Xu P and Fan G: Ultrasound-Targeted microbubble enhances
migration and therapeutic efficacy of marrow mesenchymal stem cell
on rat middle cerebral artery occlusion stroke model. J Cell
Biochem. 120:3315–3322. 2019. View Article : Google Scholar
|
56
|
Szadkowska I, Wlazeł RN, Migała M,
Szadkowski K, Zielińska M, Paradowski M and Pawlicki L: The
association between galectin-3 and clinical parameters in patients
with first acute myocardial infarction treated with primary
percutaneous coronary angioplasty. Cardiol J. 20:577–582. 2013.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Lyu G, Guan Y, Zhang C, Zong L, Sun L,
Huang X, Huang L, Zhang L, Tian XL, Zhou Z and Tao W: TGF-Beta
signaling alters H4K20me3 status via miR-29 and contributes to
cellular senescence and cardiac aging. Nat Commun. 9:25602018.
View Article : Google Scholar
|
58
|
Hao J, Ju H, Zhao S, Junaid A, Scammell-La
Fleur T and Dixon IM: Elevation of expression of smads 2, 3, and 4,
decorin and TGF-beta in the chronic phase of myocardial infarct
scar healing. J Mol Cell Cardiol. 31:667–678. 1999. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ma J, Li ZY, Liang XP, Guo CX, Lu PP and
Ma LH: Xinfuli granule improves post-myocardial infarction
ventricular remodeling and myocardial fibrosis in rats by
regulating TGF-β/smads signaling pathway. J Geriatr Cardiol.
14:301–307. 2017.PubMed/NCBI
|
60
|
Lv C, Zhang T, Li K and Gao K: Bone marrow
mesenchymal stem cells improve spinal function of spinal cord
injury in rats via TGF-β/smads signaling pathway. Exp Ther Med.
19:3657–3663. 2020.PubMed/NCBI
|