Atrial fibrosis underlying atrial fibrillation (Review)
- Authors:
- Chang Yi Li
- Jing Rui Zhang
- Wan Ning Hu
- Song Nan Li
-
Affiliations: Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China, Department of Cardiology, Laboratory of Molecular Biology, Head and Neck Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China - Published online on: December 31, 2020 https://doi.org/10.3892/ijmm.2020.4842
- Article Number: 9
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sanoski CA: Clinical, economic, and quality of life impact of atrial fibrillation. J Manag Care Pharm. 15(6 Suppl B): S4–S9. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen PS, Chen LS, Fishbein MC, Lin SF and Nattel S: Role of the autonomic nervous system in atrial fibrillation: Pathophysiology and therapy. Circ Res. 114:1500–1515. 2014. View Article : Google Scholar : PubMed/NCBI | |
Denham NC, Pearman CM, Caldwell JL, Madders GWP, Eisner DA, Trafford AW and Dibb KM: Calcium in the pathophysiology of atrial fibrillation and heart failure. Front Physiol. 9:13802018. View Article : Google Scholar : PubMed/NCBI | |
Pellman J and Sheikh F: Atrial fibrillation: Mechanisms, therapeutics, and future directions. Compr Physiol. 5:649–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Polyakova V, Miyagawa S, Szalay Z, Risteli J and Kostin S: Atrial extracellular matrix remodelling in patients with atrial fibrillation. J Cell Mol Med. 12:189–208. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nattel S: Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 3:425–435. 2017. View Article : Google Scholar | |
de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, Du XJ, Ford P, Heinzel FR, Lipson KE, et al: Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the committee of translational research of the heart failure association (HFA) of the European society of cardiology. Eur J Heart Fail. 21:272–285. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kong P, Christia P and Frangogiannis NG: The pathogenesis of cardiac fibrosis. Cell Mol Life Sc. 71:549–574. 2014. View Article : Google Scholar | |
Fan D, Takawale A, Lee J and Kassiri Z: Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 5:152012. View Article : Google Scholar : PubMed/NCBI | |
Rog-Zielinska EA, Norris RA, Kohl P and Markwald R: The living scar-cardiac fibroblasts and the injured heart. Trends Mol Med. 22:99–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kohl P and Gourdie RG: Fibroblast-myocyte electrotonic coupling: Does it occur in native cardiac tissue? J Mol Cell Cardiol. 70:37–46. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ongstad E and Kohl P: Fibroblast-myocyte coupling in the heart: Potential relevance for therapeutic interventions. J Mol Cell Cardiol. 91:238–246. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TP, Qu Z and Weiss JN: Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils. J Mol Cell Cardiol. 70:83–91. 2014. View Article : Google Scholar | |
Krul SPJ, Berger WR, Smit NW, van Amersfoorth SC, Driessen AH, van Boven WJ, Fiolet JW, van Ginneken AC, van der Wal AC, de Bakker JM, et al: Atrial fibrosis and conduction slowing in the left atrial appendage of patients undergoing thoracoscopic surgical pulmonary vein isolation for atrial fibrillation. Circ Arrhythm Electrophysiol. 8:288–295. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nattel S: Electrical coupling between cardiomyocytes and fibroblasts: Experimental testing of a challenging and important concept. Cardiovasc Res. 114:349–352. 2018. View Article : Google Scholar : PubMed/NCBI | |
Perbellini F, Watson SA, Bardi I and Terracciano CM: Heterocellularity and cellular cross-talk in the cardiovascular system. Front Cardiovasc Med. 5:1432018. View Article : Google Scholar : PubMed/NCBI | |
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA and Tallquist MD: Revisiting cardiac cellular composition. Circ Res. 118:400–409. 2016. View Article : Google Scholar : | |
Zhou P and Pu WT: Recounting cardiac cellular composition. Circ Res. 118:368–370. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, de Castro Brás LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC and Lindsey ML: Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch. 466:1113–127. 2014.PubMed/NCBI | |
Burstein B, Libby E, Calderone A and Nattel S: Differential behaviors of atrial versus ventricular fibroblasts: A potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation. 117:1630–1641. 2008. View Article : Google Scholar : PubMed/NCBI | |
Moore-Morris T, Cattaneo P, Puceat M and Evans SM: Origins of cardiac fibroblasts. J Mol Cell Cardiol. 91:1–5. 2016. View Article : Google Scholar : PubMed/NCBI | |
Krenning G, Zeisberg EM and Kalluri R: The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 225:631–637. 2010. View Article : Google Scholar : PubMed/NCBI | |
Moore-Morris T, Guimarães-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, Stallcup WB, Gu Y, Dalton ND, Cedenilla M, et al: Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest. 124:2921–2934. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, Kamran P, Müller AM, Volz KS, Tang Z, et al: Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res. 115:625–635. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lajiness JD and Conway SJ: The dynamic role of cardiac fibroblasts in development and disease. J Cardiovasc Transl Res. 5:739–748. 2012. View Article : Google Scholar : PubMed/NCBI | |
Travers JG, Kamal FA, Robbins J, Yutzey KE and Blaxall BC: Cardiac fibrosis: The fibroblast awakens. Circ Res. 118:1021–1040. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim SK, Park JH, Kim JY, Choi JI, Joung B, Lee MH, Kim SS, Kim YH and Pak HN: High plasma concentrations of transforming growth factor-β and tissue inhibitor of metalloproteinase-1: Potential non-invasive predictors for electroanatomical remodeling of atrium in patients with non-valvular atrial fibrillation. Circ J. 75:557–564. 2011. View Article : Google Scholar | |
Goudis CA, Kallergis EM and Vardas PE: Extracellular matrix alterations in the atria: Insights into the mechanisms and perpetuation of atrial fibrillation. Europace. 14:623–630. 2012. View Article : Google Scholar : PubMed/NCBI | |
Frangogiannis NG: The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 127:1600–1612. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rienks M, Papageorgiou AP, Frangogiannis NG and Heymans S: Myocardial extracellular matrix: An ever-changing and diverse entity. Circ Res. 114:872–888. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Meng L, Shi Q, Liu S, Cui C, Hu S and Wei Y: Dermatopontin promotes adhesion, spreading and migration of cardiac fibroblasts in vitro. Matrix Biol. 32:23–31. 2013. View Article : Google Scholar | |
López B, González A, Ravassa S, Beaumont J, Moreno MU, San José G, Querejeta R and Díez J: Circulating biomarkers of myocardial fibrosis: The need for a reappraisal. J Am Coll Cardiol. 65:2449–2456. 2015. View Article : Google Scholar : PubMed/NCBI | |
Richter B, Gwechenberger M, Socas A, Zorn G, Albinni S, Marx M, Wolf F, Bergler-Klein J, Loewe C, Bieglmayer C, et al: Time course of markers of tissue repair after ablation of atrial fibrillation and their relation to left atrial structural changes and clinical ablation outcome. Int J Cardiol. 152:231–236. 2011. View Article : Google Scholar | |
Kawamura M, Munetsugu Y, Kawasaki S, Onishi K, Onuma Y, Kikuchi M, Tanno K and Kobayashi Y: Type III procollagen-N-peptide as a predictor of persistent atrial fibrillation recurrence after cardioversion. Europace. 14:1719–1725. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spinale FG: Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev. 87:1285–1342. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li M, Yang G, Xie B, Babu K and Huang C: Changes in matrix metalloproteinase-9 levels during progression of atrial fibrillation. J Int Med Res. 42:224–230. 2014. View Article : Google Scholar | |
Nakano Y, Niida S, Dote K, Takenaka S, Hirao H, Miura F, Ishida M, Shingu T, Sueda T, Yoshizumi M and Chayama K: Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J Am Coll Cardiol. 43:818–825. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu G, Wang S, Cheng M, Peng B, Liang J, Huang H, Jiang X, Zhang L, Yang B, Cha Y, et al: The serum matrix metalloproteinase-9 level is an independent predictor of recurrence after ablation of persistent atrial fibrillation. Clinics (Sao Paulo). 71:251–256. 2016. View Article : Google Scholar | |
Liu Y, Xu B, Wu N, Xiang Y, Wu L, Zhang M, Wang J, Chen X, Li Y and Zhong L: Association of MMPs and TIMPs with the occurrence of atrial fibrillation: A systematic review and meta-analysis. Can J Cardiol. 32:803–813. 2016. View Article : Google Scholar : PubMed/NCBI | |
Molvin J, Jujic A, Melander O, Pareek M, Råstam L, Lindblad U, Daka B, Leosdottir M, Nilsson P, Olsen M and Magnusson M: Exploration of pathophysiological pathways for incident atrial fibrillation using a multiplex proteomic chip. Open Heart. 7:e0011902020. View Article : Google Scholar : PubMed/NCBI | |
Morikawa M, Derynck R and Miyazono K: TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016. View Article : Google Scholar | |
Biernacka A, Dobaczewski M and Frangogiannis NG: TGF-beta signaling in fibrosis. Growth Factors. 29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI | |
Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI | |
Euler-Taimor G and Heger J: The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res. 69:15–25. 2006. View Article : Google Scholar | |
Zhang D, Chen X, Wang Q, Wu S, Zheng Y and Liu X: Role of the MAPKs/TGF-β1/TRAF6 signaling pathway in postoperative atrial fibrillation. PLoS One. 12:e01737592017. View Article : Google Scholar | |
Chang SH, Yeh YH, Lee JL, Hsu YJ, Kuo CT and Chen WJ: Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res Cardiol. 112:582017. View Article : Google Scholar | |
Liu LJ, Yao FJ, Lu GH, Xu CG, Xu Z, Tang K, Cheng YJ, Gao XR and Wu SH: The role of the Rho/ROCK pathway in Ang II and TGF-β1-induced atrial remodeling. PLoS One. 11:e01616252016. View Article : Google Scholar | |
Yang Z and Wang H: Increased expression of the TSP-1/TGF-β/MMP-9 axis in atrial fibrillation related to rheumatic heart disease. Int J Clin Exp Med. 11:5699–5706. 2018. | |
Yeh YH, Kuo CT, Chan TH, Chang GJ, Qi XY, Tsai F, Nattel S and Chen WJ: Transforming growth factor-β and oxidative stress mediate tachycardia-induced cellular remodelling in cultured atrial-derived myocytes. Cardiovasc Res. 91:62–70. 2011. View Article : Google Scholar : PubMed/NCBI | |
Patel S, Rauf A, Khan H and Abu-Izneid T: Renin-angiotensinaldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 94:317–325. 2017. View Article : Google Scholar : PubMed/NCBI | |
Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, et al: Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation. 126:2051–2064. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Geng J, Zhao H, Yun F, Wang X, Yan S, Ding X, Li W, Wang D, Li J, et al: Valsartan reduced atrial fibrillation susceptibility by inhibiting atrial parasympathetic remodeling through MAPKs/neurturin pathway. Cell Physiol Biochem. 36:2039–2050. 2015. View Article : Google Scholar : PubMed/NCBI | |
Harada M, Van Wagoner DR and Nattel S: Role of inflammation in atrial fibrillation pathophysiology and management. Circ J. 79:495–502. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF and Zhou L: Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Exp Cell Res. 318:2105–2115. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nouet S and Nahmias C: Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab. 11:1–6. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sakabe M, Fujiki A, Nishida K, Sugao M, Nagasawa H, Tsuneda T, Mizumaki K and Inoue H: Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol. 43:851–859. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z and Nattel S: Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 104:2608–2614. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lavall D, Selzer C, Schuster P, Lenski M, Adam O, Schäfers HJ, Böhm M and Laufs U: The mineralocorticoid receptor promotes fibrotic remodeling in atrial fibrillation. J Biol Chem. 289:6656–6668. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsai CF, Yang SF, Chu HJ and Ueng KC: Cross-talk between mineralocorticoid receptor/angiotensin II type 1 receptor and mitogen-activated protein kinase pathways underlies aldosterone-induced atrial fibrotic responses in HL-1 cardiomyocytes. Int J Cardiol. 169:17–28. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bruins P, te Velthuis H, Yazdanbakhsh AP, Jansen PG, van Hardevelt FW, de Beaumont EM, Wildevuur CR, Eijsman L, Trouwborst A and Hack CE: Activation of the complement system during and after cardiopulmonary bypass surgery: Postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 96:3542–3548. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hu YF, Chen YJ, Lin YJ and Chen SA: Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 12:230–243. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang CX, Liu Y, Xia WF, Tang YH and Huang H: Oxidative stress: A possible pathogenesis of atrial fibrillation. Med Hypotheses. 72:466–467. 2009. View Article : Google Scholar | |
Sovari AA and Dudley SC Jr: Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation. Front Physiol. 3:3112012. View Article : Google Scholar : PubMed/NCBI | |
Görlach A, Bertram K, Hudecova S and Krizanova O: Calcium and ROS: A mutual interplay. Redox Biol. 6:260–271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Youn JY, Zhang J, Zhang Y, Chen H, Liu D, Ping P, Weiss JN and Cai H: Oxidative stress in atrial fibrillation: An emerging role of NADPH oxidase. J Mol Cell Cardiol. 62:72–79. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nattel S and Harada M: Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol. 63:2335–2345. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sirish P, Li N, Timofeyev V, Zhang XD, Wang L, Yang J, Lee KS, Bettaieb A, Ma SM, Lee JH, et al: Molecular mechanisms and new treatment paradigm for atrial fibrillation. Circ Arrhythm Electrophysiol. 9:e0037212016. View Article : Google Scholar : PubMed/NCBI | |
Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O'Brien S, Keiper EA, Johnson AG, et al: Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 108:2460–2466. 2003. View Article : Google Scholar : PubMed/NCBI | |
Abe I, Teshima Y, Kondo H, Kaku H, Kira S, Ikebe Y, Saito S, Fukui A, Shinohara T, Yufu K, et al: Association of fibrotic remodeling and cytokines/chemokines content in epicardial adipose tissue with atrial myocardial fibrosis in patients with atrial fibrillation. Heart Rhythm. 15:1717–1727. 2018. View Article : Google Scholar : PubMed/NCBI | |
Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, Amour J, Leprince P, Dutour A, Clément K and Hatem SN: Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J. 36:795–805a. 2015. View Article : Google Scholar | |
Wang Q, Wang X, Yin L, Wang J, Shen H, Gao Y, Min J, Zhang Y and Wang Z: Human epicardial adipose tissue cTGF expression is an independent risk factor for atrial fibrillation and highly associated with atrial fibrosis. Sci Rep. 8:35852018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jian Z, Yang ZY, Chen L, Wang XF, Ma RY and Xiao YB: Increased expression of connective tissue growth factor and transforming growth factor-beta-1 in atrial myocardium of patients with chronic atrial fibrillation. Cardiology. 124:233–240. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liao CH, Akazawa H, Tamagawa M, Ito K, Yasuda N, Kudo Y, Yamamoto R, Ozasa Y, Fujimoto M, Wang P, et al: Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J Clin Invest. 120:242–253. 2010. View Article : Google Scholar | |
Chen Y, Surinkaew S, Naud P, Qi XY, Gillis MA, Shi YF, Tardif JC, Dobrev D and Nattel S: JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate. Cardiovasc Res. 113:310–320. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tuuminen R, Nykänen AI, Krebs R, Soronen J, Pajusola K, Keränen MA, Koskinen PK, Alitalo K and Lemström KB: PDGF-A, -C, and -D but not PDGF-B increase TGF-beta1 and chronic rejection in rat cardiac allografts. Arterioscler Thromb Vasc Biol. 29:691–698. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li PF, He RH, Shi SB, Li R, Wang QT, Rao GT and Yang B: Modulation of miR-10a-mediated TGF-β1/Smads signaling affects atrial fibrillation-induced cardiac fibrosis and cardiac fibroblast proliferation. Biosci Rep. 39:BSR201819312019. View Article : Google Scholar | |
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, et al: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 456:980–984. 2008. View Article : Google Scholar : PubMed/NCBI | |
Adam O, Löhfelm B, Thum T, Gupta SK, Puhl SL, Schäfers HJ, Böhm M and Laufs U: Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Res Cardiol. 107:2782012. View Article : Google Scholar : PubMed/NCBI | |
He X, Zhang K, Gao X, Li L, Tan H, Chen J and Zhou Y: Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit. Heart Vessels. 31:1696–1708. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Cai H, Li H, Gao Z and Song K: Atrial overexpression of microRNA-27b attenuates angiotensin II-induced atrial fibrosis and fibrillation by targeting ALK5. Hum Cell. 31:251–260. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Wakili R, Xiao J, Wu CT, Luo X, Clauss S, Dawson K, Qi X, Naud P, Shi YF, et al: Detailed characterization of microRNA changes in a canine heart failure model: Relationship to arrhythmogenic structural remodeling. J Mol Cell Cardiol. 77:113–124. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shantsila E, Shantsila A, Blann AD and Lip GY: Left ventricular fibrosis in atrial fibrillation. Am J Cardiol. 111:996–1001. 2013. View Article : Google Scholar : PubMed/NCBI | |
White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS, Piechnik SK, Robson MD, Hausenloy DJ, Sheikh AM, et al: T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 6:955–962. 2013. View Article : Google Scholar : PubMed/NCBI | |
Neilan TG, Shah RV, Abbasi SA, Farhad H, Groarke JD, Dodson JA, Coelho-Filho O, McMullan CJ, Heydari B, Michaud GF, et al: The incidence, pattern, and prognostic value of left ventricular myocardial scar by late gadolinium enhancement in patients with atrial fibrillation. J Am Coll Cardiol. 62:2205–2214. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ambale-Venkatesh B and Lima JA: Cardiac MRI: A central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 12:18–29. 2015. View Article : Google Scholar | |
Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C and Moon JC: Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation. 122:138–144. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kammerlander AA, Marzluf BA, Zotter-Tufaro C, Aschauer S, Duca F, Bachmann A, Knechtelsdorfer K, Wiesinger M, Pfaffenberger S, Greiser A, et al: T1 mapping by CMR imaging: From histological validation to clinical implication. JACC Cardiovasc Imaging. 9:14–23. 2016. View Article : Google Scholar | |
Ling LH, Kistler PM, Ellims AH, Iles LM, Lee G, Hughes GL, Kalman JM, Kaye DM and Taylor AJ: Diffuse ventricular fibrosis in atrial fibrillation: Noninvasive evaluation and relationships with aging and systolic dysfunction. J Am Coll Cardiol. 60:2402–2408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Neilan TG, Mongeon FP, Shah RV, Coelho-Filho O, Abbasi SA, Dodson JA, McMullan CJ, Heydari B, Michaud GF, John RM, et al: Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation. JACC Cardiovasc Imaging. 7:1–11. 2014. View Article : Google Scholar | |
McLellan AJ, Ling LH, Azzopardi S, Ellims AH, Iles LM, Sellenger MA, Morton JB, Kalman JM, Taylor AJ and Kistler PM: Diffuse ventricular fibrosis measured by T1 mapping on cardiac MRI predicts success of catheter ablation for atrial fibrillation. Circ Arrhythm Electrophysiol. 7:834–840. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guichard JB, Xiong F, Qi XY, L'Heureux N, Hiram R, Xiao J, Naud P, Tardif JC, Costa AD and Nattel S: Role of atrial arrhythmia and ventricular response in atrial fibrillation induced atrial remodeling. Cardiovasc Res. Jan 24–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Sasaki N, Okumura Y, Watanabe I, Nagashima K, Sonoda K, Kogawa R, Takahashi K, Iso K, Ohkubo K, Nakai T, et al: Transthoracic echocardiographic backscatter-based assessment of left atrial remodeling involving left atrial and ventricular fibrosis in patients with atrial fibrillation. Int J Cardiol. 176:1064–1066. 2014. View Article : Google Scholar : PubMed/NCBI | |
Avitall B, Bi J, Mykytsey A and Chicos A: Atrial and ventricular fibrosis induced by atrial fibrillation: Evidence to support early rhythm control. Heart Rhythm. 5:839–845. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prabhu S, Costello BT, Taylor AJ, Gutman SJ, Voskoboinik A, McLellan AJA, Peck KY, Sugumar H, Iles L, Pathik B, et al: Regression of diffuse ventricular fibrosis following restoration of sinus rhythm with catheter ablation in patients with atrial fibrillation and systolic dysfunction: A substudy of the CAMERA MRI trial. JACC Clin Electrophysiol. 4:999–1007. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schoonderwoerd BA, Smit MD, Pen L and Van Gelder IC: New risk factors for atrial fibrillation: Causes of 'not-so-lone atrial fibrillation'. Europace. 10:668–673. 2008. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki YK, Kato T, Xiong F, Shi YF, Naud P, Maguy A, Mizuno K, Tardif JC, Comtois P and Nattel S: Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J Am Coll Cardiol. 64:2013–2023. 2014. View Article : Google Scholar : PubMed/NCBI | |
Neilan TG, Farhad H, Dodson JA, Shah RV, Abbasi SA, Bakker JP, Michaud GF, van der Geest R, Blankstein R, Steigner M, et al: Effect of sleep apnea and continuous positive airway pressure on cardiac structure and recurrence of atrial fibrillation. J Am Heart Assoc. 2:e0004212013. View Article : Google Scholar : PubMed/NCBI | |
Pathak RK, Mahajan R, Lau DH and Sanders P: The implications of obesity for cardiac arrhythmia mechanisms and management. Can J Cardiol. 31:203–210. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wijesurendra RS and Casadei B: Atrial fibrillation: Effects beyond the atrium? Cardiovasc Res. 105:238–247. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rahmutula D, Marcus GM, Wilson EE, Ding CH, Xiao Y, Paquet AC, Barbeau R, Barczak AJ, Erle DJ and Olgin JE: Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-β1. Cardiovasc Res. 99:769–779. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiao HD, Fuchs S, Campbell DJ, Lewis W, Dudley SC Jr, Kasi VS, Hoit BD, Keshelava G, Zhao H, Capecchi MR and Bernstein KE: Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol. 165:1019–1032. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bauer P, regitz-zagrosek V, Kallisch H, Linz W, Schoelkens B, Hildebrandt AG and Fleck E: Myocardial angiotensin receptor type 1 gene expression in a rat model of cardiac volume overload. Basic Res Cardiol. 92:139–146. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yeh YH, Kuo CT, Chang GJ, Qi XY, Nattel S and Chen WJ: Nicotinamide adenine dinucleotide phosphate oxidase 4 mediates the differential responsiveness of atrial versus ventricular fibroblasts to transforming growth factor-β. Circ Arrhythm Electrophysiol. 6:790–798. 2013. View Article : Google Scholar : PubMed/NCBI | |
Daccarett M, Badger TJ, Akoum N, Burgon NS, Mahnkopf C, Vergara G, Kholmovski E, McGann CJ, Parker D, Brachmann J, et al: Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 57:831–838. 2011. View Article : Google Scholar : PubMed/NCBI | |
Akoum N, Fernandez G, Wilson B, Mcgann C, Kholmovski E and Marrouche N: Association of atrial fibrosis quantified using LGE-MRI with atrial appendage thrombus and spontaneous contrast on transesophageal echocardiography in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 24:1104–1109. 2013. View Article : Google Scholar : PubMed/NCBI | |
King JB, Azadani PN, Suksaranjit P, Bress AP, Witt DM, Han FT, Chelu MG, Silver MA, Biskupiak J, Wilson BD, et al: Left atrial fibrosis and risk of cerebrovascular and cardiovascular events in patients with atrial fibrillation. J Am Coll Cardiol. 70:1311–1321. 2017. View Article : Google Scholar : PubMed/NCBI | |
Disertori M, Quintarelli S, Grasso M, Pilotto A, Narula N, Favalli V, Canclini C, Diegoli M, Mazzola S, Marini M, et al: Autosomal recessive atrial dilated cardiomyopathy with standstill evolution associated with mutation of natriuretic peptide precursor A. Circ Cardiovasc Genet. 6:27–36. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fonseca AC, Alves P, Inácio N, Marto JP, Viana-Baptista M, Pinho-E-Melo T, Ferro JM and Almeida AG: Patients with undetermined stroke have increased atrial fibrosis: A cardiac magnetic resonance imaging study. Stroke. 49:734–737. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tandon K, Tirschwell D, Longstreth WT Jr, Smith B and Akoum N: Embolic stroke of undetermined source correlates to atrial fibrosis without atrial fibrillation. Neurology. 93:e381–e387. 2019. View Article : Google Scholar : PubMed/NCBI | |
Spronk HM, De Jong AM, Verheule S, De Boer HC, Maass AH, Lau DH, Rienstra M, van Hunnik A, Kuiper M, Lumeij S, et al: Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J. 38:38–50. 2017. View Article : Google Scholar | |
D'Souza A, Butcher KS and Buck BH: The multiple causes of stroke in atrial fibrillation: Thinking broadly. Can J Cardiol. 34:1503–1511. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, Wilcox JN, Dudley SC Jr, Harrison DG and Langberg JJ: Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: Potential mechanisms for atrial thrombosis and stroke. Circulation. 106:2854–2858. 2002. View Article : Google Scholar : PubMed/NCBI | |
Friedrichs K, Klinke A and Baldus S: Inflammatory pathways underlying Atrial Fibrillation. Trends Mol Med. 17:556–563. 2011. View Article : Google Scholar : PubMed/NCBI | |
Korantzopoulos P, Letsas K, Fragakis N, Tse G and Liu T: Oxidative stress and atrial fibrillation: An update. Free Radic Res. 52:1199–1209. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao H, Wang J, Xi L, Røe OD, Chen Y and Wang D: Dysregulated atrial gene expression of osteoprotegerin/receptor activator of nuclear factor-κB (RANK)/RANK ligand axis in the development and progression of atrial fibrillation. Circ J. 75:2781–2788. 2011. View Article : Google Scholar | |
Pinto A, Tuttolomondo A, Casuccio A, Di Raimondo D, Di Sciacca R, Arnao V and Licata G: Immuno-inflammatory predictors of stroke at follow-up in patients with chronic non-valvular atrial fibrillation (NVAF). Clin Sci (Lond). 116:781–789. 2009. View Article : Google Scholar | |
Li J, Solus J, Chen Q, Rho YH, Milne G, Stein CM and Darbar D: Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm. 7:438–444. 2010. View Article : Google Scholar : PubMed/NCBI | |
Calvo D, Filgueiras-Rama D and Jalife J: Mechanisms and drug development in atrial fibrillation. Pharmacol Rev. 70:505–525. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sardar MR, Saeed W and Kowey PR: Antiarrhythmic drug therapy for atrial fibrillation. Heart Fail Clin. 12:205–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Burashnikov A and Antzelevitch C: Novel pharmacological targets for the rhythm control management of atrial fibrillation. Pharmacol Ther. 132:300–313. 2011. View Article : Google Scholar : PubMed/NCBI | |
Novo G, Guttilla D, Fazio G, Cooper D and Novo S: The role of the renin-angiotensin system in atrial fibrillation and the therapeutic effects of ACE-Is and ARBS. Br J Clin Pharmacol. 66:345–351. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li W, Yang B, Han W, Dong D, Xue J, Li B, Yang S and Sheng L: Effects of Cilazapril on atrial electrical, structural and functional remodeling in atrial fibrillation dogs. J Electrocardiol. 40:100.e1–e6. 2007. View Article : Google Scholar | |
Belluzzi F, Sernesi L, Preti P, Salinaro F, Fonte ML and Perlini S: Prevention of recurrent lone atrial fibrillation by the angiotensin-II converting enzyme inhibitor ramipril in normotensive patients. J Am Coll Cardiol. 53:24–29. 2009. View Article : Google Scholar : PubMed/NCBI | |
Akashiba A, Ono H, Ono Y, Ishimitsu T and Matsuoka H: Valsartan improves L-NAME-exacerbated cardiac fibrosis with TGF-ß inhibition and apoptosis induction in spontaneously hypertensive rats. J Cardiol. 52:239–246. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K and Saku K: Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 41:2197–2204. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nomura M, Kawano T, Nakayasu K and Nakaya Y: The effects of losartan on signal-averaged P wave in patients with atrial fibrillation. Int J Cardiol. 126:21–27. 2008. View Article : Google Scholar | |
Takemoto Y, Ramirez RJ, Kaur K, Salvador-Montañés O, Ponce-Balbuena D, Ramos-Mondragón R, Ennis SR, Guerrero-Serna G, Berenfeld O and Jalife J: Eplerenone reduces atrial fibrillation burden without preventing atrial electrical remodeling. J Am Coll Cardiol. 70:2893–2905. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neefs J, van den Berg NW, Limpens J, Berger WR, Boekholdt SM, Sanders P and de Groot JR: Aldosterone pathway blockade to prevent atrial fibrillation: A systematic review and meta-analysis. Int J Cardiol. 231:155–161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rienstra M, Hobbelt AH, Alings M, Tijssen JGP, Smit MD, Brügemann J, Geelhoed B, Tieleman RG, Hillege HL, Tukkie R, et al: Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: Results of the RACE 3 trial. Eur Heart J. 39:2987–2896. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schneider MP, Hua TA, Böhm M, Wachtell K, Kjeldsen SE and Schmieder RE: Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol. 55:2299–2307. 2010. View Article : Google Scholar : PubMed/NCBI | |
European Heart Rhythm Association; European Association for Cardio-Thoracic Surgery; Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, Van Gelder IC, Al-Attar N, et al: Guidelines for the management of atrial fibrillation: The task force for the management of atrial fibrillation of the European society of cardiology (ESC). Eur Heart J. 31:2369–2429. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chaugai S, Meng WY and Ali Sepehry A: Effects of RAAS blockers on atrial fibrillation prophylaxis: An updated systematic review and meta-analysis of randomized controlled trials. J Cardiovasc Pharmacol Ther. 21:388–404. 2016. View Article : Google Scholar : PubMed/NCBI | |
GISSI-AF Investigators; Disertori M, Latini R, Barlera S, Franzosi MG, Staszewsky L, Maggioni AP, Lucci D, Di Pasquale G and Tognoni G: Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med. 360:1606–1617. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tveit A, Grundvold I, Olufsen M, Seljeflot I, Abdelnoor M, Arnesen H and Smith P: Candesartan in the prevention of relapsing atrial fibrillation. Int J Cardiol. 120:85–91. 2007. View Article : Google Scholar | |
Shiroshita-Takeshita A, Brundel BJ, Burstein B, Leung TK, Mitamura H, Ogawa S and Nattel S: Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res. 74:75–84. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kuhn EW, Liakopoulos OJ, Stange S, Deppe AC, Slottosch I, Choi YH and Wahlers T: Preoperative statin therapy in cardiac surgery: A meta-analysis of 90,000 patients. Eur J Cardiothorac Surg. 45:17–26. 2014. View Article : Google Scholar | |
Salvador-Montañés O, Gómez-Gallanti A, Garofalo D, Noujaim SF, Peinado R and Filgueiras-Rama D: Polyunsaturated Fatty acids in atrial fibrillation: Looking for the proper candidates. Front Physiol. 3:3702012. View Article : Google Scholar : PubMed/NCBI | |
Lee KW, Everett TH IV, Rahmutula D, Guerra JM, Wilson E, Ding C and Olgin JE: Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation. 114:1703–1712. 2006. View Article : Google Scholar : PubMed/NCBI | |
Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, et al: Management of patients with atrial fibrillation (compilation of 2006 ACCF/AHA/ESC and 2011 ACCF/AHA/HRS recommendations): A report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol. 61:1935–1944. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holmqvist F, Kesek M, Englund A, Blomström-Lundqvist C, Karlsson LO, Kennebäck G, Poçi D, Samo-Ayou R, Sigurjónsdóttir R, Ringborn M, et al: A decade of catheter ablation of cardiac arrhythmias in Sweden: Ablation practices and outcomes. Eur Heart J. 40:820–830. 2019. View Article : Google Scholar : | |
Kottkamp H: Human atrial fibrillation substrate: Towards a specific fibrotic atrial cardiomyopathy. Eur Heart J. 34:2731–2738. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kottkamp H and Schreiber D: The substrate in 'early persistent' atrial fibrillation: Arrhythmia induced, risk factor induced, or from a specific fibrotic atrial cardiomyopathy? JACC Clin Electrophysiol. 2:140–142. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oakes RS, Badger TJ, Kholmovski EG, Akoum N, Burgon NS, Fish EN, Blauer JJ, Rao SN, DiBella EV, Segerson NM, et al: Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 119:1758–1767. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rolf S, Kircher S, Arya A, Eitel C, Sommer P, Richter S, Gaspar T, Bollmann A, Altmann D, Piedra C, et al: Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 7:825–833. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kapa S, Desjardins B, Callans DJ, Marchlinski FE and Dixit S: Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 25:1044–1052. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, Kholmovski E, Burgon N, Hu N, Mont L, et al: Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. JAMA. 311:498–506. 2014. View Article : Google Scholar : PubMed/NCBI | |
Canpolat U, Oto A, Hazırolan T, Sunman H, Yorgun H, Şahiner L, Kaya EB and Aytemir K: A prospective DE-MRI study evaluating the role of TGF-β1 in left atrial fibrosis and implications for outcomes of cryoballoon-based catheter ablation: New insights into primary fibrotic atriocardiomyopathy. J Cardiovasc Electrophysiol. 26:251–259. 2015. View Article : Google Scholar | |
McGann C, Akoum N, Patel A, Kholmovski E, Revelo P, Damal K, Wilson B, Cates J, Harrison A, Ranjan R, et al: Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ Arrhythm Electrophysiol. 7:23–30. 2014. View Article : Google Scholar : | |
Stiles MK, John B, Wong CX, Kuklik P, Brooks AG, Lau DH, Dimitri H, Roberts-Thomson KC, Wilson L, De Sciscio P, et al: Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: Characterizing the 'second factor'. J Am Coll Cardiol. 53:1182–1191. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kottkamp H, Berg J, Bender R, Rieger A and Schreiber D: Box isolation of fibrotic areas (BIFA): A patient-tailored substrate modification approach for ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 27:22–30. 2016. View Article : Google Scholar | |
Yamaguchi T, Tsuchiya T, Nakahara S, Fukui A, Nagamoto Y, Murotani K, Eshima K and Takahashi N: Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J Cardiovasc Electrophysiol. 27:1055–1063. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yagishita A, Gimbel JR, DE Oliveira S, Manyam H, Sparano D, Cakulev I, Mackall J and Arruda M: Long-term outcome of left atrial voltage-guided substrate ablation during atrial fibrillation: A novel adjunctive ablation strategy. J Cardiovasc Electrophysiol. 28:147–155. 2017. View Article : Google Scholar | |
Jadidi AS, Lehrmann H, Keyl C, Sorrel J, Markstein V, Minners J, Park CI, Denis A, Jaïs P, Hocini M, et al: Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 9:e0029622016.PubMed/NCBI | |
Yang G, Yang B, Wei Y, Zhang F, Ju W, Chen H, Li M, Gu K, Lin Y, Wang B, et al: Catheter ablation of nonparoxysmal atrial fibrillation using electrophysiologically guided substrate modification during sinus rhythm after pulmonary vein isolation. Circ Arrhythm Electrophysiol. 9:e0033822016. View Article : Google Scholar : PubMed/NCBI | |
Kottkamp H, Schreiber D, Moser F and Rieger A: Therapeutic approaches to atrial fibrillation ablation targeting atrial fibrosis. JACC Clin Electrophysiol. 3:643–653. 2017. View Article : Google Scholar | |
Jadidi AS, Cochet H, Shah AJ, Kim SJ, Duncan E, Miyazaki S, Sermesant M, Lehrmann H, Lederlin M, Linton N, et al: Inverse relationship between fractionated electrograms and atrial fibrosis in persistent atrial fibrillation: Combined magnetic resonance imaging and high-density mapping. J Am Coll Cardiol. 62:802–812. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gal P and Marrouche NF: Magnetic resonance imaging of atrial fibrosis: Redefining atrial fibrillation to a syndrome. Eur Heart J. 38:14–19. 2017. View Article : Google Scholar | |
Fochler F, Yamaguchi T, Kheirkahan M, Kholmovski EG, Morris AK and Marrouche NF: Late gadolinium enhancement magnetic resonance imaging guided treatment of post-atrial fibrillation ablation recurrent arrhythmia. Circ Arrhythm Electrophysiol. 12:e0071742019. View Article : Google Scholar : PubMed/NCBI | |
Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH, Hakim JB, Murphy MJ, Prakosa A, Zimmerman SL, et al: Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng. 3:870–879. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sohns C and Marrouche NF: Atrial fibrillation and cardiac fibrosis. Eur Heart J. 41:1123–1131. 2020. View Article : Google Scholar | |
Kottkamp H, Bender R and Berg J: Catheter ablation of atrial fibrillation: How to modify the substrate? J Am Coll Cardiol. 65:196–206. 2015. View Article : Google Scholar : PubMed/NCBI |