Vitamin D, zinc and glutamine: Synergistic action with OncoTherad immunomodulator in interferon signaling and COVID‑19 (Review)
- Authors:
- José João Name
- Andrea Rodrigues Vasconcelos
- Ana Carolina Remondi Souza
- Wagner José Fávaro
-
Affiliations: Kilyos Assessoria, Cursos e Palestras (Kilyos Nutrition), São Paulo, SP 01311‑100, Brazil, Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508‑000, Brazil, Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, SP 13083‑970, Brazil - Published online on: January 4, 2021 https://doi.org/10.3892/ijmm.2021.4844
- Article Number: 11
-
Copyright: © Name et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber CL, Leontovich AM, Neuman BW, et al: Severe acute respiratory syndrome-related coronavirus: The species and its viruses- A statement of the Coronavirus Study Group. Microbiology. 2020. | |
Cucinotta D and Vanelli M: WHO declares COVID-19 a pandemic. Acta Biomed. 91:157–160. 2020.PubMed/NCBI | |
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A and Li F: Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 117:11727–11734. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N and Tsatsakis A: Comprehensive analysis of drugs to treat SARSCoV2 infection: Mechanistic insights into current COVID19 therapies (Review). Int J Mol Med. 46:467–488. 2020. View Article : Google Scholar : PubMed/NCBI | |
Read SA, Obeid S, Ahlenstiel C and Ahlenstiel G: The role of zinc in antiviral immunity. Adv Nutr. 10:696–710. 2019. View Article : Google Scholar : PubMed/NCBI | |
Teymoori-Rad M, Shokri F, Salimi V and Marashi SM: The interplay between vitamin D and viral infections. Rev Med Virol. 29:e20322019. View Article : Google Scholar : PubMed/NCBI | |
Uyangaa E, Lee HK and Eo SK: Glutamine and leucine provide enhanced protective immunity against mucosal infection with herpes simplex virus type 1. Immune Netw. 12:196–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bringhurst RM, Dominguez AA and Schaffer PA: Glutamine deprivation causes enhanced plating efficiency of a herpes simplex virus type 1 ICP0-null mutant. J Virol. 82:11472–11475. 2008. View Article : Google Scholar : PubMed/NCBI | |
Arvinte C, Singh M and Marik PE: Serum levels of vitamin C and vitamin D in a cohort of critically ill COVID-19 patients of a North American Community Hospital Intensive Care Unit in May 2020: A pilot study. Med Drug Discov. 8:1000642020. View Article : Google Scholar : PubMed/NCBI | |
Alexander J, Tinkov A, Strand TA, Alehagen U, Skalny A and Aaseth J: Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients. 12:23582020. View Article : Google Scholar : | |
Bauer SR, Kapoor A, Rath M and Thomas SA: What is the role of supplementation with ascorbic acid, zinc, vitamin D, or N-acetylcysteine for prevention or treatment of COVID-19? Cleve Clin J Med. Jun 8–2020.Epub ahead of print. View Article : Google Scholar | |
Benskin LL: A basic review of the preliminary evidence that COVID-19 risk and severity is increased in vitamin D deficiency. Front Public Health. 8:5132020. View Article : Google Scholar : PubMed/NCBI | |
Brewer J, Gomez Marti JL and Brufsky A: Potential interventions for SARS-CoV-2 infections: Zinc showing promise. J Med Virol. Sep 17–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Calder PC, Carr AC, Gombart AF and Eggersdorfer M: Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 12:11812020. View Article : Google Scholar : | |
Chakhtoura M, Napoli N and El Hajj Fuleihan G: Commentary: Myths and facts on vitamin D amidst the COVID-19 pandemic. Metabolism. 109:1542762020. View Article : Google Scholar : PubMed/NCBI | |
Durán N and Fávaro WJ: Immunomodulators acting on covid-19: Actual knowledge and perspectives. J Appl Microb Res. 3:37–44. 2020. | |
Ebadi M and Montano-Loza AJ: Perspective: Improving vitamin D status in the management of COVID-19. Eur J Clin Nutr. 74:856–859. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ferrara F, De Rosa F and Vitiello A: The central role of clinical nutrition in COVID-19 patients during and after hospitalization in intensive care unit. SN Compr Clin Med. 1–5. 2020. | |
Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL and Bhattoa HP: Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 12:9882020. View Article : Google Scholar : | |
Jovic TH, Ali SR, Ibrahim N, Jessop ZM, Tarassoli SP, Dobbs TD, Holford P, Thornton CA and Whitaker IS: Could vitamins help in the fight against COVID-19? Nutrients. 12:25502020. View Article : Google Scholar : | |
Siuka D, Pfeifer M and Pinter B: Vitamin D supplementation during the COVID-19 pandemic. Mayo Clin Proc. 95:1804–1805. 2020. View Article : Google Scholar : PubMed/NCBI | |
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, et al: Zinc and respiratory tract infections: Perspectives for COVID19 (Review). Int J Mol Med. 46:17–26. 2020.PubMed/NCBI | |
Xu Y, Baylink DJ, Chen CS, Reeves ME, Xiao J, Lacy C, Lau E and Cao H: The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J Transl Med. 18:3222020. View Article : Google Scholar : PubMed/NCBI | |
Weir EK, Thenappan T, Bhargava M and Chen Y: Does vitamin D deficiency increase the severity of COVID-19? Clin Med (Lond). 20:e107–e108. 2020. View Article : Google Scholar | |
Zhang J, McCullough PA and Tecson KM: Vitamin D deficiency in association with endothelial dysfunction: Implications for patients with COVID-19. Rev Cardiovasc Med. 21:339–344. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bergman P: The link between vitamin D and COVID-19: Distinguishing facts from fiction. J Intern Med. Jul 11–2020.Epub ahead of print. | |
Totura AL and Bavari S: Broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov. 14:397–412. 2019. View Article : Google Scholar : PubMed/NCBI | |
Berg K, Bolt G, Andersen H and Owen TC: Zinc potentiates the antiviral action of human IFN-alpha tenfold. J Interferon Cytokine Res. 21:471–474. 2001. View Article : Google Scholar : PubMed/NCBI | |
Foster M and Samman S: Zinc and regulation of inflammatory cytokines: Implications for cardiometabolic disease. Nutrients. 4:676–694. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cakman I, Kirchner H and Rink L: Zinc supplementation reconstitutes the production of interferon-alpha by leukocytes from elderly persons. J Interferon Cytokine Res. 17:469–472. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S, Lee HM, Krutzik SR, Schenk M, Sieling PA, et al: Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med. 3:104ra1022011. View Article : Google Scholar : PubMed/NCBI | |
Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, Turay AM and Frauwirth KA: Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 185:1037–1044. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hörig H, Spagnoli GC, Filgueira L, Babst R, Gallati H, Harder F, Juretic A and Heberer M: Exogenous glutamine requirement is confined to late events of T cell activation. J Cell Biochem. 53:343–351. 1993. View Article : Google Scholar : PubMed/NCBI | |
Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L, Mongellaz C, Floess S, Fritz V, Matias MI, et al: Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 8:ra972015. View Article : Google Scholar | |
Fávaro WJ, Iantas SR, Gonçalves JM, Dias QC, Reis IB, Billis A, Duran N and Alonso JC: Role of OncoTherad immunotherapy in the regulation of toll-like receptors-mediated immune system and RANK/RANKL signaling: New therapeutic perspective for non-muscle invasive bladder cancer. J Clin Oncol. 37:e160042019. View Article : Google Scholar | |
Durán N, Dias QC and Fávaro WJ: OncoTherad: A new nanobiological response modifier, its toxicological and anticancer activities. J Phys Conf Ser. Oct 2–2019.Epub ahead of print. View Article : Google Scholar | |
Fávaro W and Durán N: Process of obtaining a nanostructured complex (CFI-1), associated to nanostructured CFI-1 with a protein (MRB-CFI-1) and its use. Patent BR1020170127680. June 14–2017 | |
Challem JJ: Toward a new definition of essential nutrients: Is it now time for a third 'vitamin' paradigm? Med Hypotheses. 52:417–422. 1999. View Article : Google Scholar : PubMed/NCBI | |
Greiller CL and Martineau AR: Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 7:4240–4270. 2015. View Article : Google Scholar : PubMed/NCBI | |
Platanias LC: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 5:375–386. 2005. View Article : Google Scholar : PubMed/NCBI | |
Le Page C, Génin P, Baines MG and Hiscott J: Interferon activation and innate immunity. Rev Immunogenet. 2:374–386. 2000. | |
O'Brien TR, Thomas DL, Jackson SS, Prokunina-Olsson L, Donnelly RP and Hartmann R: Weak induction of interferon expression by SARS-CoV-2 supports clinical trials of interferon lambda to treat early COVID-19. Clin Infect Dis. 71:1410–1412. 2020.PubMed/NCBI | |
Benveniste EN and Qin H: Type I interferons as anti-inflammatory mediators. Sci STKE. 2007:pe702007. View Article : Google Scholar : PubMed/NCBI | |
Karimi Y, Giles EC, Vahedi F, Chew MV, Nham T, Loukov D, Lee AJ, Bowdish DM and Ashkar AA: IFN-beta signalling regulates RAW 264.7 macrophage activation, cytokine production, and killing activity. Innate Immun. 26:172–182. 2020. View Article : Google Scholar | |
Billiau A: Anti-inflammatory properties of Type I interferons. Antiviral Res. 71:108–116. 2006. View Article : Google Scholar : PubMed/NCBI | |
González-Navajas JM, Lee J, David M and Raz E: Immunomodulatory functions of type I interferons. Nat Rev Immunol. 12:125–135. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Förster I, Farlik M, Decker T, Du Pasquier RA, Romero P and Tschopp J: Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 34:213–223. 2011. View Article : Google Scholar : PubMed/NCBI | |
Arimori Y, Nakamura R, Yamada H, Shibata K, Maeda N, Kase T and Yoshikai Y: Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antiviral Res. 99:230–237. 2013. View Article : Google Scholar : PubMed/NCBI | |
Doherty PC, Turner SJ, Webby RG and Thomas PG: Influenza and the challenge for immunology. Nat Immunol. 7:449–455. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maines TR, Szretter KJ, Perrone L, Belser JA, Bright RA, Zeng H, Tumpey TM and Katz JM: Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response. Immunol Rev. 225:68–84. 2008. View Article : Google Scholar : PubMed/NCBI | |
Taubenberger JK and Morens DM: The pathology of influenza virus infections. Annu Rev Pathol. 3:499–522. 2008. View Article : Google Scholar : | |
Li X, Geng M, Peng Y, Meng L and Lu S: Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 10:102–108. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395:497–506. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, et al: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 8:420–422. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gralinski LE and Menachery VD: Return of the coronavirus: 2019-nCoV. Viruses. 12:1352020. View Article : Google Scholar : | |
Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y and Guo X: Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 12:2442020. View Article : Google Scholar : | |
Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G, Antinori S and Galli M: COVID-19, cytokines and immunosuppression: What can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 38:337–342. 2020.PubMed/NCBI | |
Kindler E, Thiel V and Weber F: Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 96:219–243. 2016. View Article : Google Scholar : PubMed/NCBI | |
Perlman S and Dandekar AA: Immunopathogenesis of coronavirus infections: Implications for SARS. Nat Rev Immunol. 5:917–927. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pedersen SF and Ho YC: SARS-CoV-2: A storm is raging. J Clin Invest. 130:2202–2205. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, Shuai H, Yang D, Hu B, Huang X, et al: Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. 71:1400–1409. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li SF, Gong MJ, Zhao FR, Shao JJ, Xie YL, Zhang YG and Chang HY: Type I interferons: Distinct biological activities and current applications for viral infection. Cell Physiol Biochem. 51:2377–2396. 2018. View Article : Google Scholar : PubMed/NCBI | |
Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, van Amerongen G, van Riel D, de Jong T, Itamura S, Chan KH, et al: Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med. 10:290–293. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H and Doerr HW: Treatment of SARS with human interferons. Lancet. 362:293–294. 2003. View Article : Google Scholar : PubMed/NCBI | |
Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, Brining D, Bushmaker T, Martellaro C, Baseler L, et al: Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med. 19:1313–1317. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ströher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, Jones SM and Feldmann H: Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-alpha. J Infect Dis. 189:1164–1167. 2004. View Article : Google Scholar | |
Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB Jr, Meyerholz DK and Perlman S: IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 130:3625–3639. 2019. View Article : Google Scholar | |
Hensley LE, Fritz LE, Jahrling PB, Karp CL, Huggins JW and Geisbert TW: Interferon-beta 1a and SARS coronavirus replication. Emerg Infect Dis. 10:317–319. 2004. View Article : Google Scholar : PubMed/NCBI | |
Turner RB, Felton A, Kosak K, Kelsey DK and Meschievitz CK: Prevention of experimental coronavirus colds with intranasal alpha-2b interferon. J Infect Dis. 154:443–447. 1986. View Article : Google Scholar : PubMed/NCBI | |
Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ and Feldmann H: Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin. Sci Rep. 3:16862013. View Article : Google Scholar | |
Thiel V and Weber F: Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 19:121–132. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sainz B Jr, Mossel EC, Peters CJ and Garry RF: Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology. 329:11–17. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mossel EC, Sainz B Jr, Garry RF and Peters CJ: Synergistic inhibition of SARS-coronavirus replication by type I and type II IFN. Adv Exp Med Biol. 581:503–506. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoshikawa T, Hill TE, Yoshikawa N, Popov VL, Galindo CL, Garner HR, Peters CJ and Tseng CT: Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS One. 5:e87292010. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Jin L, Farmen M, Venable D, Huang Y, Tan SL and Glass JI: Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system. J Interferon Cytokine Res. 23:247–257. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li G and De Clercq E: Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 19:149–150. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fávaro WJ, Iantas SR, Gonçalves JM, Socca EAR, Durán N and Billis A: Single-arm phase I/II study of the safety and efficacy of OncoTherad immunomodulator in patients BCG-refractory or relapsed non-muscle invasive bladder cancer. J Clin Oncol. 37:e160002019. View Article : Google Scholar | |
Böckelmann PK, Tizziani SH, Durán N and Fávaro WJ: New therapeutic perspective for bladder cancer in dogs: Toxicological and clinical effects of oncotherad nanostructured immunotherapy. J Phys Conf Ser. 1323:0120222019. View Article : Google Scholar | |
Fávaro WJ and Caballero NE: A method for producing a nanostructured complex (cfi-1), a protein-associated nanostructured complex (mrb-cfi-1) and use. US Patent 20200156951. June 14–2018, issued May 21, 2020. | |
Fávaro WJ and Caballero NED: A method for producing a nanostructured complex (cfi-1), a protein-associated nanostructured complex (mrb-cfi-1) And use. Patent WO2018227261. Filed June 13, 2018; issued December 19, 2018. | |
Alonso JCC, Reis IB, Gonçalves JM, Sasaki BR, Cintra AA, Duran N, Billis A and Fávaro WJ: Oncotherad immunotherapy elicits promising responses in Bacillus Calmette-Guérin-unresponsive non-muscle invasive bladder cancer: Results from phase I/II study. J Clin Oncol. 38:e170482020. View Article : Google Scholar | |
Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT and Baric RS: Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio. 6:e00638–00615. 2015. View Article : Google Scholar : PubMed/NCBI | |
Delafiori J, Alonso JCC, Santos LA, Oliveira DN, Navarro LC, Brandt Busanello EN, Sales GM, Oliveira AN, Rocha AR, Durán N, et al: A 78-year old urothelial cancer patient with faster recovery from COVID-19: Potential benefit from adjuvant active immunotherapy. SSRN. Jun 4–2020.Epub ahead of print. View Article : Google Scholar | |
Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T, Li F, Xu Q, Zhang Y, Xu S, et al: Clinical progression of patients with COVID-19 in Shanghai, China. J Infect. 80:e1–e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wei Z, Burwinkel M, Palissa C, Ephraim E and Schmidt MF: Antiviral activity of zinc salts against transmissible gastroenteritis virus in vitro. Vet Microbiol. 160:468–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Korant BD, Kauer JC and Butterworth BE: Zinc ions inhibit replication of rhinoviruses. Nature. 248:588–590. 1974. View Article : Google Scholar : PubMed/NCBI | |
Suara RO and Crowe JE Jr: Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother. 48:783–790. 2004. View Article : Google Scholar : PubMed/NCBI | |
te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ and van Hemert MJ: Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 6:e10011762010. View Article : Google Scholar : PubMed/NCBI | |
Kaushik N, Anang S, Ganti KP and Surjit M: Zinc: A potential antiviral against Hepatitis E virus infection? DNA Cell Biol. 37:593–599. 2018. View Article : Google Scholar : PubMed/NCBI | |
Aydemir TB, Liuzzi JP, McClellan S and Cousins RJ: Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J Leukoc Biol. 86:337–348. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bao S and Knoell DL: Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol. 291:L1132–L1141. 2006. View Article : Google Scholar : PubMed/NCBI | |
Reiber C, Brieger A, Engelhardt G, Hebel S, Rink L and Haase H: Zinc chelation decreases IFN-β-induced STAT1 upregulation and iNOS expression in RAW 264.7 macrophages. J Trace Elem Med Biol. 44:76–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, et al: Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 7:e10012582011. View Article : Google Scholar : PubMed/NCBI | |
Fu B, Wang L, Li S and Dorf ME: ZMPSTE24 defends against influenza and other pathogenic viruses. J Exp Med. 214:919–929. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li S, Fu B, Wang L and Dorf ME: ZMPSTE24 is downstream effector of interferon-induced transmembrane antiviral activity. DNA Cell Biol. 36:513–517. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brieger A, Rink L and Haase H: Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol. 191:1808–1817. 2013. View Article : Google Scholar : PubMed/NCBI | |
Newton K and Dixit VM: Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 4:a0060492012. View Article : Google Scholar : PubMed/NCBI | |
Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, DeMartiis M, Giannandrea E, Renieri C, Busco F, Galeazzi R and Mocchegiani E: Effects of zinc-fortified drinking skim milk (as functional food) on cytokine release and thymic hormone activity in very old persons: A pilot study. Age (Dordr). 36:96562014. View Article : Google Scholar | |
Kahmann L, Uciechowski P, Warmuth S, Plümäkers B, Gressner AM, Malavolta M, Mocchegiani E and Rink L: Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res. 11:227–237. 2008. View Article : Google Scholar : PubMed/NCBI | |
ILSI Brasil International Life Sciences Institute do Brasil: Vitamina D. Funções Plenamente Reconhecidas de Nutrientes. 2. Brazil: pp. 432018 | |
Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, Shoenfeld Y, Lerchbaum E, Llewellyn DJ, Kienreich K and Soni M: Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev. 12:976–989. 2013. View Article : Google Scholar : PubMed/NCBI | |
Catarino AM, Claro C and Viana I: Vitamin D-current perspectives. J Portug Soc Dermatol Venereol. 74:345–353. 2016. View Article : Google Scholar | |
White JH: Regulation of intracrine production of 1,25-dihydroxyvitamin D and its role in innate immune defense against infection. Arch Biochem Biophys. 523:58–63. 2012. View Article : Google Scholar | |
Evans KN, Taylor H, Zehnder D, Kilby MD, Bulmer JN, Shah F, Adams JS and Hewison M: Increased expression of 25-hydroxyvitamin D-1alpha-hydroxylase in dysgerminomas: A novel form of humoral hypercalcemia of malignancy. Am J Pathol. 165:807–813. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R and Mathieu C: Immune regulation of 25-hydroxyvitamin-D3-1alpha-hydroxylase in human monocytes. J Bone Miner Res. 21:37–47. 2006. View Article : Google Scholar | |
Hewison M, Freeman L, Hughes SV, Evans KN, Bland R, Eliopoulos AG, Kilby MD, Moss PA and Chakraverty R: Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 170:5382–5390. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fritsche J, Mondal K, Ehrnsperger A, Andreesen R and Kreutz M: Regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells. Blood. 102:3314–3316. 2003. View Article : Google Scholar : PubMed/NCBI | |
Enioutina EY, Bareyan D and Daynes RA: TLR-induced local metabolism of vitamin D3 plays an important role in the diversification of adaptive immune responses. J Immunol. 182:4296–4305. 2009. View Article : Google Scholar : PubMed/NCBI | |
Enioutina EY, Bareyan D and Daynes RA: TLR ligands that stimulate the metabolism of vitamin D3 in activated murine dendritic cells can function as effective mucosal adjuvants to subcutaneously administered vaccines. Vaccine. 26:601–613. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC and Hunninghake GW: Respiratory epithelial cells convert inactive vitamin D to its active form: Potential effects on host defense. J Immunol. 181:7090–7099. 2008. View Article : Google Scholar : PubMed/NCBI | |
Overbergh L, Stoffels K, Waer M, Verstuyf A, Bouillon R and Mathieu C: Immune regulation of 25-hydroxyvitamin D-1alpha-hydroxylase in human monocytic THP1 cells: Mechanisms of interferon-gamma-mediated induction. J Clin Endocrinol Metab. 91:3566–3574. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rhodes JM, Subramanian S, Laird E, Griffin G and Kenny RA: Perspective: Vitamin D deficiency and COVID-19 severity-plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J Intern Med. Jul 2–2020.Epub ahead of print. | |
Yan T, Xiao R and Lin G: Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J. 34:6017–6026. 2020. View Article : Google Scholar : PubMed/NCBI | |
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, et al: Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 436:112–116. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, et al: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 11:875–879. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kumar D, Gupta P and Banerjee D: Letter: Does vitamin D have a potential role against COVID-19? Aliment Pharmacol Ther. 52:409–411. 2020. View Article : Google Scholar : PubMed/NCBI | |
Musavi H, Abazari O, Barartabar Z, Kalaki-Jouybari F, Hemmati-Dinarvand M, Esmaeili P and Mahjoub S: The benefits of vitamin D in the COVID-19 pandemic: Biochemical and immunological mechanisms. Arch Physiol Biochem:. Oct 8–2020.Epub ahead of print. View Article : Google Scholar | |
Malek Mahdavi A: A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19. Rev Med Virol. 30:e21192020. View Article : Google Scholar : PubMed/NCBI | |
Omori-Mizuno Y, Nakayama N, Inao M, Funyu J, Asabe S, Tomita K, Nishikawa K, Hosoda Y, Tanaka M, Hashimoto Y, et al: Randomized study comparing vitamin D3 and 1alpha-Hydroxyvitamin D3 in combination with pegylated interferon/ribavirin therapy for chronic hepatitis C. J Gastroenterol Hepatol. 30:1384–1390. 2015. View Article : Google Scholar : PubMed/NCBI | |
Abu-Mouch S, Fireman Z, Jarchovsky J, Zeina AR and Assy N: Vitamin D supplementation improves sustained virologic response in chronic hepatitis C (genotype 1)-naive patients. World J Gastroenterol. 17:5184–5190. 2011. View Article : Google Scholar | |
Nimer A and Mouch A: Vitamin D improves viral response in hepatitis C genotype 2-3 naive patients. World J Gastroenterol. 18:800–805. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yokoyama S, Takahashi S, Kawakami Y, Hayes CN, Kohno H, Kohno H, Tsuji K, Aisaka Y, Kira S, Yamashina K, et al: Effect of vitamin D supplementation on pegylated interferon/ribavirin therapy for chronic hepatitis C genotype 1b: A randomized controlled trial. J Viral Hepat. 21:348–356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Petta S, Cammà C, Scazzone C, Tripodo C, Di Marco V, Bono A, Cabibi D, Licata G, Porcasi R, Marchesini G and Craxí A: Low vitamin D serum level is related to severe fibrosis and low responsiveness to interferon-based therapy in genotype 1 chronic hepatitis C. Hepatology. 51:1158–1167. 2010. View Article : Google Scholar : PubMed/NCBI | |
Behera MK, Shukla SK, Dixit VK, Nath P, Abhilash VB, Asati PK and Jain AK: Effect of vitamin D supplementation on sustained virological response in genotype 1/4 chronic hepatitis C treatment-naive patients from India. Indian J Med Res. 148:200–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Hoshino Y, Dowdell K, Bosch-Marce M, Myers TG, Sarmiento M, Pesnicak L, Krause PR and Cohen JI: Glutamine supplementation suppresses herpes simplex virus reactivation. J Clin Invest. 127:2626–2630. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J and Green DR: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 35:871–882. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nakaya M, Xiao Y, Zhou X, Chang JH, Chang M, Cheng X, Blonska M, Lin X and Sun SC: Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity. 40:692–705. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM and Cantrell DA: Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 14:500–508. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang WK, Yang KD and Shaio MF: Effect of glutamine on Th1 and Th2 cytokine responses of human peripheral blood mononuclear cells. Clin Immunol. 93:294–301. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S, Kusko R, Zeskind B and Kaufman H: Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19). J Transl Med. 18:2572020. View Article : Google Scholar : PubMed/NCBI | |
Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ and Zandstra DF: Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 27:84–90. 2001. View Article : Google Scholar : PubMed/NCBI | |
O'Mahony JB, Palder SB, Wood JJ, McIrvine A, Rodrick ML, Demling RH and Mannick JA: Depression of cellular immunity after multiple trauma in the absence of sepsis. J Trauma. 24:869–875. 1984. View Article : Google Scholar : PubMed/NCBI | |
O'Sullivan ST, Lederer JA, Horgan AF, Chin DH, Mannick JA and Rodrick ML: Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg. 222:482–490; discussion 490-492. 1995. View Article : Google Scholar : PubMed/NCBI | |
Fläring UB, Rooyackers OE, Wernerman J and Hammarqvist F: Glutamine attenuates post-traumatic glutathione depletion in human muscle. Clin Sci (Lond). 104:275–282. 2003. View Article : Google Scholar | |
Mittendorfer B, Gore DC, Herndon DN and Wolfe RR: Accelerated glutamine synthesis in critically ill patients cannot maintain normal intramuscular free glutamine concentration. JPEN J Parenter Enteral Nutr. 23:243–252. 1999. View Article : Google Scholar : PubMed/NCBI | |
Houdijk AP, Rijnsburger ER, Jansen J, Wesdorp RI, Weiss JK, McCamish MA, Teerlink T, Meuwissen SG, Haarman HJ, Thijs LG and van Leeuwen PA: Randomised trial of glutamine-enriched enteral nutrition on infectius morbidity in patients with multiple trauma. Lancet. 352:772–776. 1998. View Article : Google Scholar : PubMed/NCBI | |
Boelens PG, Houdijk AP, Fonk JC, Puyana JC, Haarman HJ, von Blomberg-van der Flier ME and van Leeuwen PA: Glutamine-enriched enteral nutrition increases in vitro interferon-gamma production but does not influence the in vivo specific antibody response to KLH after severe trauma. A prospective, double blind, randomized clinical study. Clin Nutr. 23:391–400. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tao KM, Li XQ, Yang LQ, Yu WF, Lu ZJ, Sun YM and Wu FX: Glutamine supplementation for critically ill adults. Cochrane Database Syst Rev. 2014:CD0100502014. |