You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global patterns and trends in colorectal cancer incidence and mortality. Gut. 66:683–691. 2017. View Article : Google Scholar | |
|
Fleming M, Ravula S, Tatishchev SF and Wang HL: Colorectal carcinoma: Pathologic aspects. J Gastrointest Oncol. 3:153–173. 2012.PubMed/NCBI | |
|
Jasperson KW, Tuohy TM, Neklason DW and Burt RW: Hereditary and familial colon cancer. Gastroenterology. 138:2044–2058. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Graff RE, Möller S, Passarelli MN, Witte JS, Skytthe A, Christensen K, Tan Q, Adami HO, Czene K, Harris JR, et al: Familial risk and heritability of colorectal cancer in the nordic twin study of cancer. Clin Gastroenterol Hepatol. 15:1256–1264. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A and Hemminki K: Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 343:78–85. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Keum N and Giovannucci E: Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ogino S and Goel A: Molecular classification and correlates in colorectal cancer. J Mol Diagn. 10:13–27. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Grady WM and Carethers JM: Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 135:1079–1099. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bakhoum SF, Silkworth WT, Nardi IK, Nicholson JM, Compton DA and Cimini D: The mitotic origin of chromosomal instability. Curr Biol. 24:R148–R149. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nazemalhosseini Mojarad E, Kuppen PJK, Aghdaei HA and Zali MR: The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench. 6:120–128. 2013. | |
|
Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 361:2449–2460. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pawlik TM, Raut CP and Rodriguez-Bigas MA: Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers. 20:199–206. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Pitot HC: The molecular biology of carcinogenesis. Cancer. 72(3 Suppl): S962–S970. 1993. View Article : Google Scholar | |
|
O'Connell JB, Maggard MA and Ko CY: Colon cancer survival rates with the new American joint committee on cancer sixth edition staging. J Natl Cancer Inst. 96:1420–1425. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, He Y, Wang Y, Li X, Young J, Ioannidis JPA, Dunlop MG and Theodoratou E: Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 18:1722020. View Article : Google Scholar : PubMed/NCBI | |
|
Jensen KH, Izarzugaza JMG, Juncker AS, Hansen RB, Hansen TF, Timshel P, Blondal T, Jensen TS, Rygaard-Hjalsted E, Mouritzen P, et al: Analysis of a gene panel for targeted sequencing of colorectal cancer samples. Oncotarget. 9:9043–9060. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fearon ER and Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 61:759–767. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Fearon ER: Molecular genetics of colorectal cancer. Annu Rev Pathol. 6:479–507. 2011. View Article : Google Scholar | |
|
Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM and Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med. 319:525–532. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Jass JR and Smith M: Sialic acid and epithelial differentiation in colorectal polyps and cancer-a morphological, mucin and lectin histochemical study. Pathology. 24:233–242. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Dekker E: IJspeert JEG: Serrated pathway: A paradigm shift in CRC prevention. Gut. 67:1751–1752. 2018. View Article : Google Scholar | |
|
East JE, Vieth M and Rex DK: Serrated lesions in colorectal cancer screening: Detection, resection, pathology and surveillance. Gut. 64:991–1000. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Longacre TA and Fenoglio-Preiser CM: Mixed hyperplastic adenomatous polyps/serrated adenomas. A distinct form of colorectal neoplasia. Am J Surg Pathol. 14:524–537. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Snover DC, Ahnen D, Burt R and Odze R: Serrated polyps of the colon and rectum and serrated ('hyperplastic') polyposis WHO classification of tumours of the digestive system. International Agency for Research on Cancer; Lyon: pp. 160–165. 2010 | |
|
Groff RJ, Nash R and Ahnen DJ: Significance of serrated polyps of the colon. Curr Gastroenterol Rep. 10:490–498. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Aust DE and Baretton GB; Members of the Working Group GI-Pathology of the German Society of Pathology: Serrated polyps of the colon and rectum (hyperplastic polyps, sessile serrated adenomas, traditional serrated adenomas, and mixed polyps)-proposal for diagnostic criteria. Virchows Arch. 457:291–297. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Torlakovic E, Skovlund E, Snover DC, Torlakovic G and Nesland JM: Morphologic reappraisal of serrated colorectal polyps. Am J Surg Pathol. 27:65–81. 2003. View Article : Google Scholar | |
|
Goldstein NS, Bhanot P, Odish E and Hunter S: Hyperplastic-like colon polyps that preceded microsatellite-unstable adenocarcinomas. Am J Clin Pathol. 119:778–796. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kim KM, Lee EJ, Kim YH, Chang DK and Odze RD: KRAS mutations in traditional serrated adenomas from Korea herald an aggressive phenotype. Am J Surg Pathol. 34:667–675. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
International Agency for Research on Cancer (IARC): Global Cancer Observatory (GLOBOCAN). IARC; Lyon: 2018 | |
|
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I and Bray F: Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer; Lyon: 2018 | |
|
Li FY and Lai MD: Colorectal cancer, one entity or three. J Zhejiang Univ Sci B. 10:219–229. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy N, Ward HA, Jenab M, Rothwell JA, Boutron-Ruault MC, Carbonnel F, Kvaskoff M, Kaaks R, Kühn T, Boeing H, et al: Heterogeneity of colorectal cancer risk factors by anatomical subsite in 10 european countries: A multinational cohort study. Clin Gastroenterol Hepatol. 17:1323–1331.e6. 2019. View Article : Google Scholar | |
|
Yang L, Xiong Z, He W, Xie K, Liu S, Kong P, Jiang C, Guo G and Xia L: Proximal shift of colorectal cancer with increasing age in different ethnicities. Cancer Manag Res. 10:2663–2673. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy G, Devesa SS, Cross AJ, Inskip PD, McGlynn KA and Cook MB: Sex disparities in colorectal cancer incidence by anatomic subsite, race and age. Int J Cancer. 128:1668–1675. 2011. View Article : Google Scholar : | |
|
Shin A, Kim KZ, Jung KW, Park S, Won YJ, Kim J, Kim DY and Oh JH: Increasing trend of colorectal cancer incidence in Korea,. 1999–2009. Cancer Res Treat. 44:219–226. 2012. View Article : Google Scholar | |
|
Rawla P, Sunkara T and Barsouk A: Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol. 14:89–103. 2019.PubMed/NCBI | |
|
Win AK, Jenkins MA, Dowty JG, Antoniou AC, Lee A, Giles GG, Buchanan DD, Clendenning M, Rosty C, Ahnen DJ, et al: Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomarkers Prev. 26:404–412. 2017. View Article : Google Scholar : | |
|
Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, Järvinen H, Powell SM, Jen J, Hamilton SR, et al: Clues to the pathogenesis of familial colorectal cancer. Science. 260:812–416. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Ionov Y, Peinado MA, Malkhosyan S, Shibata D and Perucho M: Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 363:558–561. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Thibodeau SN, Bren G and Schaid D: Microsatellite instability in cancer of the proximal colon. Science. 260:816–819. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, et al: Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 352:1851–1860. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Patel SG and Ahnen DJ: Familial colon cancer syndromes: An update of a rapidly evolving field. Curr Gastroenterol Rep. 14:428–438. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Half E, Bercovich D and Rozen P: Familial adenomatous polyposis. Orphanet J Rare Dis. 4:222009. View Article : Google Scholar : PubMed/NCBI | |
|
Vasen HF, Tomlinson I and Castells A: Clinical management of hereditary colorectal cancer syndromes. Nat Rev Gastroenterol Hepatol. 12:88–97. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sir Michael M, Tola A, Tim B and Junshi C: World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. AICR; Washington, DC: 2007 | |
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ and Berger FG: Early-onset colorectal cancer: Initial clues and current views. Nat Rev Gastroenterol Hepatol. 17:352–364. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mauri G, Sartore-Bianchi A, Russo AG, Marsoni S, Bardelli A and Siena S: Early-onset colorectal cancer in young individuals. Mol Oncol. 13:109–131. 2019. View Article : Google Scholar | |
|
Bailey CE, Hu CY, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM, Cantor SB and Chang GJ: Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg. 150:17–22. 2015. View Article : Google Scholar : | |
|
Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, Bacher J, Bigley C, Nelsen L, Goodfellow PJ, et al: Ohio colorectal cancer prevention initiative study group: Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 3:464–471. 2017. View Article : Google Scholar : | |
|
Schellerer VS, Merkel S, Schumann SC, Schlabrakowski A, Förtsch T, Schildberg C, Hohenberger W and Croner RS: Despite aggressive histopathology survival is not impaired in young patients with colorectal cancer: CRC in patients under 50 years of age. Int J Colorectal Dis. 27:71–79. 2012. View Article : Google Scholar | |
|
Wang MJ, Ping J, Li Y, Adell G, Arbman G, Nodin B, Meng WJ, Zhang H, Yu YY, Wang C, et al: The prognostic factors and multiple biomarkers in young patients with colorectal cancer. Sci Rep. 5:106452015. View Article : Google Scholar : PubMed/NCBI | |
|
Crosbie AB, Roche LM, Johnson LM, Pawlish KS, Paddock LE and Stroup AM: Trends in colorectal cancer incidence among younger adults-Disparities by age, sex, race, ethnicity, and subsite. Cancer Med. 7:4077–4086. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ballester V, Rashtak S and Boardman L: Clinical and molecular features of young-onset colorectal cancer. World J Gastroenterol. 22:1736–1744. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dozois EJ, Boardman LA, Suwanthanma W, Limburg PJ, Cima RR, Bakken JL, Vierkant RA, Aakre JA and Larson DW: Young-onset colorectal cancer in patients with no known genetic predisposition: Can we increase early recognition and improve outcome? Medicine (Baltimore). 87:259–263. 2008. | |
|
O'Connell JB, Maggard MA, Liu JH, Etzioni DA, Livingston EH and Ko CY: Do young colon cancer patients have worse outcomes? World J Surg. 28:558–562. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Taggarshe D, Rehil N, Sharma S, Flynn JC and Damadi A: Colorectal cancer: Are the 'young' being overlooked? Am J Surg. 205:312–316. 2013. View Article : Google Scholar | |
|
Low EE, Demb J, Liu L, Earles A, Bustamante R, Williams CD, Provenzale D, Kaltenbach T, Gawron AJ, Martinez ME and Gupta S: Risk factors for early-onset colorectal cancer. Gastroenterology. 159:492–501.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu PH, Wu K, Ng K, Zauber AG, Nguyen LH, Song M, He X, Fuchs CS, Ogino S, Willett WC, et al: Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5:37–44. 2019. View Article : Google Scholar : | |
|
Renehan AG, Tyson M, Egger M, Heller RF and Zwahlen M: Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet. 371:569–578. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Zhou J, Zhu Y, Luo L, He T, Hu H, Liu H, Zhang Y, Luo D, Xu S, et al: Abdominal obesity and colorectal cancer risk: Systematic review and meta-analysis of prospective studies. Biosci Rep. 37:BSR201709452017. View Article : Google Scholar : PubMed/NCBI | |
|
Tejpar S and Van Cutsem E: Molecular and genetic defects in colorectal tumorigenesis. Best Pract Res Clin Gastroenterol. 16:171–185. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Lengauer C, Kinzler KW and Vogelstein B: Genetic instability in colorectal cancers. Nature. 386:623–627. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Nojadeh JN, Behrouz Sharif S and Sakhinia E: Microsatellite instability in colorectal cancer. EXCLI J. 17:159–168. 2018.PubMed/NCBI | |
|
Vilar E and Gruber SB: Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 7:153–162. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Geiersbach KB and Samowitz WS: Microsatellite instability and colorectal cancer. Arch Pathol Lab Med. 135:1269–1277. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lao VV and Grady WM: Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 8:686–700. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD, Barker MA, Arnold S, McGivern A, Matsubara N, et al: BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut. 53:1137–1144. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Loeb LA, Loeb KR and Anderson JP: Multiple mutations and cancer. Proc Natl Acad Sci USA. 100:776–781. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Loeb LA: A mutator phenotype in cancer. Cancer Res. 61:3230–3239. 2001.PubMed/NCBI | |
|
Prindle MJ, Fox EJ and Loeb LA: The mutator phenotype in cancer: Molecular mechanisms and targeting strategies. Curr Drug Targets. 11:1296–1303. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar | |
|
Le Scouarnec S and Gribble SM: Characterising chromosome rearrangements: Recent technical advances in molecular cytogenetics. Heredity (Edinb). 108:75–85. 2012. View Article : Google Scholar | |
|
Pino MS and Chung DC: The chromosomal instability pathway in colon cancer. Gastroenterology. 138:2059–2072. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Rowan A, Halford S, Gaasenbeek M, Kemp Z, Sieber O, Volikos E, Douglas E, Fiegler H, Carter N, Talbot I, et al: Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol. 3:1115–1123. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Weber JC, Meyer N, Pencreach E, Schneider A, Guérin E, Neuville A, Stemmer C, Brigand C, Bachellier P, Rohr S, et al: Allelotyping analyses of synchronous primary and metastasis CIN colon cancers identified different subtypes. Int J Cancer. 120:524–532. 2007. View Article : Google Scholar | |
|
Cheng YW, Pincas H, Bacolod MD, Schemmann G, Giardina SF, Huang J, Barral S, Idrees K, Khan SA, Zeng Z, et al: CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin Cancer Res. 14:6005–6013. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Grady WM: Epigenetic events in the colorectum and in colon cancer. Biochem Soc Trans. 33:684–688. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler KW and Vogelstein B: Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61:818–822. 2001.PubMed/NCBI | |
|
Sieber OM, Heinimann K and Tomlinson IP: Genomic instability-the engine of tumorigenesis? Nat Rev Cancer. 3:701–708. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Thiagalingam S, Lengauer C, Leach FS, Schutte M, Hahn SA, Overhauser J, Willson JK, Markowitz S, Hamilton SR, Kern SE, et al: Evaluation of candidate tumor suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 13:343–346. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B and Kinzler KW: APC mutations occur early during colorectal tumorigenesis. Nature. 359:235–237. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Kinzler KW and Vogelstein B: Lessons from hereditary colorectal cancer. Cell. 87:159–170. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Su LK, Vogelstein B and Kinzler KW: Association of the APC tumor suppressor protein with catenins. Science. 262:1734–1737. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Bokoch GM and Der CJ: Emerging concepts in the Ras superfamily of GTP-binding proteins. FASEB J. 7:750–759. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Arber N, Shapira I, Ratan J, Stern B, Hibshoosh H, Moshkowitz M, Gammon M, Fabian I and Halpern Z: Activation of c-K-ras mutations in human gastrointestinal tumors. Gastroenterology. 118:1045–1050. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ and Vogelstein B: Prevalence of ras gene mutations in human colorectal cancers. Nature. 327:293–297. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen HT and Duong HQ: The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett. 16:9–18. 2018.PubMed/NCBI | |
|
Tanaka T, Watanabe T, Kazama Y, Tanaka J, Kanazawa T, Kazama S and Nagawa H: Chromosome 18q deletion and Smad4 protein inactivation correlate with liver metastasis: A study matched for T- and N-classification. Br J Cancer. 95:1562–1567. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zauber P, Sabbath-Solitare M, Marotta SP and Bishop T: Loss of heterozygosity for chromosome 18q and microsatellite instability are highly consistent across the region of the DCC and SMAD4 genes in colorectal carcinomas and adenomas. J Appl Res. 8:142008. | |
|
Kirley SD, D'Apuzzo M, Lauwers GY, Graeme-Cook F, Chung DC and Zukerberg LR: The Cables gene on chromosome 18Q regulates colon cancer progression in vivo. Cancer Biol Ther. 4:861–863. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Jung B, Staudacher JJ and Beauchamp D: Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology. 152:36–52. 2017. View Article : Google Scholar | |
|
Muzny DM, Bainbridge M, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Morgan I, et al: Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar | |
|
Mehlen P and Fearon ER: Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol. 22:3420–3428. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hedrick L, Cho KR and Vogelstein B: Cell adhesion molecules as tumor suppressors. Trends Cell Biol. 3:36–39. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-López E, Abad A, Font A, Monzó M, Ojanguren I, Pifarré A, Sánchez JJ, Martín C and Rosell R: Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer. Gastroenterology. 114:1180–1187. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Saha MN, Qiu L and Chang H: Targeting p53 by small molecules in hematological malignancies. J Hematol Oncol. 6:232013. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Zhang J, Tong JHM, Chan AWH, Yu J, Kang W and To KF: Targeting the oncogenic p53 mutants in colorectal cancer and other solid tumors. Int J Mol Sci. 20:59992019. View Article : Google Scholar : | |
|
López I, P Oliveira L, Tucci P, Alvarez-Valín F, A Coudry R and Marín M: Different mutation profiles associated to P53 accumulation in colorectal cancer. Gene. 499:81–87. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T and Gebbia N; TP53-CRC Collaborative Study Group: The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: Influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol. 23:7518–7528. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sigal A and Rotter V: Oncogenic mutations of the p53 tumor suppressor: The demons of the guardian of the genome. Cancer Res. 60:6788–6793. 2000. | |
|
Teodoro JG, Evans SK and Green MR: Inhibition of tumor angiogenesis by p53: A new role for the guardian of the genome. J Mol Med (Berl). 85:1175–1186. 2007. View Article : Google Scholar | |
|
Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Howe JR and Guillem JG: The genetics of colorectal cancer. Surg Clin North Am. 77:175–195. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Boland CR and Goel A: Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Boland CR: The molecular biology of gastrointestinal cancer: Implications for diagnosis and therapy. Gastrointest Endosc Clin N Am. 18:401–413. vii2008. View Article : Google Scholar : PubMed/NCBI | |
|
Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN and Srivastava S: A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58:5248–5257. 1998.PubMed/NCBI | |
|
Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM, Dostmann N, Benner A, Dondog B, Pawlita M, Dippold W, et al: T25 repeat in the 3' untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res. 65:8072–8078. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF and Boland CR: Review of the Lynch syndrome: History, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 76:1–18. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
van Rijnsoever M, Grieu F, Elsaleh H, Joseph D and Iacopetta B: Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut. 51:797–802. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB and Issa JPJ: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 96:8681–8686. 1999.PubMed/NCBI | |
|
Jass JR: Serrated adenoma of the colorectum and the DNA-methylator phenotype. Nat Clin Pract Oncol. 2:398–405. 2005.PubMed/NCBI | |
|
Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA, Wolff RK and Slattery ML: Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology. 129:837–845. 2005.PubMed/NCBI | |
|
Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, O'Connor T and Ward R: CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 122:1376–1387. 2002.PubMed/NCBI | |
|
Chan AOO, Issa JPJ, Morris JS, Hamilton SR and Rashid A: Concordant CpG island methylation in hyperplastic polyposis. Am J Pathol. 160:529–536. 2002.PubMed/NCBI | |
|
Wynter CVA, Walsh MD, Higuchi T, Leggett BA, Young J and Jass JR: Methylation patterns define two types of hyperplastic polyp associated with colorectal cancer. Gut. 53:573–580. 2004.PubMed/NCBI | |
|
Minoo P, Baker K, Goswami R, Chong G, Foulkes WD, Ruszkiewicz AR, Barker M, Buchanan D, Young J and Jass JR: Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut. 55:1467–1474. 2006.PubMed/NCBI | |
|
Shima K, Morikawa T, Yamauchi M, Kuchiba A, Imamura Y, Liao X, Meyerhardt JA, Fuchs CS and Ogino S: TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One. 6:e250622011.PubMed/NCBI | |
|
Edelstein DL, Axilbund JE, Hylind LM, Romans K, Griffin CA, Cruz-Correa M and Giardiello FM: Serrated polyposis: Rapid and relentless development of colorectal neoplasia. Gut. 62:404–408. 2013. | |
|
Bettington M, Walker N, Rosty C, Brown I, Clouston A, McKeone D, Pearson SA, Leggett B and Whitehall V: Clinicopathological and molecular features of sessile serrated adenomas with dysplasia or carcinoma. Gut. 66:97–106. 2017. | |
|
Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B and Berry DA: Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 24:1207–1222. 2013.PubMed/NCBI | |
|
Zisman AL, Nickolov A, Brand RE, Gorchow A and Roy HK: Associations between the age at diagnosis and location of colorectal cancer and the use of alcohol and tobacco: Implications for screening. Arch Intern Med. 166:629–634. 2006.PubMed/NCBI | |
|
Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels AB and Maisonneuve P: Smoking and colorectal cancer: A meta-analysis. JAMA. 300:2765–2778. 2008.PubMed/NCBI | |
|
Pande M, Lynch PM, Hopper JL, Jenkins MA, Gallinger S, Haile RW, LeMarchand L, Lindor NM, Campbell PT, Newcomb PA, et al: Smoking and colorectal cancer in Lynch syndrome: Results from the colon cancer family registry and the University of Texas M.D. Anderson cancer center. Clin Cancer Res. 16:1331–1339. 2010.PubMed/NCBI | |
|
Figueiredo JC, Crockett SD, Snover DC, Morris CB, McKeown-Eyssen G, Sandler RS, Ahnen DJ, Robertson DJ, Burke CA, Bresalier RS, et al: Smoking-associated risks of conventional adenomas and serrated polyps in the colorectum. Cancer Causes Control. 26:377–386. 2015. | |
|
Limsui D, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, Lynch CF, Anderson KE, French AJ, Haile RW, et al: Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst. 102:1012–1022. 2010.PubMed/NCBI | |
|
Hannan LM, Jacobs EJ and Thun MJ: The association between cigarette smoking and risk of colorectal cancer in a large prospective cohort from the United States. Cancer Epidemiol Biomarkers Prev. 18:3362–3367. 2009.PubMed/NCBI | |
|
Ordóñez-Mena JM, Walter V, Schöttker B, Jenab M, O'Doherty MG, Kee F, Bueno-de-Mesquita B, Peeters PHM, Stricker BH, Ruiter R, et al: Impact of prediagnostic smoking and smoking cessation on colorectal cancer prognosis: A meta-analysis of individual patient data from cohorts within the CHANCES consortium. Ann Oncol. 29:472–483. 2018. | |
|
Pöschl G and Seitz HK: Alcohol and cancer. Alcohol Alcohol. 39:155–165. 2004.PubMed/NCBI | |
|
Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, Negri E, Straif K, Romieu I, La Vecchia C, et al: Alcohol drinking and colorectal cancer risk: An overall and dose-response meta-analysis of published studies. Ann Oncol. 22:1958–1972. 2011.PubMed/NCBI | |
|
Choi YJ, Myung SK and Lee JH: Light alcohol drinking and risk of cancer: A meta-analysis of cohort studies. Cancer Res Treat. 50:474–487. 2018. View Article : Google Scholar : | |
|
Cho E, Smith-Warner SA, Ritz J, van den Brandt PA, Colditz GA, Folsom AR, Freudenheim JL, Giovannucci E, Goldbohm RA, Graham S, et al: Alcohol intake and colorectal cancer: A pooled analysis of 8 cohort studies. Ann Intern Med. 140:603–613. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Praud D, Rota M, Rehm J, Shield K, Zatoński W, Hashibe M, La Vecchia C and Boffetta P: Cancer incidence and mortality attributable to alcohol consumption. Int J Cancer. 138:1380–1387. 2016. View Article : Google Scholar | |
|
Nelson DE, Jarman DW, Rehm J, Greenfield TK, Rey G, Kerr WC, Miller P, Shield KD, Ye Y and Naimi TS: Alcohol-attributable cancer deaths and years of potential life lost in the United States. Am J Public Health. 103:641–648. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Butler LM, Sinha R, Millikan RC, Martin CF, Newman B, Gammon MD, Ammerman AS and Sandler RS: Heterocyclic amines, meat intake, and association with colon cancer in a population-based study. Am J Epidemiol. 157:434–445. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Kampman E, Slattery ML, Bigler J, Leppert M, Samowitz W, Caan BJ and Potter JD: Meat consumption, genetic susceptibility, and colon cancer risk: A United States multicenter case-control study. Cancer Epidemiol Biomarkers Prev. 8:15–24. 1999.PubMed/NCBI | |
|
Santarelli RL, Pierre F and Corpet DE: Processed meat and colorectal cancer: A review of epidemiologic and experimental evidence. Nutr Cancer. 60:131–144. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kabat GC, Miller AB, Jain M and Rohan TE: A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women. Br J Cancer. 97:118–122. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sinha R: An epidemiologic approach to studying heterocyclic amines. Mutat Res. 506-507:197–204. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Pietinen P, Malila N, Virtanen M, Hartman TJ, Tangrea JA, Albanes D and Virtamo J: Diet and risk of colorectal cancer in a cohort of Finnish men. Cancer Causes Control. 10:387–396. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Terry P, Giovannucci E, Michels KB, Bergkvist L, Hansen H, Holmberg L and Wolk A: Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J Natl Cancer Inst. 93:525–533. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Bardou M, Barkun AN and Martel M: Obesity and colorectal cancer. Gut. 62:933–947. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly DM and Jones TH: Testosterone and obesity. Obes Rev. 16:581–606. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuo K, Mizoue T, Tanaka K, Tsuji I, Sugawara Y, Sasazuki S, Nagata C, Tamakoshi A, Wakai K, Inoue M, et al: Association between body mass index and the colorectal cancer risk in Japan: Pooled analysis of population-based cohort studies in Japan. Ann Oncol. 23:479–490. 2012. View Article : Google Scholar | |
|
Goh LY and Goh KL: Obesity: An epidemiological perspective from Asia and its relationship to gastrointestinal and liver cancers. J Gastroenterol Hepatol. 28(Suppl 4): S54–S58. 2013. View Article : Google Scholar | |
|
World Cancer Research Fund: Continuous update project report. Food, nutrition, physical activity, and the prevention of colorectal cancer. In: WCRF/AICR; 2011 | |
|
Song M, Hu FB, Spiegelman D, Chan AT, Wu K, Ogino S, Fuchs CS, Willett WC and Giovannucci EL: Long-term status and change of body fat distribution, and risk of colorectal cancer: A prospective cohort study. Int J Epidemiol. 45:871–883. 2016. View Article : Google Scholar : | |
|
Moore LL, Bradlee ML, Singer MR, Splansky GL, Proctor MH, Ellison RC and Kreger BE: BMI and waist circumference as predictors of lifetime colon cancer risk in Framingham study adults. Int J Obes Relat Metab Disord. 28:559–567. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Samaras K, Botelho NK, Chisholm DJ and Lord RV: Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring). 18:884–889. 2010. View Article : Google Scholar | |
|
Lim U, Ernst T, Buchthal SD, Latch M, Albright CL, Wilkens LR, Kolonel LN, Murphy SP, Chang L, Novotny R and Le Marchand L: Asian women have greater abdominal and visceral adiposity than Caucasian women with similar body mass index. Nutr Diabetes. 1:e62011. View Article : Google Scholar : PubMed/NCBI | |
|
Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y and Qin H: Obesity and risk of colorectal cancer: A systematic review of prospective studies. PLoS One. 8:e539162013. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YJ, Myung SK, Cho B, Park BJ, Park JH, Ju W, Park MS and Choi JH: Adiposity and the risk of colorectal adenomatous polyps: A meta-analysis. Cancer Causes Control. 22:1021–1035. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Guraya SY: Association of type 2 diabetes mellitus and the risk of colorectal cancer: A meta-analysis and systematic review. World J Gastroenterol. 21:6026–6031. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kahn SE, Hull RL and Utzschneider KM: Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 444:840–846. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Moller DE and Flier JS: Insulin resistance-mechanisms, syndromes, and implications. N Engl J Med. 325:938–948. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Pollak M: Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 8:915–928. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Calle EE and Kaaks R: Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 4:579–591. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy N, Strickler HD, Stanczyk FZ, Xue X, Wassertheil-Smoller S, Rohan TE, Ho GY, Anderson GL, Potter JD and Gunter MJ: A prospective evaluation of endogenous sex hormone levels and colorectal cancer risk in postmenopausal women. J Natl Cancer Inst. 107. pp. djv2102015, View Article : Google Scholar | |
|
Hetemäki N, Savolainen-Peltonen H, Tikkanen MJ, Wang F, Paatela H, Hämäläinen E, Turpeinen U, Haanpää M, Vihma V and Mikkola TS: Estrogen metabolism in abdominal subcutaneous and visceral adipose tissue in postmenopausal women. J Clin Endocrinol Metab. 102:4588–4595. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Burkitt DP: Epidemiology of cancer of the colon and rectum. Cancer. 28:3–13. 1971. View Article : Google Scholar : PubMed/NCBI | |
|
Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E and Norat T: Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ. 343. pp. d66172011, View Article : Google Scholar | |
|
World Cancer Research Fund: Diet, nutrition, physical activity and cancer: A global perspective: A summary of the third expert report. World Cancer Research Fund International. 2018. | |
|
Rezende LFM, Sá TH, Markozannes G, Rey-López JP, Lee IM, Tsilidis KK, Ioannidis JPA and Eluf-Neto J: Physical activity and cancer: An umbrella review of the literature including 22 major anatomical sites and 770 000 cancer cases. Br J Sports Med. 52:826–833. 2018. View Article : Google Scholar | |
|
Morris JS, Bradbury KE, Cross AJ, Gunter MJ and Murphy N: Physical activity, sedentary behaviour and colorectal cancer risk in the UK Biobank. Br J Cancer. 118:920–929. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Keum N, Bao Y, Smith-Warner SA, Orav J, Wu K, Fuchs CS and Giovannucci EL: Association of physical activity by type and intensity with digestive system cancer risk. JAMA Oncol. 2:1146–1153. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ma P, Yao Y, Sun W, Dai S and Zhou C: Daily sedentary time and its association with risk for colorectal cancer in adults: A dose-response meta-analysis of prospective cohort studies. Medicine (Baltimore). 96:e70492017. View Article : Google Scholar | |
|
Lynch BM: Sedentary behavior and cancer: A systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol Biomarkers Prev. 19:2691–2709. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Howard RA, Freedman DM, Park Y, Hollenbeck A, Schatzkin A and Leitzmann MF: Physical activity, sedentary behavior, and the risk of colon and rectal cancer in the NIH-AARP diet and health study. Cancer Causes Control. 19:939–953. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong WJ, Ro EJ and Choi KY: Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway. NPJ Precis Oncol. 2:52018. View Article : Google Scholar | |
|
Novellasdemunt L, Antas P and Li VS: Targeting Wnt signalling in colorectal cancer. A review in the theme: Cell Signalling: Proteins, pathways and mechanisms. Am J Physiol Cell Physiol. 309:C511–C521. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Farooqi AA, de la Roche M, Djamgoz MBA and Siddik ZH: Overview of the oncogenic signalling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol. 58:65–79. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH and Ghaedi K: Signaling pathways involved in colorectal cancer progression. Cell Biosci. 9:972019. View Article : Google Scholar : PubMed/NCBI | |
|
Pandurangan AK, Divya T, Kumar K, Dineshbabu V, Velavan B and Sudhandiran G: Colorectal carcinogenesis: Insights into the cell death and signal transduction pathways: A review. World J Gastrointest Oncol. 10:244–259. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tiwari A, Saraf S, Verma A, Panda PK and Jain SK: Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J Gastroenterol. 24:4428–4435. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
|
Saharinen P, Eklund L, Pulkki K, Bono P and Alitalo K: VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 17:347–362. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Goel HL and Mercurio AM: VEGF targets the tumor cell. Nat Rev Cancer. 13:871–882. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrara N, Gerber HP and LeCouter J: The biology of VEGF and its receptors. Nat Med. 9:669–676. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YJ, Karl DL, Maduekwe UN, Rothrock C, Ryeom S, D'Amore PA and Yoon SS: Differential effects of VEGFR-1 and VEGFR-2 inhibition on tumor metastases based on host organ environment. The biology of VEGF and its receptors. Cancer Res. 70:8357–8367. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Vaahtomeri K, Karaman S, Mäkinen T and Alitalo K: Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev. 31:1615–1634. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Olsson AK, Dimberg A, Kreuger J and Claesson-Welsh L: VEGF receptor signalling-in control of vascular function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi H and Shibuya M: The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 109:227–241. 2005. View Article : Google Scholar | |
|
Koch S and Claesson-Welsh L: Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2:a0065022012. View Article : Google Scholar : PubMed/NCBI | |
|
Garnier L, Gkountidi AO and Hugues S: Tumor-associated lymphatic vessel features and immunomodulatory functions. Front Immunol. 10:7202019. View Article : Google Scholar : PubMed/NCBI | |
|
Secker GA and Harvey NL: VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels. Dev Dyn. 244:323–331. 2015. View Article : Google Scholar | |
|
Cébe-Suarez S, Zehnder-Fjällman A and Ballmer-Hofer K: The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci. 63:601–615. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez A, Harada K, Vasilakopoulou M, Shanbhag N and Ajani JA: Targeting angiogenesis in colorectal carcinoma. Drugs. 79:63–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Seeber A, Gunsilius E, Gastl G and Pircher A: Anti-angiogenics: Their value in colorectal cancer therapy. Oncol Res Treat. 41:188–193. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guba M, Seeliger H, Kleespies A, Jauch KW and Bruns C: Vascular endothelial growth factor in colorectal cancer. Int J Colorectal Dis. 19:510–517. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Jain RK: Antiangiogenesis strategies revisited: From starving tumors to alleviating hypoxia. Cancer Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Amelio I and Melino G: The p53 family and the hypoxia-inducible factors (HIFs): Determinants of cancer progression. Trends Biochem Sci. 40:425–434. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tarnawski AS, Ahluwalia A and Jones MK: Angiogenesis in gastric mucosa: An important component of gastric erosion and ulcer healing and its impairment in aging. J Gastroenterol Hepatol. 29(Suppl 4): S112–S23. 2014. View Article : Google Scholar | |
|
Wang Q, Yang S, Wang K and Sun SY: MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J Hematol Oncol. 12:632019. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng F and Guo D: MET in glioma: Signaling pathways and targeted therapies. J Exp Clin Cancer Res. 38:2702019. View Article : Google Scholar : PubMed/NCBI | |
|
Demkova L and Kucerova L: Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol Cancer. 17:262018. View Article : Google Scholar : PubMed/NCBI | |
|
Lam BQ, Dai L and Qin Z: The role of HGF/c-MET signaling pathway in lymphoma. J Hematol Oncol. 9:1352016. View Article : Google Scholar : PubMed/NCBI | |
|
Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG and Van Schaeybroeck S; MErCuRIC consortium: Targeting c-MET in gastrointestinal tumors: Rationale, opportunities and challenges. Nat Rev Clin Oncol. 14:562–576. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xing F, Liu Y, Sharma S, Wu K, Chan MD, Lo HW, Carpenter RL, Metheny-Barlow LJ, Zhou X, Qasem SA, et al: Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res. 76:4970–4980. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ozawa Y, Nakamura Y, Fujishima F, Felizola SJ, Takeda K, Okamoto H, Ito K, Ishida H, Konno T, Kamei T, et al: c-Met in esophageal squamous cell carcinoma: An independent prognostic factor and potential therapeutic target. BMC Cancer. 15:4512015. View Article : Google Scholar : PubMed/NCBI | |
|
Anestis A, Zoi I and Karamouzis MV: Current advances of targeting HGF/c-Met pathway in gastric cancer. Ann Transl Med. 6:2472018. View Article : Google Scholar : PubMed/NCBI | |
|
Safaie Qamsari E, Safaei Ghaderi S, Zarei B, Dorostkar R, Bagheri S, Jadidi-Niaragh F, Somi MH and Yousefi M: The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumor Biol. 39:10104283176991182017. View Article : Google Scholar | |
|
Otte JM, Schmitz F, Kiehne K, Stechele HU, Banasiewicz T, Krokowicz P, Nakamura T, Fölsch UR and Herzig K: Functional expression of HGF and its receptor in human colorectal cancer. Digestion. 61:237–246. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto K, Umitsu M, De Silva DM, Roy A and Bottaro DP: Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci. 108:296–307. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bahrami A, Shahidsales S, Khazaei M, Ghayour-Mobarhan M, Maftouh M, Hassanian SM and Avan A: C-Met as a potential target for the treatment of gastrointestinal cancer: Current status and future perspectives. J Cell Physiol. 232:2657–2673. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mo HN and Liu P: Targeting MET in cancer therapy. Chronic Dis Transl Med. 3:148–153. 2017.PubMed/NCBI | |
|
Bouattour M, Raymond E, Qin S, Cheng AL, Stammberger U, Locatelli G and Faivre S: Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology. 67:1132–1149. 2018. View Article : Google Scholar : | |
|
Drilon A, Cappuzzo F, Ou SI and Camidge DR: Targeting MET in lung cancer: Will expectations finally be MET? J Thorac Oncol. 12:15–26. 2017. View Article : Google Scholar : | |
|
Blumenschein GR Jr, Mills GB and Gonzalez-Angulo AM: Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol. 30:3287–3296. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Cabanillas ME, de Souza JA, Geyer S, Wirth LJ, Menefee ME, Liu SV, Shah K, Wright J and Shah MH: Cabozantinib as salvage therapy for patients with tyrosine kinase inhibitor-refractory differentiated thyroid cancer: Results of a multicenter phase II international thyroid oncology group trial. J Clin Oncol. 35:3315–3321. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Genome Atlas Research Network; Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, Davis C, Wheeler DA, Murray BA, Schmidt L, et al: Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 374:135–145. 2016. View Article : Google Scholar | |
|
Catenacci DVT, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ilson DH, Tjulandin S, Gotovkin E, Karaszewska B, Bondarenko I, et al: Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 18:1467–1482. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sartore-Bianchi A, Loupakis F, Argilés G and Prager GW: Challenging chemoresistant metastatic colorectal cancer: Therapeutic strategies from the clinic and from the laboratory. Ann Oncol. 27:1456–1466. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gao H, Guan M, Sun Z and Bai C: High c-Met expression is a negative prognostic marker for colorectal cancer: A meta-analysis. Tumor Biol. 36:515–520. 2015. View Article : Google Scholar | |
|
Luo HY and Xu RH: Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer. World J Gastroenterol. 20:3858–3874. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Baldus SE, Kort EJ, Schirmacher P, Dienes HP and Resau JH: Quantification of MET and hepatocyte growth factor/scatter factor expression in colorectal adenomas, carcinomas and non-neoplastic epithelia by quantitative laser scanning microscopy. Int J Oncol. 31:199–204. 2007.PubMed/NCBI | |
|
Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJ, Delwel R, Ngo V, et al: Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med. 18:1118–1122. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, Birchmeier W and Schlag PM: MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 15:59–67. 2009. View Article : Google Scholar | |
|
Parseghian CM, Napolitano S, Loree JM and Kopetz S: Mechanisms of innate and acquired resistance to anti-EGFR therapy: A review of current knowledge with a focus on rechallenge therapies. Clin Cancer Res. 25:6899–6908. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Boccaccio C, Luraghi P and Comoglio PM: MET-mediated resistance to EGFR inhibitors: An old liaison rooted in colorectal cancer stem cells. Cancer Res. 74:3647–3651. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Van Emburgh BO, Sartore-Bianchi A, Di Nicolantonio F, Siena S and Bardelli A: Acquired resistance to EGFR-targeted therapies in colorectal cancer. Mol Oncol. 8:1084–1094. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Viticchiè G and Muller PAJ: c-Met and other cell surface molecules: Interaction, activation and functional consequences. Biomedicines. 3:46–70. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sharpe AH and Freeman GJ: The B7-CD28 superfamily. Nat Rev Immunol. 2:116–126. 2002.PubMed/NCBI | |
|
Jelinek T, Mihalyova J, Kascak M, Duras J and Hajek R: PD-1/PD-L1 inhibitors in haematological malignancies: Update 2017. Immunology. 152:357–371. 2017.PubMed/NCBI | |
|
Chen L and Han X: Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J Clin Invest. 125:3384–3391. 2015.PubMed/NCBI | |
|
Markman JL and Shiao SL: Impact of the immune system and immunotherapy in colorectal cancer. J Gastrointest Oncol. 6:208–223. 2015.PubMed/NCBI | |
|
Xie YH, Chen YX and Fang JY: Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 5:222020.PubMed/NCBI | |
|
Pauken KE and Wherry EJ: Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36:265–276. 2015.PubMed/NCBI | |
|
Wang HB, Yao H, Li CS, Liang LX, Zhang Y, Chen YX, Fang JY and Xu J: Rise of PD-L1 expression during metastasis of colorectal cancer: Implications for immunotherapy. J Dig Dis. 18:574–581. 2017.PubMed/NCBI | |
|
Fujimoto H, Saito Y, Ohuchida K, Kawakami E, Fujiki S, Watanabe T, Ono R, Kaneko A, Takagi S, Najima Y, et al: Deregulated mucosal immune surveillance through gut-associated regulatory T cells and PD-1+ T cells in human colorectal cancer. J Immunol. 200:3291–3303. 2018.PubMed/NCBI | |
|
Vinson KE, George DC, Fender AW, Bertrand FE and Sigounas G: The Notch pathway in colorectal cancer. Int J Cancer. 138:1835–1842. 2016. | |
|
Zhi X, Tao J, Zhang L, Tao R, Ma L and Qin J: Silencing speckle-type POZ protein by promoter hypermethylation decreases cell apoptosis through upregulating hedgehog signaling pathway in colorectal cancer. Cell Death Dis. 7:e25692016.PubMed/NCBI | |
|
Wu C, Zhu X, Liu W, Ruan T and Tao K: Hedgehog signalling pathway in colorectal cancer: Function, mechanism, and therapy. Onco Targets Ther. 10:3249–3259. 2017. | |
|
Han Y: Analysis of the role of the Hippo pathway in cancer. J Transl Med. 17:1162019.PubMed/NCBI | |
|
Zhang YE: Non-Smad pathways in TGF-β signaling. Cell Res. 19:128–139. 2009. | |
|
Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC and Baker MS: Transforming growth factor-β, MAPK and Wnt signaling interaction in colorectal cancer. EuPA Open Proteomics. 8:104–115. 2015. | |
|
Luo K: Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 9:a0221372017. | |
|
Lee Y, Kim NH, Cho ES, Yang JH, Cha YH, Kang HE, Yun JS, Cho SB, Lee SH, Paclikova P, et al: Dishevelled has a YAP nuclear export function in a tumor suppressor context-dependent manner. Nat Commun. 9:23012018.PubMed/NCBI | |
|
Jing L, Li J, Zhang C, Shang Y and Lin J: YAP-mediated crosstalk between the Wnt and Hippo signaling pathways (Review). Mol Med Rep. 22:4101–4106. 2020. | |
|
Pietrobono S, Gagliardi S and Stecca B: Non-canonical hedgehog signalling pathway in cancer: Activation of GLI transcription factors beyond smoothened. Front Genet. 10:5562019. | |
|
Regan JL, Schumacher D, Staudte S, Steffen A, Haybaeck J, Keilholz U, Schweiger C, Golob-Schwarzl N, Mumberg D, Henderson D, et al: Non-canonical hedgehog signaling is a positive regulator of the WNT pathway and is required for the survival of colon cancer stem cells. Cell Rep. 21:2813–2828. 2017.PubMed/NCBI | |
|
Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E and Scheiner J: Fluorinated pyrimidines, a new class of tumor-inhibitory compounds. Nature. 179:663–666. 1957.PubMed/NCBI | |
|
Piawah S and Venook AP: Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 125:4139–4147. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Piedbois P, Buyse M, Rustum Y, Machover D, Erlichman C, Carlson RW, Valone F, Labianca R, Doroshow JH and Petrelli N: Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: Evidence in terms of response rate by the advanced colorectal cancer meta-analysis project. J Clin Oncol. 10:896–903. 1992. View Article : Google Scholar | |
|
de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, et al: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 18:2938–2947. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, Jandik P, Iveson T, Carmichael J, Alakl M, et al: Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: A multicentre randomised trial. Lancet. 355:1041–1047. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D, Quinaux E, Couteau C, Buyse M, Ganem G, et al: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study. J Clin Oncol. 22:229–237. 2004. View Article : Google Scholar | |
|
Colucci G, Gebbia V, Paoletti G, Giuliani F, Caruso M, Gebbia N, Cartenì G, Agostara B, Pezzella G, Manzione L, et al: Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: A multicenter study of the gruppo oncologico Dell'Italia meridionale. J Clin Oncol. 23:4866–4875. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Cassidy J, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, et al: Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol. 26:2006–2012. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Skof E, Rebersek M, Hlebanja Z and Ocvirk J: Capecitabine plus irinotecan (XELIRI regimen) compared to 5-FU/LV plus Irinotecan (FOLFIRI regimen) as neoadjuvant treatment for patients with unresectable liver-only metastases of metastatic colorectal cancer: A randomised prospective phase II trial. BMC Cancer. 9:1202009. View Article : Google Scholar : PubMed/NCBI | |
|
Obrand DI and Gordon PH: Incidence and patterns of recurrence following curative resection for colorectal carcinoma. Dis Colon Rectum. 40:15–24. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Brodsky FM: Monoclonal antibodies as magic bullets. Pharm Res. 5:1–9. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Lee YT, Tan YJ and Oon CE: Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 834:188–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Martinelli E, Ciardiello D, Martini G, Troiani T, Cardone C, Vitiello PP, Normanno N, Rachiglio AM, Maiello E, Latiano T, et al: Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: Challenges and future perspectives. Ann Oncol. 31:30–40. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Oh DY and Bang YJ: HER2-targeted therapies-a role beyond breast cancer. Nat Rev Clin Oncol. 17:33–48. 2020. View Article : Google Scholar | |
|
Ferguson FM and Gray NS: Kinase inhibitors: The road ahead. Nat Rev Drug Discov. 17:353–377. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tariman JD: Changes in cancer treatment: Mabs, Mibs, Mids, Nabs, and Nibs. Nurs Clin North Am. 52:65–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
André T, Blons H, Mabro M, Chibaudel B, Bachet JB, Tournigand C, Bennamoun M, Artru P, Nguyen S, Ebenezer C, et al: Panitumumab combined with irinotecan for patients with KRAS wild-type metastatic colorectal cancer refractory to standard chemotherapy: A GERCOR efficacy, tolerance, and translational molecular study. Ann Oncol. 24:412–419. 2013. View Article : Google Scholar | |
|
Papadatos-Pastos D, Rabbie R, Ross P and Sarker D: The role of the PI3K pathway in colorectal cancer. Crit Rev Oncol Hematol. 94:18–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J and Mishra L: Targeting TGF-β signaling in cancer. Expert Opin Ther Targets. 17:743–760. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jin D, Fang Y, Li Z, Chen Z and Xiang J: Epithelial-mesenchymal transition-associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Oncol Rep. 33:515–525. 2015. View Article : Google Scholar | |
|
Qiao L and Wong BC: Role of Notch signaling in colorectal cancer. Epithelial-mesenchymal transition-associated microRNAs in colorectal cancer and drug-targeted therapies (Review). Carcinogenesis. 30:1979–1986. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M and Katoh M: Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med. 45:279–297. 2020.PubMed/NCBI | |
|
Fragoulis GE, Mclnnes IB and Siebert S: JAK-inhibitors New players in the field of immune-mediated diseases beyond rheumatoid arthritis. Rheumatology (Oxford). 58(Suppl 1): pp. i42–i54. 2019, View Article : Google Scholar | |
|
Wang SW, Hu J, Guo QH, Zhao Y, Cheng JJ, Zhang DS, Fei Q, Li J and Sun YM: AZD1480, a JAK inhibitor, inhibits cell growth and survival of colorectal cancer via modulating the JAK2/STAT3 signaling pathway. Oncol Rep. 32:1991–1998. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gulino A, Ferretti E and De Smaele E: Hedgehog signalling in colon cancer and stem cells. EMBO Mol Med. 1:300–302. 2009. View Article : Google Scholar | |
|
Wu JY, Xu XF, Xu L, Niu PQ, Wang F, Hu GY, Wang XP and Guo CY: Cyclopamine blocked the growth of colorectal cancer SW116 cells by modulating some target genes of Gli1 in vitro. Hepatogastroenterology. 58:1511–1518. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P and Ruiz i Altaba A: Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med. 1:338–351. 2009. View Article : Google Scholar | |
|
Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Marqués L, Molina AJ and Martín V: The NRF2 transcription factor plays a dual role in colorectal cancer: A systematic review. PLoS One. 12:e01775492017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu WK, Wang XJ, Cheng AS, Luo MX, Ng SS, To KF, Chan FK, Cho CH, Sung JJ and Yu J: Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit Rev Oncol Hematol. 86:251–277. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, et al: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 350:2335–2342. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Passardi A, Nanni O, Tassinari D, Turci D, Cavanna L, Fontana A, Ruscelli S, Mucciarini C, Lorusso V, Ragazzini A, et al: Effectiveness of bevacizumab added to standard chemotherapy in metastatic colorectal cancer: Final results for first-line treatment from the ITACa randomized clinical trial. Ann Oncol. 26:1201–1207. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tang PA, Cohen SJ, Kollmannsberger C, Bjarnason G, Virik K, MacKenzie MJ, Lourenco L, Wang L, Chen A and Moore MJ: Phase II clinical and pharmacokinetic study of aflibercept in patients with previously treated metastatic colorectal cancer. Clin Cancer Res. 18:6023–6031. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Van Cutsem E, Sobrero AF, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, et al: Phase III CORRECT trial of regorafenib in metastatic colorectal cancer (mCRC). J Clin Oncol. 30(15 Suppl): S35022012. View Article : Google Scholar | |
|
Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, Ciuleanu TE, Portnoy DC, Van Cutsem E, Grothey A, et al: Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 16:499–508. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bendell JC, Ervin TJ, Gallinson D, Singh J, Wallace JA, Saleh MN, Vallone M, Phan SC and Hack SP: Treatment rationale and study design for a randomized, double-blind, placebo-controlled phase II study evaluating onartuzumab (MetMAb) in combination with bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal cancer. Clin Colorectal Cancer. 12:218–222. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Shao Z, Pan H, Tu S, Zhang J, Yan S and Shao A: HGF/c-Met axis: The advanced development in digestive system cancer. Front Cell Dev Biol. 8:8012020. View Article : Google Scholar : PubMed/NCBI | |
|
Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH and Diaz LA Jr: Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 16:361–375. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Passardi A, Canale M, Valgiusti M and Ulivi P: Immune checkpoints as a target for colorectal cancer treatment. Int J Mol Sci. 18:13242017. View Article : Google Scholar : | |
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, Bahl S, Cao Y, Amin-Mansour A, Yamauchi M, et al: Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 15:857–865. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS, et al: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : | |
|
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Marcus L, Lemery SJ, Keegan P and Pazdur R: FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Can Res. 25:3753–3758. 2019. View Article : Google Scholar | |
|
Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt CJA, Smith DM, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab vs chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 study. J Clin Oncol. 38(18 Suppl): LBA42020. View Article : Google Scholar | |
|
U.S. Food and Drug (FDA): FDA grants nivolumab accelerated approval for MSI-H or dMMR colorectal cancer FDA. Silver Spring, MD: 2017, https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accel-erated-approval-msi-h-or-dmmr-colorectal-cancer. Accessed January 8, 2017. | |
|
Sun J, Zheng Y, Mamun M, Li X, Chen X and Gao Y: Research progress of PD-1/PD-L1 immunotherapy in gastrointestinal tumors. Biomed Pharmacother. 129:1105042020. View Article : Google Scholar : PubMed/NCBI |