1
|
Harada S and Rodan GA: Control of
osteoblast function and regulation of bone mass. Nature.
423:349–355. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Teitelbaum SL and Ross FP: Genetic
regulation of osteoclast development and function. Nat Rev Genet.
4:638–649. 2003. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Loi F, Córdova LA, Pajarinen J, Lin TH,
Yao Z and Goodman SB: Inflammation, fracture and bone repair. Bone.
86:119–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sieper J and Poddubnyy D: Axial
spondyloarthritis. Lancet. 390:73–84. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Glyn-Jones S, Palmer AJ, Agricola R, Price
AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet.
386:376–387. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yang TL, Shen H, Liu A, Dong SS, Zhang L,
Deng FY, Zhao Q and Deng HW: A road map for understanding molecular
and genetic determinants of osteoporosis. Nat Rev Endocrinol.
16:91–103. 2020. View Article : Google Scholar :
|
7
|
Day TF, Guo X, Garrett-Beal L and Yang Y:
Wnt/beta-catenin signaling in mesenchymal progenitors controls
osteoblast and chondrocyte differentiation during vertebrate
skeletogenesis. Dev Cell. 8:739–750. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Franceschi RT, Ge C, Xiao G, Roca H and
Jiang D: Transcriptional regulation of osteoblasts. Ann NY Acad
Sci. 1116:196–207. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Daniel JM, Spring CM, Crawford HB,
Reynolds AB and Baig A: The p120(ctn)-binding partner Kaiso is a
bi-modal DNA-binding protein that recognizes both a
sequence-specific consensus and methylated CpG dinucleotides.
Nucleic Acids Res. 30:2911–2919. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Buck-Koehntop BA, Stanfield RL, Ekiert DC,
Martinez-Yamout MA, Dyson HJ, Wilson IA and Wright PE: Molecular
basis for recognition of methylated and specific DNA sequences by
the zinc finger protein Kaiso. Proc Natl Acad Sci USA.
109:15229–15234. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Choi SH, Koh DI, Cho SY, Kim MK, Kim KS
and Hur MW: Temporal and differential regulation of
KAISO-controlled transcription by phosphorylated and acetylated p53
high-lights a crucial regulatory role of apoptosis. J Biol Chem.
294:12957–12974. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pozner A, Terooatea T and Buck-Koehntop B:
Cell-specific Kaiso (ZBTB33) regulation of cell cycle through
cyclin D1 and cyclin E1. J Biol Chem. 291:24538–24550. 2016.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Feng J: Upregulation of MicroRNA-4262
targets Kaiso (ZBTB33) to inhibit the proliferation and EMT of
cervical cancer cells. Oncol Res. 26:1215–1225. 2018. View Article : Google Scholar
|
14
|
Pierre CC, Hercules SM, Yates C and Daniel
JM: Dancing from bottoms up-roles of the POZ-ZF transcription
factor Kaiso in cancer. Biochim Biophys Acta Rev Cancer.
1871:64–74. 2019. View Article : Google Scholar
|
15
|
Short SP, Barrett CW, Stengel KR, Revetta
FL, Choksi YA, Coburn LA, Lintel MK, McDonough EM, Washington MK,
Wilson KT, et al: Kaiso is required for MTG16-dependent effects on
colitis-associated carcinoma. Oncogene. 38:5091–5106. 2019.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim SW, Park JI, Spring CM, Sater AK, Ji
H, Otchere AA, Daniel JM and McCrea PD: Non-canonical Wnt signals
are modulated by the Kaiso transcriptional repressor and
p120-catenin. Nat Cell Biol. 6:1212–1220. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu Y, Dong QZ, Wang S, Xu HT, Miao Y,
Wang L and Wang EH: Kaiso interacts with p120-catenin to regulate
β-catenin expression at the transcriptional level. PLoS One.
9:e875372014. View Article : Google Scholar
|
18
|
Baron R and Kneissel M: WNT signaling in
bone homeostasis and disease: From human mutations to treatments.
Nat Med. 19:179–192. 2013. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Metwally M, Bayoumi A, Romero-Gomez M,
Thabet K, John M, Adams LA, Huo X, Aller R, García-Monzón C, Teresa
Arias-Loste M, et al: A polymorphism in the Irisin-encoding gene
(FNDC5) associates with hepatic steatosis by differential miRNA
binding to the 3′UTR. J Hepatol. 70:494–500. 2019. View Article : Google Scholar
|
21
|
Guan J, Zhang J, Zhu Z, Niu X, Guo S, Wang
Y and Zhang C: Bone morphogenetic protein 2 gene transduction
enhances the osteogenic potential of human urine-derived stem
cells. Stem Cell Res Ther. 6:52015. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Collings AJ and Richards CT: Digital
dissection of the pelvis and hindlimb of the red-legged running
frog, phlyctimantis maculatus, using diffusible iodine contrast
enhanced computed microtomography (DICE µ CT). PeerJ. 7:e70032019.
View Article : Google Scholar
|
23
|
Delgado-Bellido D, Fernández-Cortés M,
Rodríguez MI, Serrano-Sáenz S, Carracedo A, Garcia-Diaz A and
Oliver FJ: VE-cadherin promotes vasculogenic mimicry by modulating
kaiso-dependent gene expression. Cell Death Differ. 26:348–361.
2019. View Article : Google Scholar :
|
24
|
Marofi F, Vahedi G, Solali S, Alivand M,
Salarinasab S, Zadi Heydarabad M and Farshdousti Hagh M: Gene
expression of TWIST1 and ZBTB16 is regulated by methylation
modifications during the osteoblastic differentiation of
mesenchymal stem cells. J Cell Physiol. 234:6230–6243. 2019.
View Article : Google Scholar
|
25
|
Onizuka S, Iwata T, Park SJ, Nakai K,
Yamato M, Okano T and Izumi Y: ZBTB16 as a downstream target gene
of osterix regulates osteoblastogenesis of human multipotent
mesenchymal stromal cells. J Cell Biochem. 117:2423–2434. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang RK, Li GW, Jiang D, Zhang DW, Yu B
and Yang LK: Transcription factors analysis of subchondral bone in
early experimental osteoarthritis based on gene expression
profiles. Zhongguo Gu Shang. 31:165–169. 2018.In Chinese.
PubMed/NCBI
|
27
|
Shen WC, Lai YC, Li LH, Liao K, Lai HC,
Kao SY, Wang J, Chuong CM and Hung SC: Methylation and PTEN
activation in dental pulp mesenchymal stem cells promotes
osteogenesis and reduces oncogenesis. Nat Commun. 10:22262019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ye C, Zhang W, Hang K, Chen M, Hou W, Chen
J, Chen X, Chen E, Tang L, Lu J, et al: Extracellular IL-37
promotes osteogenic differentiation of human bone marrow
mesenchymal stem cells via activation of the PI3K/AKT signaling
pathway. Cell Death Dis. 10:7532019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Robinson SC, Klobucar K, Pierre CC, Ansari
A, Zhenilo S, Prokhortchouk E and Daniel JM: Kaiso differentially
regulates components of the Notch signaling pathway in intestinal
cells. Cell Commun Signal. 15:242017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bassey-Archibong BI, Kwiecien JM,
Milosavljevic SB, Hallett RM, Rayner LG, Erb MJ, Crawford-Brown CJ,
Stephenson KB, Bédard PA, Hassell JA and Daniel JM: Kaiso depletion
attenuates transforming growth factor-β signaling and metastatic
activity of triple-negative breast cancer cells. Oncogenesis.
5:e2082016. View Article : Google Scholar
|
31
|
Hynes RO: Integrins: Bidirectional,
allosteric signaling machines. Cell. 110:673–687. 2002. View Article : Google Scholar : PubMed/NCBI
|
32
|
Docheva D, Popov C, Alberton P and Aszodi
A: Integrin signaling in skeletal development and function. Birth
Defects Res C Embryo Today. 102:13–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hamidouche Z, Fromigué O, Ringe J, Häupl
T, Vaudin P, Pagès JC, Srouji S, Livne E and Marie PJ: Priming
integrin alpha5 promotes human mesenchymal stromal cell osteoblast
differentiation and osteogenesis. Proc Natl Acad Sci USA.
106:18587–18591. 2009. View Article : Google Scholar
|
34
|
Shen B, Vardy K, Hughes P, Tasdogan A,
Zhao Z, Yue R, Crane GM and Morrison SJ: Integrin alpha11 is an
osteolectin receptor and is required for the maintenance of adult
skeletal bone mass. Elife. 8:e422742019. View Article : Google Scholar :
|
35
|
Raines AL, Berger MB, Schwartz Z and Boyan
BD: Osteoblasts grown on microroughened titanium surfaces regulate
angiogenic growth factor production through specific integrin
receptors. Acta Biomater. 97:578–586. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Varas L, Ohlsson LB, Honeth G, Olsson A,
Bengtsson T, Wiberg C, Bockermann R, Järnum S, Richter J,
Pennington D, et al: Alpha10 integrin expression is up-regulated on
fibroblast growth factor-2-treated mesenchymal stem cells with
improved chondrogenic differentiation potential. Stem Cells Dev.
16:965–978. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Bengtsson T, Aszodi A, Nicolae C, Hunziker
EB, Lundgren-Akerlund E and Fässler R: Loss of alpha10beta1
integrin expression leads to moderate dysfunction of growth plate
chondrocytes. J Cell Sci. 118:929–936. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Okada T, Lee AY, Qin LX, Agaram N, Mimae
T, Shen Y, O'Connor R, López-Lago MA, Craig A, Miller ML, et al:
Integrin-α10 dependency identifies RAC and RICTOR as therapeutic
targets in high-grade myxofibrosarcoma. Cancer Discov. 6:1148–1165.
2016. View Article : Google Scholar : PubMed/NCBI
|