
Role and clinical significance of TGF‑β1 and TGF‑βR1 in malignant tumors (Review)
- Authors:
- Junmin Wang
- Hongjiao Xiang
- Yifei Lu
- Tao Wu
-
Affiliations: Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China - Published online on: February 15, 2021 https://doi.org/10.3892/ijmm.2021.4888
- Article Number: 55
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Massagué J: TGF-β signaling in development and disease. FEBS Lett. 586:18332012. View Article : Google Scholar | |
Hata A and Chen YG: TGF-beta signaling from receptors to smads. Cold Spring Harb Perspect Biol. 8:a0220612016. View Article : Google Scholar | |
Zhang Y, Alexander PB and Wang XF: TGF-beta family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol. 9:a0221452017. View Article : Google Scholar | |
Wu MY and Hill CS: Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 16:329–343. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Qin Y, Chapuy B and Lu C: LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS One. 14:e02134822019. View Article : Google Scholar | |
Maishi N and Hida K: Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108:1921–1926. 2017. View Article : Google Scholar : PubMed/NCBI | |
Selleri S, Rumio C, Sabatino M, Marincola FM and Wang E: Tumor microenvironment and the immune response. Surg Oncol Clin N Am. 16:737–753. vii–viii. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto T, Akisue T, Marui T, Fujita I, Matsumoto K, Hitora T, Kawamoto T, Nagira K, Nakatani T and Kurosaka M: Expression of transforming growth factor beta isoforms and their receptors in malignant fibrous histiocytoma of soft tissues. Clin Cancer Res. 10:5804–5807. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, Thomas M, Piiper A, Bertran E, Fabregat I, et al: TGF-β1 and TGF-β2 abundance in liver diseases of mice and men. Oncotarget. 7:19499–19518. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ebert MP, Yu J, Miehlke S, Fei G, Lendeckel U, Ridwelski K, Stolte M, Bayerdörffer E and Malfertheiner P: Expression of transforming growth factor beta-1 in gastric cancer and in the gastric mucosa of first-degree relatives of patients with gastric cancer. Br J Cancer. 82:1795–1800. 2000. View Article : Google Scholar : PubMed/NCBI | |
Andersson J, Tran DQ, Pesu M, Davidson TS, Ramsey H, O'Shea JJ and Shevach EM: CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med. 205:1975–1981. 2008. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Yuan XQ, Zhang CY, Ye F, Zhou HF, Li WL, Liu ZY, Zhang YQ, Pan X and Li GC: High TGF-beta1 expression predicts poor disease prognosis in hepatocellular carcinoma patients. Oncotarget. 8:34387–34397. 2017. View Article : Google Scholar : PubMed/NCBI | |
Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 5:78–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Papageorgis P: TGFbeta signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015:5871932015. View Article : Google Scholar | |
Vander Ark A, Cao J and Li X: TGF-β receptors: In and beyond TGF-β signaling. Cell Signal. 52:112–120. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baxter SW, Choong DY, Eccles DM and Campbell IG: Transforming growth factor beta receptor 1 polyalanine polymorphism and exon 5 mutation analysis in breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev. 11:211–214. 2002.PubMed/NCBI | |
Liu J, Johnson K, Li J, Piamonte V, Steffy BM, Hsieh MH, Ng N, Zhang J, Walker JR, Ding S, et al: Regenerative phenotype in mice with a point mutation in transforming growth factor beta type I receptor (TGFBR1). Proc Natl Acad Sci USA. 108:14560–14565. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Yu Q, Chu Y, Zhu X, Lu W, Liu Q and Wang Q: MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol. 54:128–138. 2019. | |
Grandclement C, Pallandre JR, Valmary Degano S, Viel E, Bouard A, Balland J, Rémy-Martin JP, Simon B, Rouleau A, Boireau W, et al: Neuropilin-2 expression promotes TGF-β1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One. 6:e204442011. View Article : Google Scholar | |
He B, Xu T, Pan B, Pan Y, Wang X, Dong J, Sun H, Xu X, Liu X and Wang S: Polymorphisms of TGFBR1, TLR4 are associated with prognosis of gastric cancer in a Chinese population. Cancer Cell Int. 18:1912018. View Article : Google Scholar : | |
Kim W, Kim E, Lee S, Kim D, Chun J, Park KH, Youn H and Youn B: TFAP2C-mediated upregulation of TGFBR1 promotes lung tumorigenesis and epithelial-mesenchymal transition. Exp Mol Med. 48:e2732016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Song X, Chen X, Wang Q, Zheng X, Wu C and Jiang J: Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression. Int J Biol Sci. 15:1091–1103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Knight PG and Glister C: TGF-beta superfamily members and ovarian follicle development. Reproduction. 132:191–206. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hinck AP, Mueller TD and Springer TA: Structural biology and evolution of the TGF-β family. Cold Spring Harb Perspect Biol. 8. pp. a0221032016, View Article : Google Scholar | |
Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K, Sun L, Fang X, López-Casillas F, Wrana JL and Hinck AP: TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs. EMBO J. 30:1263–1276. 2011. View Article : Google Scholar : PubMed/NCBI | |
Feng XH and Derynck R: A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBO J. 16:3912–3923. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lo RS, Chen YG, Shi Y, Pavletich NP and Massagué J: The L3 loop: A structural motif determining specific interactions between SMAD proteins and TGF-beta receptors. EMBO J. 17:996–1005. 1998. View Article : Google Scholar : PubMed/NCBI | |
Itman C, Mendis S, Barakat B and Loveland KL: All in the family: TGF-beta family action in testis development. Reproduction. 132:233–246. 2006. View Article : Google Scholar : PubMed/NCBI | |
Attisano L and Wrana JL: Signal transduction by the TGF-beta superfamily. Science. 296:1646–1647. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huynh LK, Hipolito CJ and Ten Dijke P: A perspective on the development of TGF-beta inhibitors for cancer treatment. Biomolecules. 9:7432019. View Article : Google Scholar | |
Wu Y, Tran T, Dwabe S, Sarkissyan M, Kim J, Nava M, Clayton S, Pietras R, Farias-Eisner R and Vadgama JV: A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat. 163:449–460. 2017. View Article : Google Scholar : PubMed/NCBI | |
Katagiri T and Watabe T: Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 8:a0218992016. View Article : Google Scholar : PubMed/NCBI | |
Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J and Mishra L: Targeting TGF-β signaling in cancer. Expert Opin Ther Targets. 17:743–760. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krenning G, Barauna VG, Krieger JE, Harmsen MC and Moonen JR: Endothelial plasticity: Shifting phenotypes through force feedback. Stem Cells Int. 2016:97629592016. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Li H, Yi D, Lai C, Wang H, Zou W and Cao B: Knockdown of vascular cell adhesion molecule 1 impedes transforming growth factor beta 1-mediated proliferation, migration, and invasion of endometriotic cyst stromal cells. Reprod Biol Endocrinol. 17:692019. View Article : Google Scholar : PubMed/NCBI | |
Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K and Rifkin DB: Latent TGF-β-binding proteins. Matrix Biol. 47:44–53. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich M, Horbelt D, Marom B, Knaus P and Henis YI: Homomeric and heteromeric complexes among TGF-beta and BMP receptors and their roles in signaling. Cell Signal. 23:1424–1432. 2011. View Article : Google Scholar : PubMed/NCBI | |
ten Dijke P, Miyazono K and Heldin CH: Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol. 8:139–145. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Han S, Liu C, Zhou R, Sun W, Zhang Z and Qu J: Microrna-199a-5p functions as a tumor suppressor via suppressing connective tissue growth factor (CTGF) in follicular thyroid carcinoma. Med Sci Monit. 22:1210–1217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Das R, Xu S, Nguyen TT, Quan X, Choi SK, Kim SJ, Lee EY, Cha SK and Park KS: Transforming growth factor β1-induced apoptosis in podocytes via the extracellular signal-regulated kinase-mammalian target of rapamycin complex 1-NADPH Oxidase 4 axis. J Biol Chem. 290:30830–30842. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mihaly SR, Ninomiya-Tsuji J and Morioka S: TAK1 control of cell death. Cell Death Differ. 21:1667–1676. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tvrdík D, Dundr P, Povýsil C, Pytlík R and Planková M: Up-regulation of p21WAF1 expression is mediated by Sp1/Sp3 transcription factors in TGFbeta1-arrested malignant B cells. Med Sci Monit. 12:BR227–BR234. 2006.PubMed/NCBI | |
Stanilova S, Stanilov N, Julianov A, Manolova I and Miteva L: Transforming growth factor-β1 gene promoter -509C/T polymorphism in association with expression affects colorectal cancer development and depends on gender. PLoS One. 13:e02017752018. View Article : Google Scholar | |
Al Shareef Z, Kardooni H, Murillo-Garzó V, Domenici G, Stylianakis E, Steel JH, Rabano M, Gorroño-Etxebarria I, Zabalza I, Vivanco MD, et al: Protective effect of stromal Dickkopf-3 in prostate cancer: Opposing roles for TGFBI and ECM-1. Oncogene. 37:5305–5324. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang ST, Liu JJ, Wang CZ, Lin B, Hao YY, Wang YF, Gao S, Qi Y, Zhang SL and Iwamori M: Expression and correlation of Lewis y antigen and TGF-beta1 in ovarian epithelial carcinoma. Oncol Rep. 27:1065–1071. 2012. View Article : Google Scholar | |
Zhang N, Bi X, Zeng Y, Zhu Y, Zhang Z, Liu Y, Wang J, Li X, Bi J and Kong C: TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression. Oncol Rep. 36:977–983. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wakefield LM, Letterio JJ, Chen T, Danielpour D, Allison RS, Pai LH, Denicoff AM, Noone MH, Cowan KH, O'Shaughnessy JA, et al: Transforming growth factor-beta1 circulates in normal human plasma and is unchanged in advanced metastatic breast cancer. Clin Cancer Res. 1:129–136. 1995.PubMed/NCBI | |
Shuang ZY, Wu WC, Xu J, Lin G, Liu YC, Lao XM, Zheng L and Li S: Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 354:320–328. 2014. View Article : Google Scholar : PubMed/NCBI | |
Safina A, Vandette E and Bakin AV: ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene. 26:2407–2422. 2007. View Article : Google Scholar | |
Moore-Smith L and Pasche B: TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia. 16:89–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rosman DS, Phukan S, Huang CC and Pasche B: TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation. Cancer Res. 68:1319–1328. 2008. View Article : Google Scholar : PubMed/NCBI | |
Slattery ML, Lundgreen A, Herrick JS, Wolff RK and Caan BJ: Genetic variation in the transforming growth factor-β signaling pathway and survival after diagnosis with colon and rectal cancer. Cancer. 117:4175–4183. 2011. View Article : Google Scholar : PubMed/NCBI | |
Javle M, Li Y, Tan D, Dong X, Chang P, Kar S and Li D: Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer. PLoS One. 9:e859422014. View Article : Google Scholar | |
Bian Y, Knobloch TJ, Sadim M, Kaklamani V, Raji A, Yang GY, Weghorst CM and Pasche B: Somatic acquisition of TGFBR1*6A by epithelial and stromal cells during head and neck and colon cancer development. Hum Mol Genet. 16:3128–3135. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pasche B, Pennison MJ, Jimenez H and Wang M: TGFBR1 and cancer susceptibility. Trans Am Clin Climatol Assoc. 125:300–312. 2014.PubMed/NCBI | |
Myers ER, Moorman P, Gierisch JM, Havrilesky LJ, Grimm LJ, Ghate S, Davidson B, Mongtomery RC, Crowley MJ, McCrory DC, et al: Benefits and harms of breast cancer screening: A systematic review. JAMA. 314:1615–1634. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, Walter LC, Church TR, Flowers CR, LaMonte SJ, et al: Breast cancer screening for women at average risk: 2015 guide-line update from the American cancer society. JAMA. 314:1599–1614. 2015. View Article : Google Scholar : PubMed/NCBI | |
DeSantis CE, Ma J, Goding Sauer A, Newman LA and Jemal A: Breast cancer statistics, 2017 racial disparity in mortality by state. CA Cancer J Clin. 67:439–448. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park SJ, Kim JG, Kim ND, Yang K, Shim JW and Heo K: Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 11:1895–1902. 2016. View Article : Google Scholar : PubMed/NCBI | |
Menezes ME, Shen XN, Das SK, Emdad L, Sarkar D and Fisher PB: MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget. 7:80175–80189. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Huang M, Wang Z, Wang W, Zhang Z, Qu S and Liu C: MicroRNA-133b targets TGFβ receptor I to inhibit TGF-β-induced epithelial-to-mesenchymal transition and metastasis by suppressing the TGF-β/SMAD pathway in breast cancer. Int J Oncol. 55:1097–1109. 2019.PubMed/NCBI | |
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : | |
Ye Z, Zhao L, Li J, Chen W and Li X: MiR-30d blocked transforming growth Factor beta1-induced epithelial-mesenchymal transition by targeting snail in ovarian cancer cells. Int J Gynecol Cancer. 25:1574–1581. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Fang M, Li S, Yan Y, Zhong Y and Du B: MiR-21 is involved in transforming growth factor β1-induced chemoresistance and invasion by targeting PTEN in breast cancer. Oncol Lett. 14:6929–6936. 2017.PubMed/NCBI | |
Li C, Zhou D, Hong H, Yang S, Zhang L, Li S, Hu P, Ren H, Mei Z and Tang H: TGFβ1-miR-140-5p axis mediated up-regulation of Flap Endonuclease 1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Aging (Albany NY). 11:5593–5612. 2019. View Article : Google Scholar | |
Chen Y, Huang S, Wu B, Fang J, Zhu M, Sun L, Zhang L, Zhang Y, Sun M, Guo L and Wang S: Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget. 8:49110–49122. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao XP, Huang YY, Huang Y, Lei P, Peng JL, Wu S, Wang M, Li WH, Zhu HF and Shen GX: Transforming growth factor-beta1 upregulates the expression of CXC chemokine receptor 4 (CXCR4) in human breast cancer MCF-7 cells. Acta Pharmacol Sin. 31:347–354. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen HS, Bai MH, Zhang T, Li GD and Liu M: Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol. 46:1730–1738. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mishra AK, Parish CR, Wong ML, Licinio J and Blackburn AC: Leptin signals via TGFB1 to promote metastatic potential and stemness in breast cancer. PLoS One. 12:e01784542017. View Article : Google Scholar : PubMed/NCBI | |
Fallone F, Deudon R, Muller C and Vaysse C: Breast cancer, obesity and adipose tissue: A high-risk combination. Med Sci (Paris). 34:1079–1086. 2018.In French. View Article : Google Scholar | |
Lee K, Kruper L, Dieli-Conwright CM and Mortimer JE: The impact of obesity on breast cancer diagnosis and treatment. Curr Oncol Rep. 21:412019. View Article : Google Scholar : PubMed/NCBI | |
Catteau X, Simon P and Noël JC: Myofibroblastic stromal reaction and lymph node status in invasive breast carcinoma: Possible role of the TGF-β1/TGF-βR1 pathway. BMC Cancer. 14:4992014. View Article : Google Scholar | |
Cox DG, Penney K, Guo Q, Hankinson SE and Hunter DJ: TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses' Health Study. BMC Cancer. 7:1752007. View Article : Google Scholar : PubMed/NCBI | |
Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, et al: NCCN guidelines insights: Colon cancer, version 2. 2018.J Natl Compr Canc Netw. 16:359–369. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Y and Pasche B: TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 16(Spec 1 SPEC): R14–R20. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kong J, Du J, Wang Y, Yang M, Gao J, Wei X, Fang W, Zhan J and Zhang H: Focal adhesion molecule Kindlin-1 mediates activation of TGF-β signaling by interacting with TGF-βRI, SARA and Smad3 in colorectal cancer cells. Oncotarget. 7:76224–76237. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen K, Wei H, Ling S and Yi C: Expression and significance of transforming growth factor-beta1 in epithelial ovarian cancer and its extracellular matrix. Oncol Lett. 8:2171–2174. 2014. View Article : Google Scholar : PubMed/NCBI | |
Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS and Doetschman T: Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res. 59:3379–3386. 1999.PubMed/NCBI | |
Schmidt-Weber CB and Blaser K: Regulation and role of transforming growth factor-beta in immune tolerance induction and inflammation. Curr Opin Immunol. 16:709–716. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bierie B and Moses HL: Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 21:49–59. 2010. View Article : Google Scholar | |
Vrba L and Futscher BW: Epigenetic silencing of lncRNA MORT in 16 TCGA cancer types. F1000Res. 7:2112018. View Article : Google Scholar : | |
Zhou T, Wu L, Zong Z, Ma N, Li Y, Jiang Z, Wang Q and Chen S: Long non-coding RNA mortal obligate RNA transcript inhibits the migration and invasion of colon cancer cells by inactivating transforming growth factor β1. Oncol Lett. 19:1131–1136. 2020.PubMed/NCBI | |
Townsend PA, Cutress RI, Sharp A, Brimmell M and Packham G: BAG-1: A multifunctional regulator of cell growth and survival. Biochim Biophys Acta. 1603:83–98. 2003.PubMed/NCBI | |
Skeen VR, Collard TJ, Southern SL, Greenhough A, Hague A, Townsend PA, Paraskeva C and Williams AC: BAG-1 suppresses expression of the key regulatory cytokine transforming growth factor β (TGF-β1) in colorectal tumour cells. Oncogene. 32:4490–4499. 2013. View Article : Google Scholar | |
Dumond A, Demange L and Pagès G: Neuropilins: Relevant therapeutic targets to improve the treatment of cancers. Med Sci (Paris). 36:487–496. 2020.In French. View Article : Google Scholar | |
Huang Y, Fang W, Wang Y, Yang W and Xiong B: Transforming growth factor-β1 induces glutathione peroxidase-1 and protects from H2O2-induced cell death in colon cancer cells via the Smad2/ERK1/2/HIF-1α pathway. Int J Mol Med. 29:906–912. 2012.PubMed/NCBI | |
Lei XG, Cheng WH and McClung JP: Metabolic regulation and function of glutathione peroxidase-1. Annu Rev Nutr. 27:41–61. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhu G, Zhai H, Jia J, Yang W, Li X and Liu L: Simultaneous stimulation with tumor necrosis factor-α and transforming growth factor-β1 induces epithelial-mesenchymal transition in colon cancer cells via the NF-κB pathway. Oncol Lett. 15:6873–6880. 2018.PubMed/NCBI | |
Tomsic J, Guda K, Liyanarachchi S, Hampel H, Natale L, Markowitz SD, Tanner SM and de la Chapelle A: Allele-specific expression of TGFBR1 in colon cancer patients. Carcinogenesis. 31:1800–1804. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Huang Y, Cheng B, Wang Y and Xiong B: TGFBR1*6A is a potential modifier of migration and invasion in colorectal cancer cells. Oncol Lett. 15:3971–3976. 2018.PubMed/NCBI | |
Luyimbazi D, Nelson RA, Choi AH, Li L, Chao J, Sun V, Hamner JB and Kim J: Estimates of conditional survival in gastric cancer reveal a reduction of racial disparities with long-term follow-up. J Gastrointest Surg. 19:251–257. 2015. View Article : Google Scholar | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pennison M and Pasche B: Targeting transforming growth factor-beta signaling. Curr Opin Oncol. 19:579–585. 2007. View Article : Google Scholar : PubMed/NCBI | |
Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ijichi H, Ikenoue T, Kato N, Mitsuno Y, Togo G, Kato J, Kanai F, Shiratori Y and Omata M: Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Biochem Biophys Res Commun. 289:350–357. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ma GF, Miao Q, Zeng XQ, Luo TC, Ma LL, Liu YM, Lian JJ, Gao H and Chen SY: Transforming growth factor-β1 and -β2 in gastric precancer and cancer and roles in tumor-cell interactions with peripheral blood mononuclear cells in vitro. PLoS One. 8:e542492013. View Article : Google Scholar | |
Zhou Y, Jin GF, Jiang GJ, Wang HM, Tan YF, Ding WL, Wang LN, Chen WS, Ke Q, Shen J, et al: Correlations of polymorphisms of TGFB1 and TGFBR2 genes to genetic susceptibility to gastric cancer. Ai Zheng. 26:581–585. 2007.In Chinese. PubMed/NCBI | |
Yanagihara K and Tsumuraya M: Transforming growth factor beta 1 induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res. 52:4042–4045. 1992.PubMed/NCBI | |
Wang KS, Hu ZL, Li JH, Xiao DS and Wen JF: Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor-beta1. Acta Biochim Biophys Sin (Shanghai). 38:179–186. 2006. View Article : Google Scholar | |
Takeuchi Y and Nishikawa H: Roles of regulatory T cells in cancer immunity. Int Immunol. 28:401–409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Deng B, Zhu JM, Wang Y, Liu TT, Ding YB, Xiao WM, Lu GT, Bo P and Shen XZ: Intratumor hypoxia promotes immune tolerance by inducing regulatory T cells via TGF-β1 in gastric cancer. PLoS One. 8:e637772013. View Article : Google Scholar | |
Lee MS, Kim TY, Kim YB, Lee SY, Ko SG, Jong HS, Kim TY, Bang YJ and Lee JW: The signaling network of transforming growth factor beta1, protein kinase Cdelta, and integrin underlies the spreading and invasiveness of gastric carcinoma cells. Mol Cell Biol. 25:6921–6936. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Wang K, Hu Z and Wen J: TGF-β1 alters microRNA profile in human gastric cancer cells. Chin J Cancer Res. 25:102–111. 2013.PubMed/NCBI | |
Zhu Y, Kong F, Zhang C, Ma C, Xia H, Quan B and Cui H: CD133 mediates the TGF-β1-induced activation of the PI3K/ERK/P70S6K signaling pathway in gastric cancer cells. Oncol Lett. 14:7211–7216. 2017. | |
Zhao Y, Xia S, Cao C and Du X: Effect of TGF-β1 on apoptosis of colon cancer cells via the ERK signaling pathway. J BUON. 24:449–455. 2019.PubMed/NCBI | |
Jin S, Gao J, Qi Y, Hao Y, Li X, Liu Q, Liu J, Liu D, Zhu L and Lin B: TGF-β1 fucosylation enhances the autophagy and mitophagy via PI3K/Akt and Ras-Raf-MEK-ERK in ovarian carcinoma. Biochem Biophys Res Commun. 524:970–976. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cascione M, Leporatti S, Dituri F and Giannelli G: Transforming growth factor-β promotes morphomechanical effects involved in epithelial to mesenchymal transition in living hepatocellular carcinoma. Int J Mol Sci. 20:1082018. View Article : Google Scholar | |
Sun SL and Wang XY: TGF-β1 promotes proliferation and invasion of hepatocellular carcinoma cell line HepG2 by activating GLI-1 signaling. Eur Rev Med Pharmacol Sci. 22:7688–7695. 2018.PubMed/NCBI | |
Qu Z, Feng J, Pan H, Jiang Y, Duan Y and Fa Z: Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. Onco Targets Ther. 12:6897–6905. 2019. View Article : Google Scholar : | |
Zhang C, Chen B, Jiao A, Li F, Sun N, Zhang G and Zhang J: MiR-663a inhibits tumor growth and invasion by regulating TGF-β1 in hepatocellular carcinoma. BMC Cancer. 18:11792018. View Article : Google Scholar | |
Tang YH, He GL, Huang SZ, Zhong KB, Liao H, Cai L, Gao Y, Peng ZW and Fu SJ: The long noncoding RNA AK002107 negatively modulates miR-140-5p and targets TGFBR1 to induce epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol. 13:1296–1310. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li B, Li X, Tan H, Cheng D and Shi H: An imaging target TGF-β1 for hepatocellular carcinoma in mice. Hell J Nucl Med. 20:76–78. 2017.PubMed/NCBI | |
Balzarini P, Benetti A, Invernici G, Cristini S, Zicari S, Caruso A, Gatta LB, Berenzi A, Imberti L, Zanotti C, et al: Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Lab Invest. 92:1297–1309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yao S, Tian C, Ding Y, Ye Q, Gao Y, Yang N and Li Q: Down-regulation of Krüppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1. Oncotarget. 7:42566–42578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu M, Su Y, Zhou X, Liu Y and Zhang X: The Janus-faced roles of Krüppel-like factor 4 in oral squamous cell carcinoma cells. Oncotarget. 6:44480–44494. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian C, Yao S, Liu L, Ding Y, Ye Q, Dong X, Gao Y, Yang N and Li Q: Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma. Int J Mol Med. 39:47–56. 2017. View Article : Google Scholar | |
Zhang X, Fan Q, Li Y, Yang Z, Yang L, Zong Z, Wang B, Meng X, Li Q, Liu J and Li H: Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget. 8:29785–29794. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Shi K, Liu H, Chen W, Luo Y, Wei X and Wu Z: MiR-4458 inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells by suppressing the TGF-β signaling pathway via targeting TGFBR1. Acta Biochim Biophys Sin (Shanghai). 52:554–562. 2020. View Article : Google Scholar | |
Perrier ND, Brierley JD and Tuttle RM: Differentiated and anaplastic thyroid carcinoma: Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 68:55–63. 2018. View Article : Google Scholar | |
Saini S, Tulla K, Maker AV, Burman KD and Prabhakar BS: Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol Cancer. 17:1542018. View Article : Google Scholar : PubMed/NCBI | |
Kebebew E: Anaplastic thyroid cancer: Rare, fatal, and neglected. Surgery. 152:1088–1089. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen D, Hao FY and Zhang KJ: Targeting TGF-β1 and AKT signal on growth and metastasis of anaplastic thyroid cancer cell in vivo. Eur Rev Med Pharmacol Sci. 20:2581–2587. 2016.PubMed/NCBI | |
Zhang X, Liu L, Deng X, Li D, Cai H, Ma Y, Jia C, Wu B, Fan Y and Lv Z: MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 38:699–715. 2019. View Article : Google Scholar | |
Yin Q, Liu S, Dong A, Mi X, Hao F and Zhang K: Targeting transforming growth factor-Beta1 (TGF-β1) inhibits tumorigenesis of anaplastic thyroid carcinoma cells through ERK1/2-NFκB-PUMA signaling. Med Sci Monit. 22:2267–2277. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhong J, Liu C, Zhang QH, Chen L, Shen YY, Chen YJ, Zeng X, Zu XY and Cao RX: TGF-β1 induces HMGA1 expression: The role of HMGA1 in thyroid cancer proliferation and invasion. Int J Oncol. 50:1567–1578. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui M, Chang Y, Du W, Liu S, Qi J, Luo R and Luo S: Upregulation of lncRNA-ATB by transforming growth factor-β1 (TGF-β1) promotes migration and invasion of papillary thyroid carcinoma cells. Med Sci Monit. 24:5152–5158. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li T, Zhao N, Lu J, Zhu Q, Liu X, Hao F and Jiao X: Epigallocatechin gallate (EGCG) suppresses epithelial-mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered. 10:282–291. 2019. View Article : Google Scholar : PubMed/NCBI | |
He J, Jin Y, Zhou M, Li X, Chen W, Wang Y, Gu S, Cao Y, Chu C, Liu X and Zou Q: Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis. Cancer Sci. 109:642–655. 2018. View Article : Google Scholar : | |
Bonnet D: Cancer stem cells: Lessons from leukaemia. Cell Prolif. 38:357–361. 2005. View Article : Google Scholar : PubMed/NCBI | |
Xie W, Wang X, Du W, Liu W, Qin X and Huang S: Detection of molecular targets on the surface of CD34+CD38-bone marrow cells in myelodysplastic syndromes. Cytometry A. 77:840–848. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lyengar V and Shimanovsky A: Leukemia. StatPearls Publishing, StatPearls Publishing LLC; Treasure Island, FL: 2020 | |
Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, Reaman GH and Carroll WL: Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: A report from the children's oncology group. J Clin Oncol. 30:1663–1669. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huang F, Wan J, Hu W and Hao S: Enhancement of anti-leukemia immunity by leukemia-derived exosomes via downregulation of TGF-β1 expression. Cell Physiol Biochem. 44:240–254. 2017. View Article : Google Scholar | |
Geyh S, Rodríguez-Paredes M, Jäger P, Koch A, Bormann F, Gutekunst J, Zilkens C, Germing U, Kobbe G, Lyko F, et al: Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 103:1462–1471. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taetle R, Payne C, Dos Santos B, Russell M and Segarini P: Effects of transforming growth factor beta 1 on growth and apoptosis of human acute myelogenous leukemia cells. Cancer Res. 53:3386–3393. 1993.PubMed/NCBI | |
Verheyden S and Demanet C: NK cell receptors and their ligands in leukemia. Leukemia. 22:249–257. 2008. View Article : Google Scholar | |
Nursal AF, Pehlivan M, Sahin HH and Pehlivan S: The Associations of IL-6, IFN-γ, TNF-α, IL-10, and TGF-β1 functional variants with acute myeloid leukemia in turkish patients. Genet Test Mol Biomarkers. 20:544–551. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rouce RH, Shaim H, Sekine T, Weber G, Ballard B, Ku S, Barese C, Murali V, Wu MF, Liu H, et al: The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 30:800–811. 2016. View Article : Google Scholar | |
Gong Y, Zhao M, Yang W, Gao A, Yin X, Hu L, Wang X, Xu J, Hao S, Cheng T and Cheng H: Megakaryocyte-derived excessive transforming growth factor β1 inhibits proliferation of normal hematopoietic stem cells in acute myeloid leukemia. Exp Hematol. 60:40–46.e2. 2018. View Article : Google Scholar | |
Wang H, Wu Q, Zhang Y, Zhang HN, Wang YB and Wang W: TGF-β1-induced epithelial-mesenchymal transition in lung cancer cells involves upregulation of miR-9 and downregulation of its target, E-cadherin. Cell Mol Biol Lett. 22:222017. View Article : Google Scholar | |
Xue C, Hu Z, Jiang W, Zhao Y, Xu F, Huang Y, Zhao H, Wu J, Zhang Y, Zhao L, et al: National survey of the medical treatment status for non-small cell lung cancer (NSCLC) in China. Lung Cancer. 77:371–375. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yano T, Okamoto T, Fukuyama S and Maehara Y: Therapeutic strategy for postoperative recurrence in patients with non-small cell lung cancer. World J Clin Oncol. 5:1048–1054. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li L, Yan S, Zhang H, Zhang M, Huang G and Chen M: Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 19:8942019. View Article : Google Scholar | |
Shi S, Zhao J, Wang J, Mi D and Ma Z: HPIP silencing inhibits TGF-β1-induced EMT in lung cancer cells. Int J Mol Med. 39:479–483. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang HW, Wang EW, Li LX, Yi SH, Li LC, Xu FL, Wang DL, Wu YZ and Nian WQ: A regulatory loop involving miR-29c and Sp1 elevates the TGF-β1 mediated epithelial-to-mesenchymal transition in lung cancer. Oncotarget. 7:85905–85916. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Xu Z, Yu L, Che J, Zhang J and Yang J: MicroRNA-144-3p suppressed TGF-β1-induced lung cancer cell invasion and adhesion by regulating the Src-Akt-Erk pathway. Cell Biol Int. 2019.Epub ahead of print. | |
Zhao X, Liu Y and Yu S: Long noncoding RNA AWPPH promotes hepatocellular carcinoma progression through YBX1 and serves as a prognostic biomarker. Biochim Biophys Acta Mol Basis Dis. 1863:1805–1816. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Zhang X, Yu Q, Han G, Diao F, Wu C and Zhang Y: LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression. J Cell Biochem. 119:4496–4505. 2018. View Article : Google Scholar | |
Tang L, Wang T, Zhang Y, Zhang J, Zhao H, Wang H, Wu Y and Liu K: Long non-coding RNA AWPPH promotes postoperative distant recurrence in resected non-small cell lung cancer by upregulating transforming growth factor beta 1 (TGF-β1). Med Sci Monit. 25:2535–2541. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH and Song EJ: MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol. 13:2663–2678. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hypes MK, Pirisi L and Creek KE: Mechanisms of decreased expression of transforming growth factor-beta receptor type I at late stages of HPV16-mediated transformation. Cancer Lett. 282:177–186. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Zhang J, Hu G, Liu L and Liang W: Hypoxia and TGF-β1 induced PLOD2 expression improve the migration and invasion of cervical cancer cells by promoting epithelial-to-mesenchymal transition (EMT) and focal adhesion formation. Cancer Cell Int. 17:542017. View Article : Google Scholar | |
Li MY, Liu JQ, Chen DP, Li ZY, Qi B, Yin WJ and He L: p68 prompts the epithelial-mesenchymal transition in cervical cancer cells by transcriptionally activating the TGF-β1 signaling pathway. Oncol Lett. 15:2111–2116. 2018.PubMed/NCBI | |
Yang L, Yu Y, Xiong Z, Chen H, Tan B and Hu H: Downregulation of SEMA4C inhibit epithelial-mesenchymal transition (EMT) and the invasion and metastasis of cervical cancer cells via inhibiting transforming growth factor-beta 1 (TGF-β1)-induced Hela cells p38 mitogen-activated protein kinase (MAPK) activation. Med Sci Monit. 26:e9181232020. View Article : Google Scholar | |
Cheng Y, Guo Y, Zhang Y, You K, Li Z and Geng L: MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res. 35:112016. View Article : Google Scholar | |
Finkielstein CV and Capelluto DG: Disabled-2: A modular scaffold protein with multifaceted functions in signaling. Bioessays. 38(Suppl 1): S45–S55. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tao MZ, Gao X, Zhou TJ, Guo QX, Zhang Q and Yang CW: Effects of TGF-beta1 on the proliferation and apoptosis of human cervical cancer Hela cells in vitro. Cell Biochem Biophys. 73:737–741. 2015. View Article : Google Scholar | |
Wang H, Wang J, Liu H and Wang X: TGF-β1 activates NOX4/ROS pathway to promote the invasion and migration of cervical cancer cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:121–127. 2019.In Chinese. PubMed/NCBI | |
Deng M, Cai X, Long L, Xie L, Ma H, Zhou Y, Liu S and Zeng C: CD36 promotes the epithelial-mesenchymal transition and metastasis in cervical cancer by interacting with TGF-β. J Transl Med. 17:3522019. View Article : Google Scholar | |
Wongnoppavich A, Dukaew N, Choonate S and Chairatvit K: Upregulation of maspin expression in human cervical carcinoma cells by transforming growth factor β1 through the convergence of Smad and non-Smad signaling pathways. Oncol Lett. 13:3646–3652. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ju W, Luo X and Zhang N: LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci Rep. Apr 26–2019.Epub ahead of print. View Article : Google Scholar | |
Levovitz C, Chen D, Ivansson E, Gyllensten U, Finnigan JP, Alshawish S, Zhang W, Schadt EE, Posner MR, Genden EM, et al: TGFβ receptor 1: An immune susceptibility gene in HPV-associated cancer. Cancer Res. 74:6833–6844. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Zhang Q, Li S, Jiang S, Cui J and Dang G: Interference of the long noncoding RNA CDKN2B-AS1 upregulates miR-181a-5p/TGFβI axis to restrain the metastasis and promote apoptosis and senescence of cervical cancer cells. Cancer Med. 8:1721–1730. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu T, Chen X, Peng R, Liu H, Yin P, Peng H, Zhou Y, Sun Y, Wen L, Yi H, et al: Let-7a suppresses cell proliferation via the TGF-β/SMAD signaling pathway in cervical cancer. Oncol Rep. 36:3275–3282. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fang F, Huang B, Sun S, Xiao M, Guo J, Yi X, Cai J and Wang Z: MiR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis. 9:3952018. View Article : Google Scholar | |
Wu M, Chen X, Lou J, Zhang S, Zhang X, Huang L, Sun R, Huang P, Wang F and Pan S: TGF-β1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget. 7:44534–44544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang YQ, Li YM, Li X, Liu T, Liu XK, Zhang JQ, Guo JW, Guo LY and Qiao L: Hypermethylation of TGF-β1 gene promoter in gastric cancer. World J Gastroenterol. 19:5557–5564. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ji M, Shi H, Xie Y, Zhao Z, Li S, Chang C, Cheng X and Li Y: Ubiquitin specific protease 22 promotes cell proliferation and tumor growth of epithelial ovarian cancer through synergy with transforming growth factor β1. Oncol Rep. 33:133–140. 2015. View Article : Google Scholar | |
Teng Y, Zhao L, Zhang Y, Chen W and Li X: Id-1, a protein repressed by miR-29b, facilitates the TGFβ1-induced epithelial-mesenchymal transition in human ovarian cancer cells. Cell Physiol Biochem. 33:717–730. 2014. View Article : Google Scholar | |
Facciabene A, Motz GT and Coukos G: T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res. 72:2162–2171. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liu W, Shen F, Ma X, Liu X, Tian F, Zeng W, Xi X and Lin Y: The activation of microRNA-520h-associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis. 9:8842018. View Article : Google Scholar | |
Wang YQ, Qi XW, Wang F, Jiang J and Guo QN: Association between TGFBR1 polymorphisms and cancer risk: A meta-analysis of 35 case-control studies. PLoS One. 7:e428992012. View Article : Google Scholar : PubMed/NCBI | |
Eli Lilly: Company: A study in participants with diabetic kidney disease. ClinicalTrials.gov. 2010, https://clinicaltrials.gov/ct2/show/NCT01113801. Accessed Sep 17, 2019. | |
Zhang Q, Hou X, Evans BJ, VanBlaricom JL, Weroha SJ and Cliby WA: LY2157299 monohydrate, a TGF-βR1 inhibitor, suppresses tumor growth and ascites development in ovarian cancer. Cancers (Basel). 10. pp. 2602018, View Article : Google Scholar | |
Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA, et al: Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 9:4479–4499. 2015.PubMed/NCBI | |
Fujiwara Y, Nokihara H, Yamada Y, Yamamoto N, Sunami K, Utsumi H, Asou H, TakahashI O, Ogasawara K, Gueorguieva I and Tamura T: Phase 1 study of galunisertib, a TGF-beta receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 76:1143–1152. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, Cher L, Steinbach JP, Capper D, Specenier P, et al: A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 18:1146–1156. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ikeda M, Takahashi H, Kondo S, Lahn MMF, Ogasawara K, Benhadji KA, Fujii H and Ueno H: Phase 1b study of galunisertib in combination with gemcitabine in Japanese patients with metastatic or locally advanced pancreatic cancer. Cancer Chemother Pharmacol. 79:1169–1177. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rodón J, Carducci M, Sepulveda-Sánchez JM, Azaro A, Calvo E, Seoane J, Braña I, Sicart E, Gueorguieva I, Cleverly A, et al: Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest New Drugs. 33:357–370. 2015. View Article : Google Scholar | |
MedPacto: Dose escalation and proof-of-concept studies of vactosertib (TEW-7197) monotherapy in patients with MDS. ClinicalTrials.gov. 2017, https://clinicaltrials.gov/ct2/show/NCT03074006. Accessed Mar 24, 2020. | |
MedPacto: First in human dose escalation study of vactosertib (TEW-7197) in subjects with advanced stage solid tumors. ClinicalTrials.gov. 2014, https://clinicaltrials.gov/ct2/show/NCT02160106 Accessed Sep 5, 2019. | |
Eli Lilly: Company: A study of LY3200882 in participants with solid tumors. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT02937272. Accessed Aug 19, 2020. | |
Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lehr R, Mathur A, et al: Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem. 45:999–1001. 2002. View Article : Google Scholar : PubMed/NCBI | |
Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ and Hill CS: SB-431542 is a potent and specific inhibitor of transforming growth factor-beta super-family type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 62:65–74. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tanaka H, Shinto O, Yashiro M, Yamazoe S, Iwauchi T, Muguruma K, Kubo N, Ohira M and Hirakawa K: Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol Rep. 24:1637–1643. 2010. View Article : Google Scholar : PubMed/NCBI | |
Melisi D, Ishiyama S, Sclabas GM, Fleming JB, Xia Q, Tortora G, Abbruzzese JL and Chiao PJ: LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther. 7:829–840. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZH, Miao YY, Ke BL, Liu K and Xu X: LY2109761, transforming growth factor β receptor type I and type II dual inhibitor, is a novel approach to suppress endothelial mesenchymal transformation in human corneal endothelial cells. Cell Physiol Biochem. 50:963–972. 2018. View Article : Google Scholar | |
Tandon M, Salamoun JM, Carder EJ, Farber E, Xu S, Deng F, Tang H, Wipf P and Wang QJ: SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest. PLoS One. 10:e01193462015. View Article : Google Scholar : PubMed/NCBI | |
Araujo SC, Maltarollo VG, Almeida MO, Ferreira LL, Andricopulo AD and Honorio KM: Structure-based virtual screening, molecular dynamics and binding free energy calculations of Hit candidates as ALK-5 inhibitors. Molecules. 25:2642020. View Article : Google Scholar : | |
de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F and Huet S: Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol. 145:166–177. 2005. View Article : Google Scholar : PubMed/NCBI | |
Park CY, Kim DK and Sheen YY: EW-7203, a novel small molecule inhibitor of transforming growth factor-β (TGF-β) type I receptor/activin receptor-like kinase-5, blocks TGF-β1-mediated epithelial-to-mesenchymal transition in mammary epithelial cells. Cancer Sci. 102:1889–1896. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, Ishikawa Y, Nomura K, Yokoo H, Shimizu T, et al: Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 98:127–133. 2007. View Article : Google Scholar | |
Suzuki E, Kim S, Cheung HK, Corbley MJ, Zhang X, Sun L, Shan F, Singh J, Lee WC, Albelda SM and Ling LE: A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res. 67:2351–2359. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moore-Smith LD, Isayeva T, Lee JH, Frost A and Ponnazhagan S: Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Sci Rep. 7:86782017. View Article : Google Scholar | |
Li XF, Yan PJ and Shao ZM: Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene. 28:3937–3948. 2009. View Article : Google Scholar : PubMed/NCBI |