1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee WS, Yun SH, Chun HK, Lee WY, Yun HR,
Kim J, Kim K and Shim YM: Pulmonary resection for metastases from
colorectal cancer: Prognostic factors and survival. Int J
Colorectal Dis. 22:699–704. 2007. View Article : Google Scholar
|
3
|
Van Cutsem E, Nordlinger B, Adam R, Köhne
CH, Pozzo C, Poston G, Ychou M and Rougier P; European Colorectal
Metastases Treatment Group: Towards a pan European consensus on the
treatment of patients with colorectal liver metastases. Eur J
Cancer. 42:2212–2221. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yoo PS, Lopez-Soler RI, Longo WE and Cha
CH: Liver resection for metastatic colorectal cancer in the age of
neoadjuvant chemotherapy and bevacizumab. Clin Colorectal Cancer.
6:202–207. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Dawood O, Mahadevan A and Goodman KA:
Stereotactic body radiation therapy for liver metastases. Eur J
Cancer. 45:2947–2959. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kemeny N: Management of liver metastases
from colorectal cancer. Oncology (Williston Park). 20:1161–1176;
discussion 1179-1180, 1185-1186. 2006.
|
7
|
Lee YG, Macoska JA, Korenchuk S and Pienta
KJ: MIM, a potential metastasis suppressor gene in bladder cancer.
Neoplasia. 4:291–294. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nixdorf S, Grimm MO, Loberg R, Marreiros
A, Russell PJ, Pienta KJ and Jackson P: Expression and regulation
of MIM (missing in metastasis), a novel putative metastasis
suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer
Lett. 215:209–220. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xie F, Ye L, Chen J, Wu N, Zhang Z, Yang
Y, Zhang L and Jiang WG: The impact of Metastasis Suppressor-1,
MTSS1, on oesophageal squamous cell carcinoma and its clinical
significance. J Transl Med. 9:952011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhou L, Li J, Shao QQ, Guo JC, Liang ZY,
Zhou WX, Zhang TP, You L and Zhao YP: Expression and significances
of MTSS1 in pancreatic cancer. Pathol Oncol Res. 22:7–14. 2016.
View Article : Google Scholar
|
11
|
Liu K, Jiao XD, Hao JL, Qin BD, Wu Y, Chen
W, Liu J, He X and Zang YS: MTSS1 inhibits metastatic potential and
induces G2/M phase cell cycle arrest in gastric cancer. Onco
Targets Ther. 12:5143–5152. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu M and Xu T: Expression and clinical
significance of miR-23a and MTSS1 in diffuse large B-cell lymphoma.
Oncol Lett. 16:371–377. 2018.PubMed/NCBI
|
13
|
Mertz KD, Pathria G, Wagner C, Saarikangas
J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner
W, et al: MTSS1 is a metastasis driver in a subset of human
melanomas. Nat Commun. 5:3465–3474. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang XY, Huang ZL, Xu B, Chen Z, Re TJ,
Zheng Q, Tang ZY and Huang XY: Elevated MTSS1 expression associated
with metastasis and poor prognosis of residual hepatitis B-related
hepatocellular carcinoma. J Exp Clin Cancer Res. 35:85–98. 2016.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Dawson JC, Timpson P, Kalna G and Machesky
LM: Mtss1 regulates epidermal growth factor signaling in head and
neck squamous carcinoma cells. Oncogene. 31:1781–1793. 2012.
View Article : Google Scholar
|
16
|
Ling DJ, Chen ZS, Liao QD, Feng JX, Zhang
XY and Yin TY: Differential effects of MTSS1 on invasion and
proliferation in subtypes of non-small cell lung cancer cells. Exp
Ther Med. 12:1225–1231. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Agarwal E, Robb CM, Smith LM, Brattain MG,
Wang J, Black JD and Chowdhury S: Role of Akt2 in regulation of
metastasis suppressor 1 expression and colorectal cancer
metastasis. Oncogene. 36:3104–3118. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang D, Xu MR, Wang T, Li T and Zhu Jw:
MTSS1 overexpression correlates with poor prognosis in colorectal
cancer. J Gastrointest Surg. 15:1205–1212. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhan T, Cao C, Li L, Gu N, Civin CI and
Zhan X: MIM regulates the trafficking of bone marrow cells via
modulating surface expression of CXCR4. Leukemia. 30:1327–1334.
2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen K, Bao Z, Tang P, Gong W, Yoshimura T
and Wang JM: Chemokines in homeostasis and diseases. Cell Mol
Immunol. 15:324–334. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Fernandis AZ, Prasad A, Band H, Klösel R
and Ganju RK: Regulation of CXCR4-mediated chemotaxis and
chemoinvasion of breast cancer cells. Oncogene. 23:157–167. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kucia M, Reca R, Miekus K, Wanzeck J,
Wojakowski W, Janowska-Wieczorek A, Ratajczak J and Ratajczak MZ:
Trafficking of normal stem cells and metastasis of cancer stem
cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4
axis. Stem Cells. 23:879–894. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Furusato B, Mohamed A, Uhlén M and Rhim
JS: CXCR4 and cancer. Pathol Int. 60:497–505. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li L, Baxter SS, Gu N, Ji M and Zhan X:
Missing-in-metastasis protein downregulates CXCR4 by promoting
ubiquitylation and interaction with small Rab GTPases. J Cell Sci.
130:1475–1485. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu D, Zhan XH, Zhao XF, Williams MS, Carey
GB, Smith E, Scott D, Zhu J, Guo Y, Cherukuri S, et al: Mice
deficient in MIM expression are predisposed to lymphomagenesis.
Oncogene. 31:3561–3568. 2012. View Article : Google Scholar :
|
26
|
McCormick PJ, Segarra M, Gasperini P,
Gulino AV and Tosato G: Impaired recruitment of Grk6 and
beta-Arrestin 2 causes delayed internalization and desensitization
of a WHIM syndrome-associated CXCR4 mutant receptor. PLoS One.
4:e81022009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shirozu M, Nakano T, Inazawa J, Tashiro K,
Tada H, Shinohara T and Honjo T: Structure and chromosomal
localization of the human stromal cell-derived factor 1(SDF1) gene.
Genomics. 28:495–500. 1995. View Article : Google Scholar : PubMed/NCBI
|
28
|
Rousseau S, Dolado I, Beardmore V, Shpiro
N, Marquez R, Nebreda AR, Arthur JS, Case LM, Tessier-Lavigne M,
Gaestel M, et al: CXCL12 and C5a trigger cell migration via a
PAK1/2-p38alpha MAPK-MAPKAP-K2-HSP27 pathway. Cell Signal.
18:1897–1905. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bendall LJ, Baraz R, Juarez J, Shen W and
Bradstock KF: Defective p38 mitogen- activated protein kinase
signaling impairs chemotaxic but not proliferative responses to
stromal-derived factor-1alpha in acute lymphoblastic leukemia.
Cancer Res. 65:3290–3298. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Petrov P, Sarapulov AV, Eöry L, Scielzo C,
Scarfò L, Smith J, Burt DW and Mattila PK: Computational analysis
of the evolutionarily conserved missing in metastasis/metastasis
suppressor 1 gene predicts novel interactions, regulatory regions
and transcriptional control. Sci Rep. 9:4155–4171. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mattila PK, Pykäläinen A, Saarikangas J,
Paavilainen VO, Vihinen H, Jokitalo E and Lappalainen P:
Missing-in-metastasis and IRSp53 deform PI (4,5)P2-rich membranes
by an inverse BAR domain-like mechanism. J Cell Biol. 176:953–964.
2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yamagishi A, Masuda M, Ohki T, Onishi H
and Mochizuki N: A novel actin bundling/filopodium-forming domain
conserved in insulin receptor tyrosine kinase substrate p53 and
missing in metastasis protein. J Biol Chem. 279:14929–14936. 2004.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Bompard G, Sharp SJ, Freiss G and Machesky
LM: Involvement of Rac in actin cytoskeleton rearrangements induced
by MIM-B. J Cell Sci. 118:5393–5403. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Callahan CA, Ofstad T, Horng L, Wang JK,
Zhen HH, Coulombe PA and Oro AE: MIM/BEG4, a Sonic
hedgehog-responsive gene that potentiates Gli-dependent
transcription. Genes Dev. 18:2724–2729. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Scarlett KA, White EZ, Coke CJ, Carter JR,
Bryant LK and Hinton CV: Agonist induced CXCR4 and CB2
heterodimerization inhibits Gα13/RhoA-mediated migration. Mol
Cancer Res. 16:728–739. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cancelas JA and Williams DA: Rho GTPases
in hematopoietic stem cell functions. Curr Opin Hematol.
16:249–254. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xu C, Zhao H, Chen H and Yao Q: CXCR4 in
breast cancer: Oncogenic role and therapeutic targeting. Drug Des
Devel Ther. 9:4953–4964. 2015.PubMed/NCBI
|
38
|
Kodama J, Hasengaowa, Kusumoto T, Seki N,
Matsuo T, Ojima Y, Nakamura K, Hongo A and Hiramatsu Y: Association
of CXCR4 and CCR7 chemokine receptor expression and lymph node
metastasis in human cervical cancer. Ann Oncol. 18:70–76. 2007.
View Article : Google Scholar
|
39
|
Lv S, Yang Y, Kwon S, Han M, Zhao F, Kang
H, Dai C and Wang R: The association of CXCR4 expression with
prognosis and clinicopathological indicators in colorectal
carcinoma patients: A meta-analysis. Histopathology. 64:701–712.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gangadhar T, Nandi S and Salgia R: The
role of chemokine receptor CXCR4 in lung cancer. Cancer Biol Ther.
9:409–416. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Benedicto A, Romayor I and Arteta B: CXCR4
receptor blockage reduces the contribution of tumor and stromal
cells to the metastatic growth in the liver. Oncol Rep.
39:2022–2030. 2018.PubMed/NCBI
|
42
|
Haga RB and Ridley AJ: Small GTPases:
Regulation and roles in cancer cell biology. Small GTPases.
7:207–221. 2016. View Article : Google Scholar : PubMed/NCBI
|