
Insight into the roles of melatonin in bone tissue and bone‑related diseases (Review)
- Authors:
- Xiaofeng Lu
- Shaoling Yu
- Guangjin Chen
- Wenhao Zheng
- Jinfeng Peng
- Xiaofei Huang
- Lili Chen
-
Affiliations: Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China - Published online on: March 17, 2021 https://doi.org/10.3892/ijmm.2021.4915
- Article Number: 82
-
Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Maria S and Witt-Enderby PA: Melatonin effects on bone: Potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J Pineal Res. 56:115–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Johnell O and Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 17:1726–1733. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kanis JA: Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 359:1929–1936. 2002. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP and Li HB: Dietary sources and bioactivities of melatonin. Nutrients. 9:3672017. View Article : Google Scholar : | |
Cipolla-Neto J and Amaral FGD: Melatonin as a hormone: New physiological and clinical insights. Endocr Rev. 39:990–1028. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reiter RJ: Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr Rev. 12:151–180. 1991. View Article : Google Scholar : PubMed/NCBI | |
Amaral FGD and Cipolla-Neto J: A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab. 62:472–479. 2018. View Article : Google Scholar : PubMed/NCBI | |
Simonneaux V and Ribelayga C: Generation of the melatonin endocrine message in mammals: A review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 55:325–395. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM and Reiter RJ: Melatonin: A hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res. 34:75–78. 2003. View Article : Google Scholar | |
Permuy M, López-Peña M, González-Cantalapiedra A and Muñoz F: Melatonin: A review of its potential functions and effects on dental diseases. Int J Mol Sci. 18:8652017. View Article : Google Scholar : | |
Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N and Fougerou C: Melatonin: Pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 15:434–443. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nauth A, Schemitsch E, Norris B, Nollin Z and Watson JT: Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma. 32(Suppl 1): S7–S11. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shino H, Hasuike A, Arai Y, Honda M, Isokawa K and Sato S: Melatonin enhances vertical bone augmentation in rat calvaria secluded spaces. Med Oral Patol Oral Cir Bucal. 21:e122–e126. 2016. View Article : Google Scholar : | |
Histing T, Anton C, Scheuer C, Garcia P, Holstein JH, Klein M, Matthys R, Pohlemann T and Menger MD: Melatonin impairs fracture healing by suppressing RANKL-mediated bone remodeling. J Surg Res. 173:83–90. 2012. View Article : Google Scholar | |
Satomura K, Tobiume S, Tokuyama R, Yamasaki Y, Kudoh K, Maeda E and Nagayama M: Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res. 42:231–239. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sethi S, Radio NM, Kotlarczyk MP, Chen CT, Wei YH, Jockers R and Witt-Enderby PA: Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res. 49:222–238. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong P, Gu X, Zhu G, Li M, Ma B and Zi Y: Melatonin induces osteoblastic differentiation of mesenchymal stem cells and promotes fracture healing in a rat model of femoral fracture via neuropeptide Y/neuropeptide Y receptor Y1 signaling. Pharmacology. 102:272–280. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luchetti F, Canonico B, Bartolini D, Arcangeletti M, Ciffolilli S, Murdolo G, Piroddi M, Papa S, Reiter RJ and Galli F: Melatonin regulates mesenchymal stem cell differentiation: A review. J Pineal Res. 56:382–397. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Ma B, Dong P, Shang J, Gu X and Zi Y: Melatonin promotes osteoblastic differentiation and regulates PDGF/AKT signaling pathway. Cell Biol Int. 44:402–411. 2020. View Article : Google Scholar | |
Park KH, Kang JW, Lee EM, Kim JS, Rhee YH, Kim M, Jeong SJ, Park YG and Kim SH: Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res. 51:187–194. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Lin M, Liang A, Zhang L, Chen C, Liang G, Xu C, Peng Y, Chen C, Huang D and Su P: Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res. 56:62–70. 2014. View Article : Google Scholar | |
Zhang B, Bailey WM, McVicar AL and Gensel JC: Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiol Aging. 47:157–167. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fraser JH, Helfrich MH, Wallace HM and Ralston SH: Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone. 19:223–226. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N and Lee SY: A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood. 106:852–859. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Gong Y, Xiong K, Ye Y, Xiong Y, Zhuang Z, Luo Y, Jiang Q and He F: Melatonin mediates protective effects on inflammatory response induced by interleukin-1 beta in human mesenchymal stem cells. J Pineal Res. 55:14–25. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu XW, Zi Y, Liu YE, Zhang YB, Xiang LB and Hou MX: Melatonin exerts protective effect on N2a cells under hypoxia conditions through Zip1/ERK pathway. Neurosci Lett. 595:74–80. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Yang Y, Han S and Wu Z: ZIP1 and zinc inhibits fluoride-induced apoptosis in MC3T3-E1 cells. Biol Trace Elem Res. 159:399–409. 2014. View Article : Google Scholar : PubMed/NCBI | |
Halıcı M, Öner M, Güney A, Canöz Ö, Narin F and Halıcı C: Melatonin promotes fracture healing in the rat model. Eklem Hastalik Cerrahisi. 21:172–177. 2010. | |
Quesnelle KM, Bystrom PV and Toledo-Pereyra LH: Molecular responses to ischemia and reperfusion in the liver. Arch Toxicol. 89:651–657. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S and Khodayari H: Reactive oxygen species-mediated cardiac-reperfusion injury: Mechanisms and therapies. Life Sci. 165:43–55. 2016. View Article : Google Scholar : PubMed/NCBI | |
Erdem M, Gulabi D, Asci M, Bostan B, Gunes T and Koseoglu RD: The effects of melatonin and caffeic acid phenethyl ester (CAPE) on fracture healing under ischemic conditions. Acta Orthop Traumatol Turc. 48:339–345. 2014. View Article : Google Scholar : PubMed/NCBI | |
Son JH, Cho YC, Sung IY, Kim IR, Park BS and Kim YD: Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J Pineal Res. 57:385–392. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ramírez-Fernández MP, Calvo-Guirado JL, de-Val JE, Delgado-Ruiz RA, Negri B, Pardo-Zamora G, Peñarrocha D, Barona C, Granero JM and Alcaraz-Baños M: Melatonin promotes angiogenesis during repair of bone defects: A radiological and histomorphometric study in rabbit tibiae. Clin Oral Investig. 17:147–158. 2013. View Article : Google Scholar | |
Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL and Mihu CM: Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 59:455–467. 2018. | |
Pugazhenthi K, Kapoor M, Clarkson AN, Hall I and Appleton I: Melatonin accelerates the process of wound repair in full-thickness incisional wounds. J Pineal Res. 44:387–396. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yildirimturk S, Batu S, Alatli C, Olgac V, Firat D and Sirin Y: The effects of supplemental melatonin administration on the healing of bone defects in streptozotocin-induced diabetic rats. J Appl Oral Sci. 24:239–249. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Carvalho Nogueira EF, de Oliveira Vasconcelos R, Teixeira Correia SS, Souza Catunda I, Amorim JA and do Egito Cavalcanti Vasconcelos B: Is there a benefit to the use of melatonin in preoperative zygomatic fractures? J Oral Maxillofac Surg. 77:2017.e1–2017.e7. 2019. View Article : Google Scholar | |
Al-Aama T, Brymer C, Gutmanis I, Woolmore-Goodwin SM, Esbaugh J and Dasgupta M: Melatonin decreases delirium in elderly patients: A randomized, placebo-controlled trial. Int J Geriatr Psychiatry. 26:687–694. 2011. View Article : Google Scholar | |
Sultan SS: Assessment of role of perioperative melatonin in prevention and treatment of postoperative delirium after hip arthroplasty under spinal anesthesia in the elderly. Saudi J Anaesth. 4:169–173. 2010. View Article : Google Scholar : PubMed/NCBI | |
de Jonghe A, van Munster BC, Goslings JC, Kloen P, van Rees C, Wolvius R, van Velde R, Levi M, de Haan RJ and de Rooij SE; Amsterdam Delirium Study Group: Effect of melatonin on incidence of delirium among patients with hip fracture: A multicentre, double-blind randomized controlled trial. CMAJ. 186:E547–E556. 2014. View Article : Google Scholar : PubMed/NCBI | |
Majidinia M, Reiter RJ, Shakouri SK, Mohebbi I, Rastegar M, Kaviani M, Darband SG, Jahanban-Esfahlan R, Nabavi SM and Yousefi B: The multiple functions of melatonin in regenerative medicine. Ageing Res Rev. 45:33–52. 2018. View Article : Google Scholar : PubMed/NCBI | |
Topkan E, Tufan H, Yavuz AA, Bacanli D, Onal C, Kosdak S and Yavuz MN: Comparison of the protective effects of melatonin and amifostine on radiation-induced epiphyseal injury. Int J Radiat Biol. 84:796–802. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rachner TD, Khosla S and Hofbauer LC: Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cipriani C, Pepe J, Bertoldo F, Bianchi G, Cantatore FP, Corrado A, Di Stefano M, Frediani B, Gatti D, Giustina A, et al: The epidemiology of osteoporosis in Italian postmenopausal women according to the National Bone Health Alliance (NBHA) diagnostic criteria: A multicenter cohort study. J Endocrinol Invest. 41:431–438. 2018. View Article : Google Scholar | |
Parizad N, Baghi V, Karimi EB and Ghanei Gheshlagh R: The prevalence of osteoporosis among Iranian postmenopausal women with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab Syndr. 13:2607–2612. 2019. View Article : Google Scholar : PubMed/NCBI | |
Melton LJ III: The prevalence of osteoporosis: Gender and racial comparison. Calcif Tissue Int. 69:179–181. 2001. View Article : Google Scholar : PubMed/NCBI | |
Coughlan T and Dockery F: Osteoporosis and fracture risk in older people. Clin Med (Lond). 14:187–191. 2014. View Article : Google Scholar | |
Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY and Yu SN: A network meta-analysis on the short-term efficacy and adverse events of different anti-osteoporosis drugs for the treatment of postmenopausal osteoporosis. J Cell Biochem. 119:4469–4481. 2018. View Article : Google Scholar | |
Cui Z, Meng X, Feng H, Zhuang S, Liu Z, Zhu T, Ye K, Xing Y, Sun C, Zhou F and Tian Y: Estimation and projection about the standardized prevalence of osteoporosis in mainland China. Arch Osteoporos. 15:22019. View Article : Google Scholar : PubMed/NCBI | |
Lane NE: Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 194(2 Suppl): S3–S11. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mohd-Tahir NA and Li SC: Economic burden of osteoporosis-related hip fracture in Asia: A systematic review. Osteoporos Int. 28:2035–2044. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hopkins RB, Burke N, Von Keyserlingk C, Leslie WD, Morin SN, Adachi JD, Papaioannou A, Bessette L, Brown JP, Pericleous L and Tarride J: The current economic burden of illness of osteoporosis in Canada. Osteoporos Int. 27:3023–3032. 2016. View Article : Google Scholar : PubMed/NCBI | |
Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schneider E and Alini M: Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord. 12:2712011. View Article : Google Scholar | |
Pines A: Circadian rhythm and menopause. Climacteric. 19:551–552. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sack RL, Lewy AJ, Erb DL, Vollmer WM and Singer CM: Human melatonin production decreases with age. J Pineal Res. 3:379–388. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kotlarczyk MP, Lassila HC, O'Neil CK, D'Amico F, Enderby LT, Witt-Enderby PA and Balk JL: Melatonin osteoporosis prevention study (MOPS): A randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res. 52:414–426. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sharan K, Lewis K, Furukawa T and Yadav VK: Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J Pineal Res. 63. pp. e124232017, View Article : Google Scholar | |
Bao T, Zeng L, Yang K, Li Y, Ren F, Zhang Y and Gao Z: Can melatonin improve the osteopenia of perimenopausal and postmenopausal women? A meta-analysis. Int J Endocrinol. 2019:51516782019. View Article : Google Scholar : PubMed/NCBI | |
Tresguerres IF, Tamimi F, Eimar H, Barralet JE, Prieto S, Torres J, Calvo-Guirado JL and Tresguerres JA: Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res. 17:341–346. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Sheng H, Bao Q, Wang Y, Lu J and Ni X: NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun. 56:175–186. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Zhang L, Wang Z, Li C, Li S, Li L, Fan Q and Zheng L: Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcif Tissue Int. 103:400–410. 2018. View Article : Google Scholar : PubMed/NCBI | |
Si Y, Wang C, Guo Y, Xu G and Ma Y: Prevalence of osteoporosis in patients with type 2 diabetes mellitus in the Chinese mainland: A systematic review and meta-analysis. Iran J Public Health. 48:1203–1214. 2019.PubMed/NCBI | |
Paschou SA, Dede AD, Anagnostis PG, Vryonidou A, Morganstein D and Goulis DG: Type 2 diabetes and osteoporosis: A guide to optimal management. J Clin Endocrinol Metab. 102:3621–3634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lecka-Czernik B: Diabetes, bone and glucose-lowering agents: Basic biology. Diabetologia. 60:1163–1169. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng HZ, Zhang WL, Liu F and Yang MW: Advanced glycation end products affect osteoblast proliferation and function by modulating autophagy via the receptor of advanced glycation end products/raf protein/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (RAGE/Raf/MEK/ERK) pathway. J Biol Chem. 290:28189–28199. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang WL, Meng HZ, Yang RF, Yang MW, Sun GH, Liu JH, Shi PX, Liu F and Yang B: Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget. 7:52179–52194. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ghareghani M, Scavo L, Arnoult D, Zibara K and Farhadi N: Melatonin therapy reduces the risk of osteoporosis and normalizes bone formation in multiple sclerosis. Fundam Clin Pharmacol. 32:181–187. 2018. View Article : Google Scholar | |
Witt-Enderby PA, Radio NM, Doctor JS and Davis VL: Therapeutic treatments potentially mediated by melatonin receptors: Potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy. J Pineal Res. 41:297–305. 2006. View Article : Google Scholar : PubMed/NCBI | |
March L, Smith EU, Hoy DG, Cross MJ, Sanchez-Riera L, Blyth F, Buchbinder R, Vos T and Woolf AD: Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol. 28:353–366. 2014. View Article : Google Scholar : PubMed/NCBI | |
Neogi T and Zhang Y: Epidemiology of osteoarthritis. Rheum Dis Clin North Am. 39:1–19. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thomas AC, Hubbard-Turner T, Wikstrom EA and Palmieri-Smith RM: Epidemiology of Posttraumatic Osteoarthritis. J Athl Train. 52:491–496. 2017. View Article : Google Scholar : | |
Vina ER and Kwoh CK: Epidemiology of osteoarthritis: Literature update. Curr Opin Rheumatol. 30:160–167. 2018. View Article : Google Scholar : | |
Gentili C and Cancedda R: Cartilage and bone extracellular matrix. Curr Pharm Des. 15:1334–1348. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P and Fearon U: The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 13:302–311. 2017. View Article : Google Scholar : PubMed/NCBI | |
Buckwalter JA, Anderson DD, Brown TD, Tochigi Y and Martin JA: The roles of mechanical stresses in the pathogenesis of osteoarthritis: Implications for treatment of joint injuries. Cartilage. 4:286–294. 2013. View Article : Google Scholar | |
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42. 2011. View Article : Google Scholar | |
Gao B, Gao W, Wu Z, Zhou T, Qiu X, Wang X, Lian C, Peng Y, Liang A, Qiu J, et al: Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells. Stem Cell Res Ther. 9:1622018. View Article : Google Scholar | |
Taruc-Uy RL and Lynch SA: Diagnosis and treatment of osteoarthritis. Prim Care. 40:821–836. vii2013. View Article : Google Scholar : PubMed/NCBI | |
Hainque B, Dominice J, Jaffray P, Ronot X and Adolphe M: Effects of dexamethasone on the growth of cultured rabbit articular chondrocytes: Relation with the nuclear glucocorticoid-receptor complex. Ann Rheum Dis. 46:146–152. 1987. View Article : Google Scholar : PubMed/NCBI | |
Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM and Sokolove J: Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 12:580–592. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu-Bryan R and Terkeltaub R: Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol. 11:35–44. 2015. View Article : Google Scholar : | |
Zhang Y, Lin J, Zhou X, Chen X, Chen AC, Pi B, Pan G, Pei M, Yang H, Liu T and He F: Melatonin prevents osteoarthritis-induced cartilage degradation via targeting MicroRNA-140. Oxid Med Cell Longev. 2019:97059292019. View Article : Google Scholar | |
Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H and Mehrzadi S: Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 61:411–425. 2016. View Article : Google Scholar : PubMed/NCBI | |
Milam SB, Zardeneta G and Schmitz JP: Oxidative stress and degenerative temporomandibular joint disease: A proposed hypothesis. J Oral Maxillofac Surg. 56:214–223. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bolduc JA, Collins JA and Loeser RF: Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med. 132:73–82. 2019. View Article : Google Scholar : | |
Bakker AD, Silva VC, Krishnan R, Bacabac RG, Blaauboer ME, Lin YC, Marcantonio RA, Cirelli JA and Klein-Nulend J: Tumor necrosis factor alpha and interleukin-1beta modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes. Arthritis Rheum. 60:3336–3345. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lim HD, Kim YS, Ko SH, Yoon IJ, Cho SG, Chun YH, Choi BJ and Kim EC: Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J Pineal Res. 53:225–237. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo JY, Li F, Wen YB, Cui HX, Guo ML, Zhang L, Zhang YF, Guo YJ and Guo YX: Melatonin inhibits Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes to attenuate osteoarthritis. Oncotarget. 8:55967–55983. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cuzzocrea S, Zingarelli B, Gilad E, Hake P, Salzman AL and Szabó C: Protective effect of melatonin in carrageenan-induced models of local inflammation: Relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. J Pineal Res. 23:106–116. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ozturk G, Coşkun S, Erbaş D and Hasanoglu E: The effect of melatonin on liver superoxide dismutase activity, serum nitrate and thyroid hormone levels. Jpn J Physiol. 50:149–153. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hossain FM and Hong Y, Jin Y, Choi J and Hong Y: Physiological and pathological role of circadian hormones in osteoarthritis: Dose-dependent or time-dependent? J Clin Med. 8:14152019. View Article : Google Scholar : | |
Jahanban-Esfahlan R, Mehrzadi S, Reiter RJ, Seidi K, Majidinia M, Baghi HB, Khatami N, Yousefi B and Sadeghpour A: Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: Involvement of circadian clock genes. Br J Pharmacol. 175:3230–3238. 2018. View Article : Google Scholar : | |
Rong J, Zhu M, Munro J, Cornish J, McCarthy GM, Dalbeth N and Poulsen RC: Altered expression of the core circadian clock component PERIOD2 contributes to osteoarthritis-like changes in chondrocyte activity. Chronobiol Int. 36:319–331. 2019. View Article : Google Scholar | |
Yang W, Kang X, Liu J, Li H, Ma Z, Jin X, Qian Z, Xie T, Qin N, Feng D, et al: Clock gene Bmal1 modulates human cartilage gene expression by crosstalk with Sirt1. Endocrinology. 157:3096–3107. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Kim H, Lee S, Jin Y, Choi J, Lee SR, Chang KT and Hong Y: Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee. Oncotarget. 8:97633–97647. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nugent M: MicroRNAs: Exploring new horizons in osteoarthritis. Osteoarthritis Cartilage. 24:573–580. 2016. View Article : Google Scholar | |
Miyaki S and Asahara H: Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 8:543–552. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24:1173–1185. 2010. View Article : Google Scholar : PubMed/NCBI | |
Si HB, Zeng Y, Liu SY, Zhou ZK, Chen YN, Cheng JQ, Lu YR and Shen B: Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage. 25:1698–1707. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK and Asahara H: MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60:2723–2730. 2009. View Article : Google Scholar : PubMed/NCBI | |
Karlsen TA, de Souza GA, Ødegaard B, Engebretsen L and Brinchmann JE: microRNA-140 inhibits inflammation and stimulates chondrogenesis in a model of interleukin 1β-induced osteoarthritis. Mol Ther Nucleic Acids. 5:e3732016. View Article : Google Scholar | |
Wu Z, Qiu X, Gao B, Lian C, Peng Y, Liang A, Xu C, Gao W, Zhang L, Su P, et al: Melatonin-mediated miR-526b-3p and miR-590-5p upregulation promotes chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res. 65:e124832018. View Article : Google Scholar : PubMed/NCBI | |
Jüni P, Hari R, Rutjes AW, Fischer R, Silletta MG, Reichenbach S and da Costa BR: Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. pp. CD0053282015 | |
McAlindon TE, LaValley MP, Harvey WF, Price LL, Driban JB, Zhang M and Ward RJ: Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: A randomized clinical trial. JAMA. 317:1967–1975. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Kang X, Qin N, Li F, Jin X, Ma Z, Qian Z and Wu S: Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1. Steroids. 126:24–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Garrido-Urbani S, Jaquet V and Imhof BA: ROS and NADPH oxidase: Key regulators of tumor vascularisation. Med Sci (Paris). 30:415–421. 2014.In French. View Article : Google Scholar | |
Ahn J, Kim SA, Kim KW, Oh JH and Kim SJ: Optimization of TGF-β1-transduced chondrocytes for cartilage regeneration in a 3D printed knee joint model. PLoS One. 14:e02176012019. View Article : Google Scholar | |
Verdier MP, Seité S, Guntzer K, Pujol JP and Boumédiène K: Immunohistochemical analysis of transforming growth factor beta isoforms and their receptors in human cartilage from normal and osteoarthritic femoral heads. Rheumatol Int. 25:118–124. 2005. View Article : Google Scholar | |
Fang J, Xu L, Li Y and Zhao Z: Roles of TGF-beta 1 signaling in the development of osteoarthritis. Histol Histopathol. 31:1161–1167. 2016.PubMed/NCBI | |
Pei M, He F, Wei L and Rawson A: Melatonin enhances cartilage matrix synthesis by porcine articular chondrocytes. J Pineal Res. 46:181–187. 2009. View Article : Google Scholar | |
Maestroni GJ, Sulli A, Pizzorni C, Villaggio B and Cutolo M: Melatonin in rheumatoid arthritis: Synovial macrophages show melatonin receptors. Ann N Y Acad Sci. 966:271–275. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hong Y, Kim H, Lee Y, Lee S, Kim K, Jin Y, Lee SR, Chang KT and Hong Y: Salutary effects of melatonin combined with treadmill exercise on cartilage damage. J Pineal Res. 57:53–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Osseni RA, Rat P, Bogdan A, Warnet JM and Touitou Y: Evidence of prooxidant and antioxidant action of melatonin on human liver cell line HepG2. Life Sci. 68:387–399. 2000. View Article : Google Scholar | |
Zhang HM and Zhang Y: Melatonin: A well-documented anti-oxidant with conditional pro-oxidant actions. J Pineal Res. 57:131–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saito R, Muneta T, Ozeki N, Nakagawa Y, Udo M, Yanagisawa K, Tsuji K, Tomita M, Koga H and Sekiya I: Strenuous running exacerbates knee cartilage erosion induced by low amount of mono-iodoacetate in rats. BMC Musculoskelet Disord. 18:362017. View Article : Google Scholar : PubMed/NCBI | |
Gustafsson A and Asman B: Increased release of free oxygen radicals from peripheral neutrophils in adult periodontitis after Fc delta-receptor stimulation. J Clin Periodontol. 23:38–44. 1996. View Article : Google Scholar : PubMed/NCBI | |
Battino M, Bullon P, Wilson M and Newman H: Oxidative injury and inflammatory periodontal diseases: The challenge of anti-oxidants to free radicals and reactive oxygen species. Crit Rev Oral Biol Med. 10:458–476. 1999. View Article : Google Scholar | |
Walters J and Lai PC: Should antibiotics be prescribed to treat chronic periodontitis? Dent Clin North Am. 59:919–933. 2015. View Article : Google Scholar : PubMed/NCBI | |
Srinath R, Acharya AB and Thakur SL: Salivary and gingival crevicular fluid melatonin in periodontal health and disease. J Periodontol. 81:277–283. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gómez-Moreno G, Cutando-Soriano A, Arana C, Galindo P, Bolaños J, Acuña-Castroviejo D and Wang HL: Melatonin expression in periodontal disease. J Periodontal Res. 42:536–540. 2007. View Article : Google Scholar : PubMed/NCBI | |
Laakso ML, Porkka-Heiskanen T, Alila A, Stenberg D and Johansson G: Correlation between salivary and serum melatonin: Dependence on serum melatonin levels. J Pineal Res. 9:39–50. 1990. View Article : Google Scholar : PubMed/NCBI | |
Madapusi BT and Rao SR: Preliminary evaluation of human gingiva as an extrapineal site of melatonin biosynthesis in states of periodontal health and disease. J Clin Diagnostic Res. 12:ZF1–ZF7. 2018. | |
Ghallab NA, Hamdy E and Shaker OG: Malondialdehyde, superoxide dismutase and melatonin levels in gingival crevicular fluid of aggressive and chronic periodontitis patients. Aust Dent J. 61:53–61. 2016. View Article : Google Scholar | |
Lodhi K, Saimbi CS, Khan MA, Nath C and Shukla R: Evaluation of melatonin levels in saliva in gingivitis and periodontitis cases: A pilot study. Contemp Clin Dent. 7:519–523. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cutando A, Galindo P, Gómez-Moreno G, Arana C, Bolaños J, Acuña-Castroviejo D and Wang HL: Relationship between salivary melatonin and severity of periodontal disease. J Periodontol. 77:1533–1538. 2006. View Article : Google Scholar : PubMed/NCBI | |
Almughrabi OM, Marzouk KM, Hasanato RM and Shafik SS: Melatonin levels in periodontal health and disease. J Periodont Res. 48:315–321. 2013. View Article : Google Scholar | |
Tinto M, Sartori M, Pizzi I, Verga A and Longoni S: Melatonin as host modulating agent supporting nonsurgical periodontal therapy in patients affected by untreated severe periodontitis: A preliminary randomized, triple-blind, placebo-controlled study. J Periodont Res. 55:61–67. 2020. View Article : Google Scholar | |
Chitsazi M, Faramarzie M, Sadighi M, Shirmohammadi A and Hashemzadeh A: Effects of adjective use of melatonin and vitamin C in the treatment of chronic periodontitis: A randomized clinical trial. J Dent Res Dent Clin Dent Prospects. 11:236–240. 2017. | |
Bazyar H, Gholinezhad H, Moradi L, Salehi P, Abadi F, Ravanbakhsh M and Zare Javid A: The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: A double-blind, placebo-controlled trial. Inflammopharmacology. 27:67–76. 2019. View Article : Google Scholar | |
Sarıtekin E, Üreyen Kaya B, Aşcı H and Özmen Ö: Anti-inflammatory and antiresorptive functions of melatonin on experimentally induced periapical lesions. Int Endod J. 52:1466–1478. 2019. View Article : Google Scholar | |
Renn TY, Huang YK, Feng SW, Wang HW, Lee WF, Lin CT, Burnouf T, Chen LY, Kao PF and Chang HM: Prophylactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR4/MyD88 signaling pathway. J Pineal Res. 64:2018. View Article : Google Scholar | |
Botero JE, Yepes FL, Roldán N, Castrillón CA, Hincapie JP, Ochoa SP, Ospina CA, Becerra MA, Jaramillo A, Gutierrez SJ and Contreras A: Tooth and periodontal clinical attachment loss are associated with hyperglycemia in patients with diabetes. J Periodontol. 83:1245–1250. 2012. View Article : Google Scholar : PubMed/NCBI | |
Daniel R, Gokulanathan S, Shanmugasundaram N, Lakshmigandhan M and Kavin T: Diabetes and periodontal disease. J Pharm Bioallied Sci. 4(Suppl 2): S280–S282. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grover HS and Luthra S: Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease. J Indian Soc Periodontol. 17:292–301. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abdolsamadi H, Goodarzi MT, Ahmadi Motemayel F, Jazaeri M, Feradmal J, Zarabadi M, Hoseyni M and Torkzaban P: Reduction of melatonin level in patients with type II diabetes and periodontal diseases. J Dent Res Dent Clin Dent Prospects. 8:160–165. 2014.PubMed/NCBI | |
Balci Yuce H, Karatas O, Aydemir Turkal H, Pirim Gorgun E, Ocakli S, Benli I and Cayli S: The effect of melatonin on bone loss, diabetic control, and apoptosis in rats with diabetes with ligature-induced periodontitis. J Periodontol. 87:e35–e43. 2016. View Article : Google Scholar | |
Cutando A, López-Valverde A, de Diego RG, de Vicente J, Reiter R, Fernández MH and Ferrera MJ: Effect of topical application of melatonin to the gingiva on salivary osteoprotegerin, RANKL and melatonin levels in patients with diabetes and periodontal disease. Odontology. 102:290–296. 2014. | |
Montero J, López-Valverde N, Ferrera MJ and López-Valverde A: Changes in crevicular cytokines after application of melatonin in patients with periodontal disease. J Clin Exp Dent. 9:e1081–e1087. 2017.PubMed/NCBI | |
Martens L, De Smet S, Yusof MY and Rajasekharan S: Association between overweight/obesity and periodontal disease in children and adolescents: A systematic review and meta-analysis. Eur Arch Paediatr Dent. 18:69–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Keller A, Rohde JF, Raymond K and Heitmann BL: Association between periodontal disease and overweight and obesity: A systematic review. J Periodontol. 86:766–776. 2015. View Article : Google Scholar : PubMed/NCBI | |
Virto L, Cano P, Jiménez-Ortega V, Fernández-Mateos P, González J, Esquifino AI and Sanz M: Obesity and periodontitis: An experimental study to evaluate periodontal and systemic effects of comorbidity. J Periodontol. 89:176–185. 2018. | |
Shimizu I, Yoshida Y and Minamino T: A role for circadian clock in metabolic disease. Hypertens Res. 39:483–491. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zisapel N: New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 175:3190–3199. 2018. View Article : Google Scholar : PubMed/NCBI | |
Szewczyk-Golec K, Woźniak A and Reiter RJ: Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: Implications for obesity. J Pineal Res. 59:277–291. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ríos-Lugo MJ, Cano P, Jiménez-Ortega V, Fernández-Mateos MP, Scacchi PA, Cardinali DP and Esquifino AI: Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides and cholesterol in normal and high fat-fed rats. J Pineal Res. 49:342–348. 2010. View Article : Google Scholar : PubMed/NCBI | |
Favero G, Stacchiotti A, Castrezzati S, Bonomini F, Albanese M, Rezzani R and Rodella LF: Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutr Res. 35:891–900. 2015. View Article : Google Scholar : PubMed/NCBI | |
Virto L, Haugen HJ, Fernández-Mateos P, Cano P, González J, Jiménez-Ortega V, Esquifino AI and Sanz M: Melatonin expression in periodontitis and obesity: An experimental in-vivo investigation. J Periodont Res. 53:825–831. 2018. View Article : Google Scholar | |
Virto L, Cano P, Jiménez-Ortega V, Fernández-Mateos P, González J, Haugen HJ, Esquifino AI and Sanz M: Melatonin as adjunctive therapy in the treatment of periodontitis associated with obesity. J Clin Periodontol. 45:1336–1346. 2018. View Article : Google Scholar : PubMed/NCBI | |
Santos RMD, Marani F, Chiba FY, Mattera MSLC, Tsosura TVS, Tessarin GWL, Pereira RF, Belardi BE, Pinheiro BCES and Sumida DH: Melatonin promotes reduction in TNF levels and improves the lipid profile and insulin sensitivity in pinealectomized rats with periodontal disease. Life Sci. 213:32–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Diomede F, Zingariello M, Cavalcanti MFXB, Merciaro I, Pizzicannella J, De Isla N, Caputi S, Ballerini P and Trubiani O: MyD88/ERK/NFkB pathways and pro-inflammatory cytokines release in periodontal ligament stem cells stimulated by Porphyromonas gingivalis. Eur J Histochem. 61:27912017. | |
Nagata M, Iwasaki K, Akazawa K, Komaki M, Yokoyama N, Izumi Y and Morita I: Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng Part A. 23:367–377. 2017. View Article : Google Scholar : | |
Bae WJ, Park JS, Kang SK, Kwon IK and Kim EC: Effects of melatonin and its underlying mechanism on ethanol-stimulated senescence and osteoclastic differentiation in human periodontal ligament cells and cementoblasts. Int J Mol Sci. 19:17422018. View Article : Google Scholar : | |
El-Sharkawy H, Elmeadawy S, Elshinnawi U and Anees M: Is dietary melatonin supplementation a viable adjunctive therapy for chronic periodontitis?-A randomized controlled clinical trial. J Periodont Res. 54:190–197. 2019. View Article : Google Scholar | |
Irwin MR, Olmstead R and Carroll JE: Sleep disturbance, sleep duration, and inflammation: A Systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry. 80:40–52. 2016. View Article : Google Scholar | |
Andersen LP, Gögenur I, Rosenberg J and Reiter RJ: The safety of melatonin in humans. Clin Drug Investig. 36:169–175. 2016. View Article : Google Scholar | |
Foley HM and Steel AE: Adverse events associated with oral administration of melatonin: A critical systematic review of clinical evidence. Complement Ther Med. 42:65–81. 2019. View Article : Google Scholar : PubMed/NCBI | |
Frisher M, Gibbons N, Bashford J, Chapman S and Weich S: Melatonin, hypnotics and their association with fracture: A matched cohort study. Age Ageing. 45:801–806. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Li J, Xing HL, Tao ZS and Yang M: Melatonin improves the osseointegration of hydroxyapatite-coated titanium implants in senile female rats. Z Gerontol Geriatr. 53:770–777. 2020. View Article : Google Scholar | |
Cutando A, Arana C, Gómez-Moreno G, Escames G, López A, Ferrera MJ, Reiter RJ and Acuña-Castroviejo D: Local application of melatonin into alveolar sockets of beagle dogs reduces tooth removal-induced oxidative stress. J Periodontol. 78:576–583. 2007. View Article : Google Scholar : PubMed/NCBI | |
Swanson CM, Kohrt WM, Buxton OM, Everson CA, Wright KP Jr, Orwoll ES and Shea SA: The importance of the circadian system & sleep for bone health. Metabolism. 84:28–43. 2018. View Article : Google Scholar : | |
Wu QY, Wang J, Tong X, Chen J, Wang B, Miao ZN, Li X, Ye JX and Yuan FL: Emerging role of circadian rhythm in bone remodeling. J Mol Med (Berl). 97:19–24. 2019. View Article : Google Scholar | |
Yang N and Meng QJ: Circadian clocks in articular cartilage and bone: A compass in the sea of matrices. J Biol Rhythms. 31:415–427. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tian Y and Li LM: Epidemiological study of sleep disorder in the elderly. Zhonghua Liu Xing Bing Xue Za Zhi. 38:988–992. 2017.In Chinese. PubMed/NCBI | |
Santoro N: Perimenopause: From research to practice. J Womens Health (Larchmt). 25:332–339. 2016. View Article : Google Scholar |