1
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lin RZ, Moreno-Luna R, Li D, Jaminet SC,
Greene AK and Melero-Martin JM: Human endothelial colony-forming
cells serve as trophic mediators for mesenchymal stem cell
engraftment via paracrine signaling. Proc Natl Acad Sci USA.
111:10137–10142. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Caplan AI: Mesenchymal stem cells. J
Orthop Res. 9:641–650. 1991. View Article : Google Scholar : PubMed/NCBI
|
4
|
Caplan AI and Bruder SP: Mesenchymal stem
cells: Building blocks for molecular medicine in the 21st century.
Trends Mol Med. 7:259–264. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang N, Wang G, Hu C, Shi Y, Liao L, Shi
S, Cai Y, Cheng S, Wang X, Liu Y, et al: Tumor necrosis factor α
suppresses the mesenchymal stem cell osteogenesis promoter miR-21
in estrogen deficiency–induced osteoporosis. J Bone Miner Res.
28:559–573. 2013. View Article : Google Scholar
|
6
|
Alford AI, Kozloff KM and Hankenson KD:
Extracellular matrix networks in bone remodeling. Int J Biochem
Cell Biol. 65:20–31. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Beck GR Jr, Khazai NB, Bouloux GF,
Camalier CE, Lin Y, Garneys LM, Siqueira J, Peng L, Pasquel F,
Umpierrez D, et al: The effects of thiazolidinediones on human bone
marrow stromal cell differentiation in vitro and in
thiazolidinedione-treated patients with type 2 diabetes. Transl
Res. 161:145–155. 2013. View Article : Google Scholar
|
8
|
Tang Y, Xie H, Chen J, Geng L, Chen H, Li
X, Hou Y, Lu L, Shi S, Zeng X and Sun L: Activated NF-κB in bone
marrow mesenchymal stem cells from systemic lupus erythematosus
patients inhibits osteogenic differentiation through downregulating
Smad signaling. Stem Cells Dev. 22:668–678. 2012. View Article : Google Scholar
|
9
|
D'Amelio P, Tamone C, Sassi F, D'Amico L,
Roato I, Patanè S, Ravazzoli M, Veneziano L, Ferracini R,
Pescarmona GP and Isaia GC: Teriparatide increases the maturation
of circulating osteoblast precursors. Osteoporos Int. 23:1245–1253.
2012. View Article : Google Scholar
|
10
|
Zhang S, Chen X, Hu Y, Wu J, Cao Q, Chen S
and Gao Y: All-trans retinoic acid modulates Wnt3A-induced
osteogenic differentiation of mesenchymal stem cells via activating
the PI3K/AKT/GSK3β signalling pathway. Mol Cell Endocrinol.
422:243–253. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Noronha-Matos JB and Correia-de-Sá P:
Mesenchymal stem cells ageing: Targeting the 'Purinome' to promote
osteogenic differentiation and bone repair. J Cell Physiol.
231:1852–1861. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu H, Xia X and Li B: Mesenchymal stem
cell aging: Mechanisms and influences on skeletal and non-skeletal
tissues. Exp Biol Med (Maywood). 240:1099–1106. 2015. View Article : Google Scholar
|
13
|
Anastas JN and Moon RT: WNT signalling
pathways as therapeutic targets in cancer. Nat Rev Cancer.
13:11–26. 2013. View
Article : Google Scholar
|
14
|
Zhou L and Liu Y: Wnt/beta-catenin
signalling and podocyte dysfunction in proteinuric kidney disease.
Nat Rev Nephrol. 11:535–545. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hynes NE, Ingham PW, Lim WA, Marshall CJ,
Massagué J and Pawson T: Signalling change: Signal transduction
through the decades. Nat Rev Mol Cell Biol. 14:393–398. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Palomo T, Al-Jallad H, Moffatt P, Glorieux
FH, Lentle B, Roschger P, Klaushofer K and Rauch F: Skeletal
characteristics associated with homozygous and heterozygous WNT1
mutations. Bone. 67:63–70. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Laine CM, Joeng KS, Campeau PM, Kiviranta
R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ,
et al: WNT1 mutations in early-onset osteoporosis and osteogenesis
imperfecta. N Engl J Med. 368:1809–1816. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Rauch F and Glorieux FH: Osteogenesis
imperfecta. Lancet. 363:1377–1385. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Keupp K, Beleggia F, Kayserili H, Barnes
AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, et
al: Mutations in WNT1 cause different forms of bone fragility. Am J
Hum Genet. 92:565–574. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Keller KC, Ding H, Tieu R, Sparks NR,
Ehnes DD and Zur Nieden NI: Wnt5a supports osteogenic lineage
decisions in embryonic stem cells. Stem Cells Dev. 25:1020–1032.
2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen J, Tu X, Esen E, Joeng KS, Lin C,
Arbeit JM, Rüegg MA, Hall MN, Ma L and Long F: WNT7B promotes bone
formation in part through mTORC1. PLoS Genet. 10:e10041452014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Tan SH, Senarath-Yapa K, Chung MT,
Longaker MT, Wu JY and Nusse R: Wnts produced by Osterix-expressing
osteolineage cells regulate their proliferation and
differentiation. Proc Natl Acad Sci USA. 111:E5262–E5271. 2014.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati
N, Martinez-Santibañez G and MacDougald OA: Wnt6, Wnt10a and Wnt10b
inhibit adipogenesis and stimulate osteoblastogenesis through a
β-catenin-dependent mechanism. Bone. 50:477–489. 2012. View Article : Google Scholar
|
25
|
Cheng SL, Shao JS, Cai J, Sierra OL and
Towler DA: Msx2 exerts bone anabolism via canonical Wnt signaling.
J Biol Chem. 283:20505–20522. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K,
Zhou X, Park NH and Wang CY: Histone demethylases KDM4B and KDM6B
promotes osteogenic differentiation of human MSCs. Cell Stem Cell.
11:50–61. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Najdi R, Proffitt K, Sprowl S, Kaur S, Yu
J, Covey TM, Virshup DM and Waterman ML: A uniform human Wnt
expression library reveals a shared secretory pathway and unique
signaling activities. Differentiation. 84:203–213. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cao Y, Sun Z, Liao L, Meng Y, Han Q and
Zhao RC: Human adipose tissue-derived stem cells differentiate into
endothelial cells in vitro and improve postnatal neovascularization
in vivo. Biochem Biophys Res Commun. 332:370–379. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
30
|
Dou XW, Liang YK, Lin HY, Wei XL, Zhang
YQ, Bai JW, Chen CF, Chen M, Du CW, Li YC, et al: Notch3 maintains
luminal phenotype and suppresses tumorigenesis and metastasis of
breast cancer via trans-activating estrogen receptor-α.
Theranostics. 7:4041–4056. 2017. View Article : Google Scholar :
|
31
|
Oosterwegel MA, van de Wetering ML,
Holstege FC, Prosser HM, Owen MJ and Clevers HC: TCF-1, a T
cell-specific transcription factor of the HMG box family, interacts
with sequence motifs in the TCRβ and TCRδ enhancers. Int Immunol.
3:1189–1192. 1991. View Article : Google Scholar : PubMed/NCBI
|
32
|
van Beest M, Dooijes D, van De Wetering M,
Kjaerulff S, Bonvin A, Nielsen O and Clevers H: Sequence-specific
high mobility group box factors recognize 10-12-base pair minor
groove motifs. J Biol Chem. 275:27266–27273. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gaur T, Lengner CJ, Hovhannisyan H, Bhat
RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS
and Lian JB: Canonical WNT signaling promotes osteogenesis by
directly stimulating Runx2 gene expression. J Biol Chem.
280:33132–33140. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh
CF, Kuo ML and Yen ML: Resveratrol promotes osteogenesis of human
mesenchymal stem cells by upregulating RUNX2 gene expression via
the SIRT1/FOXO3A axis. J Bone Miner Res. 26:2552–2563. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Baglìo SR, Devescovi V, Granchi D and
Baldini N: MicroRNA expression profiling of human bone marrow
mesenchymal stem cells during osteogenic differentiation reveals
Osterix regulation by miR-31. Gene. 527:321–331. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li E, Zhang J, Yuan T and Ma B: MiR-143
suppresses osteogenic differentiation by targeting Osterix. Mol
Cell Biochem. 390:69–74. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
AlAmer N, Bondalapati A, Garcia-Godoy F
and Kandalam U: Osteogenic differentiation of orofacial
tissue-derived mesenchymal stem cells-A review. Curr Tissue Eng.
5:11–20. 2016. View Article : Google Scholar
|
38
|
Atashi F, Modarressi A and Pepper MS: The
role of reactive oxygen species in mesenchymal stem cell adipogenic
and osteogenic differentiation: A review. Stem Cells Dev.
24:1150–1163. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Fakhry M, Hamade E, Badran B, Buchet R and
Magne D: Molecular mechanisms of mesenchymal stem cell
differentiation towards osteoblasts. World J Stem Cells. 5:136–148.
2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Deng ZL, Sharff KA, Tang N, Song WX, Luo
J, Luo X, Chen J, Bennett E, Reid R, Manning D, et al: Regulation
of osteogenic differentiation during skeletal development. Front
Biosci. 13:2001–2021. 2008. View
Article : Google Scholar
|
41
|
Harada SI and Rodan GA: Control of
osteoblast function and regulation of bone mass. Nature.
423:349–355. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Komori T: Regulation of bone development
and maintenance by Runx2. Front Biosci. 13:898–903. 2007.
View Article : Google Scholar : PubMed/NCBI
|
43
|
James AW: Review of signaling pathways
governing MSC osteogenic and adipogenic differentiation.
Scientifica (Cairo). 2013:6847362013.
|
44
|
Nakashima K, Zhou X, Kunkel G, Zhang Z,
Deng JM, Behringer RR and de Crombrugghe B: The novel zinc
finger-containing transcription factor osterix is required for
osteoblast differentiation and bone formation. Cell. 108:17–29.
2002. View Article : Google Scholar : PubMed/NCBI
|
45
|
Artigas N, Gámez B, Cubillos-Rojas M,
Sánchez-de Diego C, Valer JA, Pons G, Rosa JL and Ventura F: p53
inhibits SP7/Osterix activity in the transcriptional program of
osteoblast differentiation. Cell Death Differ. 24:2022–2031. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Leucht P and Helms JA: Wnt signaling: An
emerging target for bone regeneration. J Am Acad Orthop Surg.
23:67–68. 2015. View Article : Google Scholar
|
47
|
Yin X, Li J, Salmon B, Huang L, Lim WH,
Liu B, Hunter DJ, Ransom RC, Singh G, Gillette M, et al: Wnt
signaling and its contribution to craniofacial tissue homeostasis.
J Dental Res. 94:1487–1494. 2015. View Article : Google Scholar
|
48
|
van de Wetering M, Oosterwegel M, Dooijes
D and Clevers H: Identification and cloning of TCF-1, a T
lymphocyte-specific transcription factor containing a
sequence-specific HMG box. EMBO J. 10:123–132. 1991. View Article : Google Scholar : PubMed/NCBI
|