Role of the central renin‑angiotensin system in hypertension (Review)
- Authors:
- Chuanxin Su
- Jinhua Xue
- Chao Ye
- Aidong Chen
-
Affiliations: Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China, Research Center for Cardiovascular and Cerebrovascular Diseases, The University of Duisburg‑Essen, Duisburg‑Essen University, D-45122 Essen, Germany - Published online on: April 7, 2021 https://doi.org/10.3892/ijmm.2021.4928
- Article Number: 95
-
Copyright: © Su et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Niriayo YL, Ibrahim S, Kassa TD, Asgedom SW, Atey TM, Gidey K, Demoz GT and Kahsay D: Practice and predictors of self-care behaviors among ambulatory patients with hypertension in Ethiopia. PLoS One. 14:e02189472019. View Article : Google Scholar : PubMed/NCBI | |
Agbor LN, Nair AR, Wu J, Lu KT, Davis DR, Keen HL, Quelle FW, McCormick JA, Singer JD and Sigmund CD: Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension. JCI Insight. 5:e1297932019. View Article : Google Scholar | |
Chen A, Huang BS, Wang HW, Ahmad M and Leenen FH: Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. J Physiol. 592:3523–3536. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schaeffer C, Izzi C, Vettori A, Pasqualetto E, Cittaro D, Lazarevic D, Caridi G, Gnutti B, Mazza C, Jovine L, et al: Autosomal dominant tubulointerstitial kidney disease with adult onset due to a novel renin mutation mapping in the mature protein. Sci Rep. 9:116012019. View Article : Google Scholar : PubMed/NCBI | |
Wannberg J, Isaksson R, Bremberg U, Backlund M, Sävmarker J, Hallberg M and Larhed M: A convenient transesterification method for synthesis of AT2 receptor ligands with improved stability in human liver microsomes. Bioorg Med Chem Lett. 28:519–522. 2018. View Article : Google Scholar | |
Kemp BA, Howell NL, Keller SR, Gildea JJ, Shao W, Navar LG and Carey RM: Defective renal angiotensin III and AT2 receptor signaling in prehypertensive spontaneously hypertensive rats. J Am Heart Assoc. 8:e0120162019. View Article : Google Scholar : | |
Assersen KB, Sumners C and Steckelings UM: The renin-angiotensin system in hypertension, a constantly renewing classic: Focus on the angiotensin AT2-receptor. Can J Cardiol. 36:683–693. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siragy HM: The potential role of the angiotensin subtype 2 receptor in cardiovascular protection. Curr Hypertens Rep. 11:260–262. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Kloet AD, Steckelings UM and Sumners C: Protective angiotensin type 2 receptors in the brain and hypertension. Curr Hypertens Rep. 19:462017. View Article : Google Scholar : PubMed/NCBI | |
Jackson L, Eldahshan W, Fagan SC and Ergul A: Within the brain: The renin angiotensin system. Int J Mol Sci. 19:8762018. View Article : Google Scholar : | |
Chrysant SG: The role of angiotensin II receptors in stroke protection. Curr Hypertens Rep. 14:202–208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Su Q, Huo CJ, Li HB, Liu KL, Li X, Yang Q, Song XA, Chen WS, Cui W, Zhu GQ, et al: Renin-angiotensin system acting on reactive oxygen species in paraventricular nucleus induces sympathetic activation via AT1R/PKCγ/Rac1 pathway in salt-induced hypertension. Sci Rep. 7:431072017. View Article : Google Scholar | |
Cardoso LM, Colombari E and Toney GM: Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates sympathetic nerve activity responses to L-glutamate. J Appl Physiol (1985). 113:1423–1431. 2012. View Article : Google Scholar | |
Kang YM, Zhang ZH, Xue B, Weiss RM and Felder RB: Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol. 295:H227–H236. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR and Francis J: Cytokine blockade attenuates sympathoexcitation in heart failure: Cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail. 10:625–634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhu GQ, Xu Y, Zhou LM, Li YH, Fan LM, Wang W, Gao XY and Chen Q: Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Exp Physiol. 94:785–794. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W and Zhu GQ: Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol. 93:746–753. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen AD, Zhang SJ, Yuan N, Xu Y, De W, Gao XY and Zhu GQ: Angiotensin AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol. 96:94–103. 2011. View Article : Google Scholar | |
Sakai K, Agassandian K, Morimoto S, Sinnayah P, Cassell MD, Davisson RL and Sigmund CD: Local production of angiotensin II in the subfornical organ causes elevated drinking. J Clin Invest. 117:1088–1095. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dampney RA, Tan PS, Sheriff MJ, Fontes MA and Horiuchi J: Cardiovascular effects of angiotensin II in the rostral ventrolateral medulla: The push-pull hypothesis. Curr Hypertens Rep. 9:222–227. 2007. View Article : Google Scholar : PubMed/NCBI | |
Krause EG, Melhorn SJ, Davis JF, Scott KA, Ma LY, de Kloet AD, Benoit SC, Woods SC and Sakai RR: Angiotensin type 1 receptors in the subfornical organ mediate the drinking and hypothalamic-pituitary-adrenal response to systemic isoproterenol. Endocrinology. 149:6416–6424. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nunes FC and Braga VA: Chronic angiotensin II infusion modulates angiotensin II type I receptor expression in the subfornical organ and the rostral ventrolateral medulla in hypertensive rats. J Renin Angiotensin Aldosterone Syst. 12:440–445. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Z and Ferguson AV: Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. Am J Physiol. 265:R302–R309. 1993.PubMed/NCBI | |
Huang BS, Ahmadi S, Ahmad M, White RA and Leenen FH: Central neuronal activation and pressor responses induced by circulating ANG II: Role of the brain aldosterone-'ouabain' pathway. Am J Physiol Heart Circ Physiol. 299:H422–H430. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krause EG, de Kloet AD, Scott KA, Flak JN, Jones K, Smeltzer MD, Ulrich-Lai YM, Woods SC, Wilson SP, Reagan LP, et al: Blood-borne angiotensin II acts in the brain to influence behavioral and endocrine responses to psychogenic stress. J Neurosci. 31:15009–15015. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kleiber AC, Zheng H, Sharma NM and Patel KP: Chronic AT1 receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in rats with heart failure. Am J Physiol Heart Circ Physiol. 298:H1546–H1555. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leenen FHH, Blaustein MP and Hamlyn JM: Update on angiotensin II: New endocrine connections between the brain, adrenal glands and the cardiovascular system. Endocr Connect. 6:R131–R145. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mendelsohn FA, Quirion R, Saavedra JM, Aguilera G and Catt KJ: Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sci USA. 81:1575–1579. 1984. View Article : Google Scholar : PubMed/NCBI | |
Leenen FHH, Wang HW and Hamlyn JM: Sodium pumps, ouabain and aldosterone in the brain: A neuromodulatory pathway underlying salt-sensitive hypertension and heart failure. Cell Calcium. 86:1021512020. View Article : Google Scholar : PubMed/NCBI | |
Nagatomo T, Inenaga K and Yamashita H: Transient outward current in adult rat supraoptic neurones with slice patch-clamp technique: Inhibition by angiotensin II. J Physiol. 485:87–96. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yang CR, Phillips MI and Renaud LP: Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am J Physiol. 263:R1333–R1338. 1992.PubMed/NCBI | |
Ozaki Y, Soya A, Nakamura J, Matsumoto T and Ueta Y: Potentiation by angiotensin II of spontaneous excitatory post-synaptic currents in rat supraoptic magnocellular neurones. J Neuroendocrinol. 16:871–879. 2004. View Article : Google Scholar : PubMed/NCBI | |
Moellenhoff E, Blume A, Culman J, Chatterjee B, Herdegen T, Lebrun CJ and Unger T: Effect of repetitive icv injections of ANG II on c-Fos and AT(1)-receptor expression in the rat brain. Am J Physiol Regul Integr Comp Physiol. 280:R1095–R1104. 2001. View Article : Google Scholar : PubMed/NCBI | |
Antunes VR, Camargo GM, Saad R, Saad WA, Luiz AC and Camargo LA: Role of angiotensin II and vasopressin receptors within the supraoptic nucleus in water and sodium intake induced by the injection of angiotensin II into the medial septal area. Braz J Med Biol Res. 31:1597–1600. 1998. View Article : Google Scholar | |
Marciante AB, Wang LA, Farmer GE and Cunningham JT: Selectively inhibiting the median preoptic nucleus attenuates angiotensin II and hyperosmotic-induced drinking behavior and vasopressin release in adult male rats. eNeuro. 6:2019. View Article : Google Scholar : PubMed/NCBI | |
Haywood JR, Fink GD, Buggy J, Boutelle S, Johnson AK and Brody MJ: Prevention of two-kidney, one-clip renal hypertension in rat by ablation of AV3V tissue. Am J Physiol. 245:H683–H689. 1983.PubMed/NCBI | |
Schwartz JA, Reilly NS and Knuepfer MM: Angiotensin and NMDA receptors in the median preoptic nucleus mediate hemodynamic response patterns to stress. Am J Physiol Regul Integr Comp Physiol. 295:R155–R165. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eyigor O, Centers A and Jennes L: Distribution of ionotropic glutamate receptor subunit mRNAs in the rat hypothalamus. J Comp Neurol. 434:101–124. 2001. View Article : Google Scholar : PubMed/NCBI | |
Osborn JW, Fink GD, Sved AF, Toney GM and Raizada MK: Circulating angiotensin II and dietary salt: Converging signals for neurogenic hypertension. Curr Hypertens Rep. 9:228–235. 2007. View Article : Google Scholar : PubMed/NCBI | |
Henry M, Grob M and Mouginot D: Endogenous angiotensin II facilitates GABAergic neurotransmission afferent to the Na+-responsive neurons of the rat median preoptic nucleus. Am J Physiol Regul Integr Comp Physiol. 297:R783–R792. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guertzenstein PG and Silver A: Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol. 242:489–503. 1974. View Article : Google Scholar : PubMed/NCBI | |
Oshima N, Onimaru H, Yamagata A and Momosawa A: Rostral ventrolateral medulla neuron activity is suppressed by Klotho and stimulated by FGF23 in newborn Wistar rats. Auton Neurosci. 224:1026402020. View Article : Google Scholar : PubMed/NCBI | |
McAllen RM: Central respiratory modulation of subretrofacial bulbospinal neurones in the cat. J Physiol. 388:533–545. 1987. View Article : Google Scholar : PubMed/NCBI | |
Ogihara CA, Schoorlemmer GH, Lazari Mde F, Giannocco G, Lopes OU, Colombari E and Sato MA: Swimming exercise changes hemodynamic responses evoked by blockade of excitatory amino receptors in the rostral ventrolateral medulla in spontaneously hypertensive rats. Biomed Res Int. 2014:4871292014. View Article : Google Scholar : PubMed/NCBI | |
Dean C and Coote JH: A ventromedullary relay involved in the hypothalamic and chemoreceptor activation of sympathetic postganglionic neurones to skeletal muscle, kidney and splanchnic area. Brain Res. 377:279–285. 1986. View Article : Google Scholar : PubMed/NCBI | |
Dampney RA and McAllen RM: Differential control of sympathetic fibres supplying hindlimb skin and muscle by subretrofacial neurones in the cat. J Physiol. 395:41–56. 1988. View Article : Google Scholar : PubMed/NCBI | |
Dean C, Seagard JL, Hopp FA and Kampine JP: Differential control of sympathetic activity to kidney and skeletal muscle by ventral medullary neurons. J Auton Nerv Syst. 37:1–10. 1992. View Article : Google Scholar : PubMed/NCBI | |
Lovick TA: Differential control of cardiac and vasomotor activity by neurones in nucleus paragigantocellularis lateralis in the cat. J Physiol. 389:23–35. 1987. View Article : Google Scholar : PubMed/NCBI | |
Barman SM and Gebber GL: Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophysiol. 53:1551–1566. 1985. View Article : Google Scholar : PubMed/NCBI | |
Oliveira RC, Campagnole-Santos MJ and Santos RA: The pressor effect of angiotensin-(1-7) in the rat rostral ventrolateral medulla involves multiple peripheral mechanisms. Clinics (Sao Paulo). 68:245–252. 2013. View Article : Google Scholar | |
Fontes MA, Silva LC, Campagnole-Santos MJ, Khosla MC, Guertzenstein PG and Santos RA: Evidence that angiotensin-(1-7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res. 665:175–180. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Hiratsuka M, Komatsu K, Tsukamoto K, Kanmatsuse K and Sved AF: Ventrolateral medulla AT1 receptors support arterial pressure in Dahl salt-sensitive rats. Hypertension. 41:744–750. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Komatsu K, Tsukamoto K, Kanmatsuse K and Sved AF: Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension. 40:552–559. 2002. View Article : Google Scholar : PubMed/NCBI | |
Peng JF, Wu ZT, Wang YK, Yuan WJ, Sun T, Ni X, Su DF, Wang W, Xu MJ and Wang WZ: GABAergic mechanism in the rostral ventrolateral medulla contributes to the hypotension of moxonidine. Cardiovasc Res. 89:473–481. 2011. View Article : Google Scholar | |
Sheriff MJ, Fontes MA, Killinger S, Horiuchi J and Dampney RA: Blockade of AT1 receptors in the rostral ventrolateral medulla increases sympathetic activity under hypoxic conditions. Am J Physiol Regul Integr Comp Physiol. 290:R733–R740. 2006. View Article : Google Scholar | |
Nonogaki Z, Umegaki H, Makino T, Suzuki Y and Kuzuya M: Relationship between cardiac autonomic function and cognitive function in Alzheimer's disease. Geriatr Gerontol Int. 17:92–98. 2017. View Article : Google Scholar | |
Goldberger JJ, Arora R, Buckley U and Shivkumar K: Autonomic nervous system dysfunction: JACC focus seminar. J Am Coll Cardiol. 73:1189–1206. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang LL, Zhang Y, Cheng YQ, Zhang JM, Liu HQ, Wang WZ, Mehta JL, Xiong ZG, Su DF and Liu AJ: Metabolic syndrome emerges after artificial selection for low baroreflex sensitivity. CNS Neurosci Ther. 24:828–836. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Schultz HD, Patel KP, Zucker IH and Wang W: Augmented input from cardiac sympathetic afferents inhibits baroreflex in rats with heart failure. Hypertension. 45:1173–1181. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhu GQ, Gao L, Li Y, Patel KP, Zucker IH and Wang W: AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 287:H1828–H1835. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang WZ, Gao L, Pan YX, Zucker IH and Wang W: AT1 receptors in the nucleus tractus solitarii mediate the interaction between the baroreflex and the cardiac sympathetic afferent reflex in anesthetized rats. Am J Physiol Regul Integr Comp Physiol. 292:R1137–R1145. 2007. View Article : Google Scholar | |
Nagata S, Kato J, Sasaki K, Minamino N, Eto T and Kitamura K: Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun. 350:1026–1031. 2006. View Article : Google Scholar : PubMed/NCBI | |
Diz DI, Garcia-Espinosa MA, Gegick S, Tommasi EN, Ferrario CM, Ann Tallant E, Chappell MC and Gallagher PE: Injections of angiotensin-converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats. Exp Physiol. 93:694–700. 2008. View Article : Google Scholar : PubMed/NCBI | |
Arnold AC, Isa K, Shaltout HA, Nautiyal M, Ferrario CM, Chappell MC and Diz DI: Angiotensin-(1-12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am J Physiol Heart Circ Physiol. 299:H763–H771. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fow JE, Averill DB and Barnes KL: Mechanisms of angiotensin-induced hypotension and bradycardia in the medial solitary tract nucleus. Am J Physiol. 267:H259–H266. 1994.PubMed/NCBI | |
Cheung WJ, Kent MA, El-Shahat E, Wang H, Tan J, White R and Leenen FH: Central and peripheral renin-angiotensin systems in ouabain-induced hypertension. Am J Physiol Heart Circ Physiol. 291:H624–H630. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xin Y, Wu W, Qu J, Wang X, Lei S, Yuan L and Liu X: Inhibition of mitofusin-2 promotes cardiac fibroblast activation via the PERK/ATF4 pathway and reactive oxygen species. Oxid Med Cell Longev. 2019:36498082019. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Lin B, Zhang W and Wang X: Up-regulation of SNHG16 induced by CTCF accelerates cardiac hypertrophy by targeting miR-182-5p/IGF1 axis. Cell Biol Int. 44:1426–1435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cai W, Zhong S, Zheng F, Zhang Y, Gao F, Xu H, Cai X, Lan J, Huang D and Shi G: Angiotensin II confers resistance to apoptosis in cardiac myofibroblasts through the AT1/ERK1/2/RSK1 pathway. IUBMB Life. 71:261–276. 2019. View Article : Google Scholar | |
Alanazi AZ and Clark MA: Angiotensin III induces JAK2/STAT3 leading to IL-6 production in rat vascular smooth muscle cells. Int J Mol Sci. 20:55512019. View Article : Google Scholar : | |
Chang L, Yang R, Wang M, Liu J, Wang Y, Zhang H and Li Y: Angiotensin II type-1 receptor-JAK/STAT pathway mediates the induction of visfatin in angiotensin II-induced cardiomyocyte hypertrophy. Am J Med Sci. 343:220–226. 2012. View Article : Google Scholar | |
Mascareno E and Siddiqui MA: The role of Jak/STAT signaling in heart tissue renin-angiotensin system. Mol Cell Biochem. 212:171–175. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang TL, Yang YH, Chang H and Hung CR: Angiotensin II signals mechanical stretch-induced cardiac matrix metalloproteinase expression via JAK-STAT pathway. J Mol Cell Cardiol. 37:785–794. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ali MS, Sayeski PP, Dirksen LB, Hayzer DJ, Marrero MB and Bernstein KE: Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J Biol Chem. 272:23382–23388. 1997. View Article : Google Scholar : PubMed/NCBI | |
Frank GD, Saito S, Motley ED, Sasaki T, Ohba M, Kuroki T, Inagami T and Eguchi S: Requirement of Ca(2+) and PKCdelta for Janus kinase 2 activation by angiotensin II: Involvement of PYK2. Mol Endocrinol. 16:367–377. 2002.PubMed/NCBI | |
Balakumar P and Jagadeesh G: A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal. 26:2147–2160. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fung NH, Grima CA, Widodo SS, Kaye AH, Whitehead CA, Stylli SS and Mantamadiotis T: Understanding and exploiting cell signalling convergence nodes and pathway cross-talk in malignant brain cancer. Cell Signal. 57:2–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gaborik Z and Hunyady L: Intracellular trafficking of hormone receptors. Trends Endocrinol Metab. 15:286–293. 2004. View Article : Google Scholar : PubMed/NCBI | |
Luttrell LM and Lefkowitz RJ: The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 115:455–465. 2002.PubMed/NCBI | |
Dasgupta C and Zhang L: Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov Today. 16:22–34. 2011. View Article : Google Scholar : | |
Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM and Lefkowitz RJ: Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1-2. Proc Natl Acad Sci USA. 100:10782–10787. 2003. View Article : Google Scholar | |
Hunton DL, Barnes WG, Kim J, Ren XR, Violin JD, Reiter E, Milligan G, Patel DD and Lefkowitz RJ: Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol Pharmacol. 67:1229–1236. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wei SG, Yu Y, Zhang ZH and Felder RB: Angiotensin II upregulates hypothalamic AT1 receptor expression in rats via the mitogen-activated protein kinase pathway. Am J Physiol Heart Circ Physiol. 296:H1425–H1433. 2009. View Article : Google Scholar : PubMed/NCBI | |
Callera GE, Touyz RM, Tostes RC, Yogi A, He Y, Malkinson S and Schiffrin EL: Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src. Hypertension. 45:773–779. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZH, Yu Y, Kang YM, Wei SG and Felder RB: Aldosterone acts centrally to increase brain renin-angiotensin system activity and oxidative stress in normal rats. Am J Physiol Heart Circ Physiol. 294:H1067–H1074. 2008. View Article : Google Scholar | |
Vrábel D, Pour L and Ševčíková S: The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 34:56–66. 2019. View Article : Google Scholar | |
Pioli MR and de Faria AP: Pro-inflammatory cytokines and resistant hypertension: Potential for novel treatments? Curr Hypertens Rep. 21:952019. View Article : Google Scholar : PubMed/NCBI | |
Pendergrass KD, Pirro NT, Westwood BM, Ferrario CM, Brosnihan KB and Chappell MC: Sex differences in circulating and renal angiotensins of hypertensive mRen(2) Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol. 295:H10–H20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZH, Wei SG, Francis J and Felder RB: Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: The role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol. 284:R916–R927. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kang YM, Ma Y, Zheng JP, Elks C, Sriramula S, Yang ZM and Francis J: Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res. 82:503–512. 2009. View Article : Google Scholar : PubMed/NCBI | |
Du N, Feng J, Hu LJ, Sun X, Sun HB, Zhao Y, Yang YP and Ren H: Angiotensin II receptor type 1 blockers suppress the cell proliferation effects of angiotensin II in breast cancer cells by inhibiting AT1R signaling. Oncol Rep. 27:1893–1903. 2012.PubMed/NCBI | |
Donohoe F, Wilkinson M, Baxter E and Brennan DJ: Mitogen-activated protein kinase (MAPK) and obesity-related cancer. Int J Mol Sci. 21:12412020. View Article : Google Scholar : | |
Grewal SS, Horgan AM, York RD, Withers GS, Banker GA and Stork PJ: Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J Biol Chem. 275:3722–3728. 2000. View Article : Google Scholar : PubMed/NCBI | |
Averill DB and Diz DI: Angiotensin peptides and baroreflex control of sympathetic outflow: Pathways and mechanisms of the medulla oblongata. Brain Res Bull. 51:119–128. 2000. View Article : Google Scholar : PubMed/NCBI | |
Han NL and Sim MK: Hypothalamic angiotensin receptor subtypes in normotensive and hypertensive rats. Am J Physiol. 275:H703–H709. 1998.PubMed/NCBI | |
Lu D, Sumners C and Raizada MK: Regulation of angiotensin II type 1 receptor mRNA in neuronal cultures of normotensive and spontaneously hypertensive rat brains by phorbol esters and forskolin. J Neurochem. 62:2079–2084. 1994. View Article : Google Scholar : PubMed/NCBI | |
Phillips MI and Kimura B: Converting enzyme inhibitors and brain angiotensin. J Cardiovasc Pharmacol. 8(Suppl 10): S82–S90. 1986. View Article : Google Scholar : PubMed/NCBI | |
Gyurko R, Wielbo D and Phillips MI: Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept. 49:167–174. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sun C, Du J, Sumners C and Raizada MK: PI3-kinase inhibitors abolish the enhanced chronotropic effects of angiotensin II in spontaneously hypertensive rat brain neurons. J Neurophysiol. 90:3155–3160. 2003. View Article : Google Scholar : PubMed/NCBI | |
Perfumi M, Sajia A, Costa G, Massi M and Polidori C: Vasopressin release induced by intracranial injection of eledoisin is mediated by central angiotensin II. Pharmacol Res Commun. 20:811–826. 1988. View Article : Google Scholar : PubMed/NCBI | |
Sumners C, Fleegal MA and Zhu M: Angiotensin AT1 receptor signalling pathways in neurons. Clin Exp Pharmacol Physiol. 29:483–490. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lu D and Raizada MK: Delivery of angiotensin II type 1 receptor antisense inhibits angiotensin action in neurons from hypertensive rat brain. Proc Natl Acad Sci USA. 92:2914–2918. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lu D, Yang H, Lenox RH and Raizada MK: Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. J Cell Biol. 142:217–227. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yang H and Raizada MK: Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat. J Neurosci. 19:2413–2423. 1999. View Article : Google Scholar : PubMed/NCBI | |
Seyedabadi M, Goodchild AK and Pilowsky PM: Differential role of kinases in brain stem of hypertensive and normotensive rats. Hypertension. 38:1087–1092. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wang YK, Yu Q, Tan X, Wu ZT, Zhang RW, Yang YH, Yuan WJ, Hu QK and Wang WZ: Centrally acting drug moxonidine decreases reactive oxygen species via inactivation of the phosphoinositide-3 kinase signaling in the rostral ventrolateral medulla in hypertensive rats. J Hypert. 34:993–1004. 2016. View Article : Google Scholar | |
Azegami T and Itoh H: Vaccine development against the renin-angiotensin system for the treatment of hypertension. Int J Hypertens. 2019:92185312019. View Article : Google Scholar : PubMed/NCBI | |
Leenen FH and Yuan B: Prevention of hypertension by irbesartan in Dahl S rats relates to central angiotensin II type 1 receptor blockade. Hypertension. 37:981–984. 2001. View Article : Google Scholar : PubMed/NCBI | |
Adams JM, McCarthy JJ and Stocker SD: Excess dietary salt alters angiotensinergic regulation of neurons in the rostral ventrolateral medulla. Hypertension. 52:932–937. 2008. View Article : Google Scholar : PubMed/NCBI | |
DiBona GF and Jones SY: Sodium intake influences hemodynamic and neural responses to angiotensin receptor blockade in rostral ventrolateral medulla. Hypertension. 37:1114–1123. 2001. View Article : Google Scholar : PubMed/NCBI | |
DiBona GF and Jones SY: Effect of dietary sodium intake on central angiotensinergic pathways. Auton Neurosci. 98:17–19. 2002. View Article : Google Scholar : PubMed/NCBI | |
Nagayama T, Hirooka Y, Kishi T, Mukai Y, Inoue S, Takase S, Takemoto M, Chishaki A and Sunagawa K: Blockade of brain angiotensin II type 1 receptor inhibits the development of atrial fibrillation in hypertensive rats. Am J Hypertens. 28:444–451. 2015. View Article : Google Scholar | |
Zhao X, White R, Huang BS, Van Huysse J and Leenen FH: High salt intake and the brain renin-angiotensin system in Dahl salt-sensitive rats. J Hypertens. 19:89–98. 2001. View Article : Google Scholar : PubMed/NCBI | |
Olivares-Reyes JA, Arellano-Plancarte A and Castillo-Hernandez JR: Angiotensin II and the development of insulin resistance: Implications for diabetes. Mol Cell Endocrinol. 302:128–139. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Ferranti S and Mozaffarian D: The perfect storm: Obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem. 54:945–955. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cole BK, Keller SR, Wu R, Carter JD, Nadler JL and Nunemaker CS: Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension. 55:715–721. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K and Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 116:1494–1505. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kucan M, Mrsic-Pelcic J and Vitezic D: Antihypertensive drugs in croatia: What changes the drug usage patterns? Clin Ther. 40:1159–1169. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Bai S, Wu Y, Li Q, Luo F, Li B, Jin Y and Xiao C: Polymorphisms within angiotensin II receptor type 1 gene associated with essential hypertension in Chinese Hani and Yi minorities. J Renin Angiotensin Aldosterone Syst. 16:653–659. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakaya H, Sasamura H, Kitamura Y, Amemiya T, Konishi K, Hayashi M and Saruta T: Effects of angiotensin inhibitors on renal injury and angiotensin receptor expression in early hypertensive nephrosclerosis. Hypertens Res. 22:303–312. 1999. View Article : Google Scholar : PubMed/NCBI | |
Katovich MJ, Gelband CH, Reaves P, Wang HW and Raizada MK: Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR. Am J Physiol. 277:H1260–H1264. 1999.PubMed/NCBI | |
Zhi JM, Liu ZB, Jiao XY, Liu YX and Zhao RR: Effect of losartan on produce of sera autoantibodies to angiotensin II-1 receptor in renovascular hypertension rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 19:43–46. 2003.In Chinese. PubMed/NCBI | |
Bender SB, McGraw AP, Jaffe IZ and Sowers JR: Mineralocorticoid receptor-mediated vascular insulin resistance: An early contributor to diabetes-related vascular disease? Diabetes. 62:313–319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Malik RA, Schofield IJ, Izzard A, Austin C, Bermann G and Heagerty AM: Effects of angiotensin type-1 receptor antago- nism on small artery function in patients with type 2 diabetes mellitus. Hypertension. 45:264–269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tabony AM, Yoshida T, Galvez S, Higashi Y, Sukhanov S, Chandrasekar B, Mitch WE and Delafontaine P: Angiotensin II upregulates protein phosphatase 2Cα and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting. Hypertension. 58:643–649. 2011. View Article : Google Scholar : PubMed/NCBI | |
Van Linthout S, Spillmann F, Lorenz M, Meloni M, Jacobs F, Egorova M, Stangl V, De Geest B, Schultheiss HP and Tschöpe C: Vascular-protective effects of high-density lipoprotein include the downregulation of the angiotensin II type 1 receptor. Hypertension. 53:682–687. 2009. View Article : Google Scholar : PubMed/NCBI | |
Akishita M, Horiuchi M, Yamada H, Zhang L, Shirakami G, Tamura K, Ouchi Y and Dzau VJ: Inflammation influences vascular remodeling through AT2 receptor expression and signaling. Physiol Genomics. 2:13–20. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kamo T, Akazawa H and Komuro I: Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int Heart J. 56:249–254. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hannan RE, Davis EA and Widdop RE: Functional role of angiotensin II AT2 receptor in modulation of AT1 receptor-mediated contraction in rat uterine artery: Involvement of bradykinin and nitric oxide. Br J Pharmacol. 140:987–995. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Xia S and Ragolia L: Upregulation of AT2 receptor and iNOS impairs angiotensin II-induced contraction without endothelium influence in young normotensive diabetic rats. Am J Physiol Regul Integr Comp Physiol. 295:R144–R154. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hanff E, Ruben S, Kreuzer M, Bollenbach A, Kayacelebi AA, Das AM, von Versen-Höynck F, von Kaisenberg C, Haffner D, Ückert S and Tsikas D: Development and validation of GC-MS methods for the comprehensive analysis of amino acids in plasma and urine and applications to the HELLP syndrome and pediatric kidney transplantation: Evidence of altered methylation, transamidination, and arginase activity. Amino Acids. 51:529–547. 2019. View Article : Google Scholar : PubMed/NCBI | |
Łuszczki JJ, Jaskólska A, Dworzański W and Zółkowska D: 7-Nitroindazole, but not NG-nitro-L-arginine, enhances the anticonvulsant activity of pregabalin in the mouse maximal electroshock-induced seizure model. Pharmacol Rep. 63:169–175. 2011. View Article : Google Scholar : PubMed/NCBI | |
Miguel-Carrasco JL, Mate A, Monserrat MT, Arias JL, Aramburu O and Vázquez CM: The role of inflammatory markers in the cardioprotective effect of L-carnitine in L-NAME-induced hypertension. Am J Hypertens. 21:1231–1237. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carey RM: AT2 receptors: Potential therapeutic targets for hypertension. Am J Hypertens. 30:339–347. 2017. | |
Savoia C, Ebrahimian T, He Y, Gratton JP, Schiffrin EL and Touyz RM: Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J Hypertens. 24:2417–2422. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cosentino F, Savoia C, De Paolis P, Francia P, Russo A, Maffei A, Venturelli V, Schiavoni M, Lembo G and Volpe M: Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists. Am J Hypertens. 18:493–499. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni S, O'Farrell I, Erasi M and Kochar MS: Stress and hypertension. WMJ. 97:34–38. 1998. | |
Epstein OI, Martyushev AV, Kudryashova DR, Markel AL, Sergeeva SA and Shtark MB: Hypotensive effect of potentiated antibodies to angiotensin II and AT1 receptors. Bull Exp Biol Med. 135(Suppl 7): S62–S64. 2003. View Article : Google Scholar | |
Nickenig G and Harrison DG: The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: Part II: AT(1) receptor regulation. Circulation. 105:530–536. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hosomi N, Nishiyama A, Ban CR, Naya T, Takahashi T, Kohno M and Koziol JA: Angiotensin type 1 receptor blockage improves ischemic injury following transient focal cerebral ischemia. Neuroscience. 134:225–231. 2005. View Article : Google Scholar : PubMed/NCBI | |
Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T and Horiuchi M: Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation. 110:843–848. 2004. View Article : Google Scholar : PubMed/NCBI | |
Maeda K, Hata R, Bader M, Walther T and Hossmann KA: Larger anastomoses in angiotensinogen-knockout mice attenuate early metabolic disturbances after middle cerebral artery occlusion. J Cereb Blood Flow Metab. 19:1092–1098. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Li G, Zhang W, Wang J, Sigmund CD, Olson JE and Chen Y: Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice. Am J Physiol Regul Integr Comp Physiol. 297:R1526–R1531. 2009. View Article : Google Scholar : PubMed/NCBI | |
Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C and Harrison DG: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 204:2449–2460. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nagai M, Terao S, Vital SA, Rodrigues SF, Yilmaz G and Granger DN: Role of blood cell-associated angiotensin II type 1 receptors in the cerebral microvascular response to ischemic stroke during angiotensin-induced hypertension. Exp Transl Stroke Med. 3:152011. View Article : Google Scholar : PubMed/NCBI | |
Walther T, Olah L, Harms C, Maul B, Bader M, Hörtnagl H, Schultheiss HP and Mies G: Ischemic injury in experimental stroke depends on angiotensin II. FASEB J. 16:169–176. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kitiyakara C and Guzman NJ: Malignant hypertension and hypertensive emergencies. J Am Soc Nephrol. 9:133–142. 1998.PubMed/NCBI | |
Fleegal-DeMotta MA, Doghu S and Banks WA: Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 29:640–647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vital SA, Terao S, Nagai M and Granger DN: Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation. 17:641–649. 2010. View Article : Google Scholar : PubMed/NCBI | |
Perazella MA and Setaro JF: Renin-angiotensin-aldosterone system: Fundamental aspects and clinical implications in renal and cardiovascular disorders. J Nucl Cardiol. 10:184–196. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sato A, Saruta T and Funder JW: Combination therapy with aldosterone blockade and renin-angiotensin inhibitors confers organ protection. Hypertens Res. 29:211–216. 2006. View Article : Google Scholar : PubMed/NCBI | |
Harada E, Yoshimura M, Yasue H, Nakagawa O, Nakagawa M, Harada M, Mizuno Y, Nakayama M, Shimasaki Y, Ito T, et al: Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation. 104:137–139. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ullian ME, Schelling JR and Linas SL: Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension. 20:67–73. 1992. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Wei SG, Zhang ZH, Gomez-Sanchez E, Weiss RM and Felder RB: Does aldosterone upregulate the brain renin-angiotensin system in rats with heart failure? Hypertension. 51:727–733. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xue B, Beltz TG, Yu Y, Guo F, Gomez-Sanchez CE, Hay M and Johnson AK: Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol. 300:H555–H564. 2011. View Article : Google Scholar : | |
Bomback AS and Klemmer PJ: The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 3:486–492. 2007. View Article : Google Scholar : PubMed/NCBI | |
Park S, Nguyen NB, Pezhouman A and Ardehali R: Cardiac fibrosis: Potential therapeutic targets. Transl Res. 209:121–137. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jia G, Aroor AR, Hill MA and Sowers JR: Role of renin-angiotensin-aldosterone system activation in promoting cardiovascular fibrosis and stiffness. Hypertension. 72:537–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li XC, Zhang J and Zhuo JL: The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 125:21–38. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yatabe J, Yoneda M, Yatabe MS, Watanabe T, Felder RA, Jose PA and Sanada H: Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology. 152:1582–1588. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kopf PG, Park SK, Herrnreiter A, Krause C, Roques BP and Campbell WB: Obligatory metabolism of angiotensin II to angiotensin III for zona glomerulosa cell-mediated relaxations of bovine adrenal cortical arteries. Endocrinology. 159:238–247. 2018. View Article : Google Scholar | |
Plovsing RR, Wamberg C, Sandgaard NC, Simonsen JA, Holstein-Rathlou NH, Hoilund-Carlsen PF and Bie P: Effects of truncated angiotensins in humans after double blockade of the renin system. Am J Physiol Regul Integr Comp Physiol. 285:R981–R991. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Zheng S, Ren H, He D, Zeng C and Wang WE: Activation of angiotensin II type 1 receptors increases D4 dopamine receptor expression in rat renal proximal tubule cells. Hypertens Res. 40:652–657. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kouyoumdzian NM, Rukavina Mikusic NL, Robbesaul GD, Gorzalczany SB, Carranza A, Trida V, Fernández BE and Choi MR: Acute infusion of angiotensin II regulates organic cation transporters function in the kidney: Its impact on the renal dopaminergic system and sodium excretion. Hypertens Res. 44:286–298. 2021. View Article : Google Scholar | |
Zeng C and Jose PA: Dopamine receptors: Important anti- hypertensive counterbalance against hypertensive factors. Hypertension. 57:11–17. 2011. View Article : Google Scholar | |
Li D, Scott L, Crambert S, Zelenin S, Eklöf AC, Di Ciano L, Ibarra F and Aperia A: Binding of losartan to angiotensin AT1 receptors increases dopamine D1 receptor activation. J Am Soc Nephrol. 23:421–428. 2012. View Article : Google Scholar : | |
Nakaya H, Sasamura H, Hayashi M and Saruta T: Temporary treatment of prepubescent rats with angiotensin inhibitors suppresses the development of hypertensive nephrosclerosis. J Am Soc Nephrol. 12:659–666. 2001.PubMed/NCBI | |
Iwasaki Y, Ichikawa Y, Igarashi O, Kinoshita M and Ikeda K: Trophic effect of olmesartan, a novel AT1R antagonist, on spinal motor neurons in vitro and in vivo. Neurol Res. 24:468–472. 2002. View Article : Google Scholar : PubMed/NCBI | |
Moudgil R, Musat-Marcu S, Xu Y, Kumar D and Jugdutt BI: Increased AT2R protein expression but not increased apoptosis during cardioprotection induced by AT1R blockade. Can J Cardiol. 18:873–883. 2002.PubMed/NCBI | |
Lacourcière Y, Poirier L and Lefebvre J: A comparative review of the efficacy of antihypertensive agents on 24 h ambulatory blood pressure. Can J Cardiol. 16:1155–1166. 2000.PubMed/NCBI | |
Azizi M, Ménard J, Bissery A, Guyenne TT, Bura-Rivière A, Vaidyanathan S and Camisasca RP: Pharmacologic demonstration of the synergistic effects of a combination of the renin inhibitor aliskiren and the AT1 receptor antagonist valsartan on the angiotensin II-renin feedback interruption. J Am Soc Nephrol. 15:3126–3133. 2004. View Article : Google Scholar : PubMed/NCBI | |
Grammatopoulos TN, Ahmadi F, Jones SM, Fariss MW, Weyhenmeyer JA and Zawada WM: Angiotensin II protects cultured midbrain dopaminergic neurons against rotenone-induced cell death. Brain Res. 1045:64–71. 2005. View Article : Google Scholar : PubMed/NCBI | |
de Oliveira-Sales EB, Nishi EE, Boim MA, Dolnikoff MS, Bergamaschi CT and Campos RR: Upregulation of AT1R and iNOS in the rostral ventrolateral medulla (RVLM) is essential for the sympathetic hyperactivity and hypertension in the 2K-1C Wistar rat model. Am J Hypertens. 23:708–715. 2010. View Article : Google Scholar : PubMed/NCBI | |
Widdop RE, Matrougui K, Levy BI and Henrion D: AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension. 40:516–520. 2002. View Article : Google Scholar : PubMed/NCBI | |
Moudgil R, Menon V, Xu Y, Musat-Marcu S, Kumar D and Jugdutt BI: Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts. J Hypertens. 19:1121–1129. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kumagai K, Nakashima H, Urata H, Gondo N, Arakawa K and Saku K: Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 41:2197–2204. 2003. View Article : Google Scholar : PubMed/NCBI | |
Barki-Harrington L, Luttrell LM and Rockman HA: Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: A functional role for receptor-receptor interaction in vivo. Circulation. 108:1611–1618. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ismail MA, Barker S, Abou el-Ella DA, Abouzid KA, Toubar RA and Todd MH: Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl-quinazolin-4-one derivatives as angiotensin II AT1 receptor antagonists. J Med Chem. 49:1526–1535. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kaur N, Kaur A, Bansal Y, Shah DI, Bansal G and Singh M: Design, synthesis, and evaluation of 5-sulfamoyl benzimidazole derivatives as novel angiotensin II receptor antagonists. Bioorg Med Chem. 16:10210–10215. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matsoukas JM, Agelis G, Hondrelis J, Yamdagni R, Wu Q, Ganter R, Smith JR, Moore D and Moore GJ: Synthesis and biological activities of angiotensin II, Sarilesin, and Sarmesin analogues containing Aze or Pip at position 7. J Med Chem. 36:904–911. 1993. View Article : Google Scholar : PubMed/NCBI | |
Matsoukas JM, Agelis G, Wahhab A, Hondrelis J, Panagiotopoulos D, Yamdagni R, Wu Q, Mavromoustakos T, Maia HL, Ganter R, et al: Differences in backbone structure between angiotensin II agonists and type I antagonists. J Med Chem. 38:4660–4669. 1995. View Article : Google Scholar : PubMed/NCBI | |
Zoumpoulakis P, Zoga A, Roumelioti P, Giatas N, Grdadolnik SG, Iliodromitis E, Vlahakos D, Kremastinos D, Matsoukas JM and Mavromoustakos T: Conformational and biological studies for a pair of novel synthetic AT1 antagonists: Stereoelectronic requirements for antihypertensive efficacy. J Pharm Biomed Anal. 31:833–844. 2003. View Article : Google Scholar : PubMed/NCBI | |
Phillips MI and Kimura B: Gene therapy for hypertension: Antisense inhibition of the renin-angiotensin system. Methods Mol Med. 108:363–379. 2005.PubMed/NCBI | |
Li XG, Yan JT, Xu XZ, Wang JN, Cheng LM, Wang T, Zuo P and Wang DW: Recombinant adeno-associated virus-mediated delivery of antisense angiotensin II receptor 1 gene attenuates hypertension development. Acta Pharmacol Sin. 28:1737–1745. 2007. View Article : Google Scholar : PubMed/NCBI |