1
|
GBD 2017 Causes of Death Collaborators:
Global, regional, and national age-sex-specific mortality for 282
causes of death in 195 countries and territories, 1980-2017: A
systematic analysis for the global burden of disease study 2017.
Lancet. 392:1736–1788. 2018. View Article : Google Scholar
|
2
|
Aouiss A, Anka Idrissi D, Kabine M and
Zaid Y: Update of inflammatory proliferative retinopathy: Ischemia,
hypoxia and angiogenesis. Curr Res Transl Med. 67:62–71. 2019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Cordova Martinez A, Pascual Fernandez J,
Fernandez Lazaro D and Alvarez Mon M: Muscular and heart
adaptations of execise in hypoxia. Is training in slow hypoxy
healthy? Med Clin (Barc). 148:469–474. 2017.In English,
Spanish.
|
4
|
Rodgers JL, Iyer D, Rodgers LE,
Vanthenapalli S and Panguluri SK: Impact of hyperoxia on cardiac
pathophysiology. J Cell Physiol. 234:12595–12603. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Den Hartogh DJ and Tsiani E: Antidiabetic
properties of naringenin: A citrus fruit polyphenol. Biomolecules.
9:992019. View Article : Google Scholar :
|
6
|
Kwatra M, Kumar V, Jangra A, Mishra M,
Ahmed S, Ghosh P, Vohora D and Khanam R: Ameliorative effect of
naringin against doxorubicin-induced acute cardiac toxicity in
rats. Pharm Biol. 54:637–647. 2016. View Article : Google Scholar
|
7
|
Ming H, Chuang Q, Jiashi W, Bin L,
Guangbin W and Xianglu J: Naringin targets Zeb1 to suppress
osteosarcoma cell proliferation and metastasis. Aging (Albany NY).
10:4141–4151. 2018. View Article : Google Scholar
|
8
|
Salehi B, Fokou PVT, Sharifi-Rad M, Zucca
P, Pezzani R, Martins N and Sharifi-Rad J: The therapeutic
potential of naringenin: A review of clinical trials.
Pharmaceuticals (Basel). 12:112019. View Article : Google Scholar
|
9
|
Adebiyi OA, Adebiyi OO and Owira PM:
Naringin reduces hyperglycemia-induced cardiac fibrosis by
relieving oxidative stress. PLoS One. 11:e01498902016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Park JH, Ku HJ, Kim JK, Park JW and Lee
JH: Amelioration of high fructose-induced cardiac hypertrophy by
naringin. Sci Rep. 8:94642018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jian CY, Ouyang HB, Xiang XH, Chen JL, Li
YX, Zhou X, Wang JY, Yang Y, Zhong EY, Huang WH and Zhang HW:
Naringin protects myocardial cells from doxorubicin-induced
apoptosis partially by inhibiting the p38MAPK pathway. Mol Med Rep.
16:9457–9463. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen RC, Sun GB, Wang J, Zhang HJ and Sun
XB: Naringin protects against anoxia/reoxygenation-induced
apoptosis in H9c2 cells via the Nrf2 signaling pathway. Food Funct.
6:1331–1344. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cai CC, Zhu JH, Ye LX, Dai YY, Fang MC, Hu
YY, Pan SL, Chen S, Li PJ, Fu XQ and Lin ZL: Glycine protects
against hypoxic-ischemic brain injury by regulating
mitochondria-mediated autophagy via the AMPK pathway. Oxid Med Cell
Longev. 2019:42485292019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang Z, Wang C, Lin J, Jin H, Wang K, Yan
Y, Wang J, Wu C, Nisar M, Tian N, et al: Therapeutic potential of
naringin for intervertebral disc degeneration: Involvement of
autophagy against oxidative stress-induced apoptosis in nucleus
pulposus cells. Am J Chin Med. Oct 4–2018.Epub ahead of print.
View Article : Google Scholar
|
15
|
Sousa Fialho MD, Abd Jamil AH, Stannard GA
and Heather LC: Hypoxia-inducible factor 1 signalling, metabolism
and its therapeutic potential in cardiovascular disease. Biochim
Biophys Acta Mol Basis Dis. 1865:831–843. 2019. View Article : Google Scholar
|
16
|
Bravo-San Pedro JM, Kroemer G and Galluzzi
L: Autophagy and mitophagy in cardiovascular disease. Circ Res.
120:1812–1824. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sciarretta S, Maejima Y, Zablocki D and
Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol.
80:1–26. 2018. View Article : Google Scholar
|
18
|
Qiao J, Huang J, Zhou M, Cao G and Shen H:
Inhibition of HIF-1α restrains fracture healing via regulation of
autophagy in a rat model. Exp Ther Med. 17:1884–1890.
2019.PubMed/NCBI
|
19
|
Zimmerman MA, Biggers CD and Li PA:
Rapamycin treatment increases hippocampal cell viability in an
mTOR-independent manner during exposure to hypoxia mimetic, cobalt
chloride. BMC Neurosci. 19:822018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gallo S, Gatti S, Sala V, Albano R,
Costelli P, Casanova E, Comoglio PM and Crepaldi T: Agonist
antibodies activating the Met receptor protect cardiomyoblasts from
cobalt chloride-induced apoptosis and autophagy. Cell Death Dis.
5:e11852014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee JW, Bae SH, Jeong JW, Kim SH and Kim
KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability
and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang H, Zhang D, Jia S, Huang S, Xiao L,
Ma L, Liu G, Gong K and Xu L: Effect of sustained hypoxia on
autophagy of genioglossus muscle-derived stem cells. Med Sci Monit.
24:2218–2224. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang Y, Liu D, Hu H, Zhang P, Xie R and
Cui W: HIF-1α/BNIP3 signaling pathway-induced-autophagy plays
protective role during myocardial ischemia-reperfusion injury.
Biomed Pharmacother. 120:1094642019. View Article : Google Scholar
|
24
|
Liu XW, Lu MK, Zhong HT, Wang LH and Fu
YP: Panax notoginseng saponins attenuate myocardial
ischemia-reperfusion injury through the HIF-1α/BNIP3 pathway of
autophagy. J Cardiovasc Pharmacol. 73:92–99. 2019. View Article : Google Scholar
|
25
|
Wu H, Huang S, Chen Z, Liu W, Zhou X and
Zhang D: Hypoxia-induced autophagy contributes to the invasion of
salivary adenoid cystic carcinoma through the HIF-1α/BNIP3
signaling pathway. Mol Med Rep. 12:6467–6474. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang K, Peng S, Xiong S, Niu A, Xia M,
Xiong X, Zeng G and Huang Q: Naringin inhibits autophagy mediated
by PI3K-Akt-mTOR pathway to ameliorate endothelial cell dysfunction
induced by high glucose/high fat stress. Eur J Pharmacol.
874:1730032020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Manu TM, Anand T, Pandareesh MD, Kumar PB
and Khanum F: Terminalia arjuna extract and arjunic acid mitigate
cobalt chloride-induced hypoxia stress-mediated apoptosis in H9c2
cells. Naunyn Schmiedebergs Arch Pharmacol. 392:1107–1119. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Warbrick I and Rabkin SW:
Hypoxia-inducible factor 1-alpha (HIF-1α) as a factor mediating the
relationship between obesity and heart failure with preserved
ejection fraction. Obes Rev. 20:701–712. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hescheler J, Meyer R, Plant S, Krautwurst
D, Rosenthal W and Schultz G: Morphological, biochemical, and
electrophysiological characterization of a clonal cell (H9c2) line
from rat heart. Circ Res. 69:1476–1486. 1991. View Article : Google Scholar : PubMed/NCBI
|
30
|
Haider N, Narula N and Narula J: Apoptosis
in heart failure represents programmed cell survival, not death, of
cardiomyocytes and likelihood of reverse remodeling. J Card Fail.
8(6 Suppl): S512–S517. 2002. View Article : Google Scholar
|
31
|
Semenza GL: Hypoxia-inducible factor 1:
Regulator of mitochondrial metabolism and mediator of ischemic
preconditioning. Biochim Biophys Acta. 1813:1263–1268. 2011.
View Article : Google Scholar
|
32
|
Yadav AK, Yadav PK, Chaudhary GR, Tiwari
M, Gupta A, Sharma A, Pandey AN, Pandey AK and Chaube SK: Autophagy
in hypoxic ovary. Cell Mol Life Sci. 76:3311–3322. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Lamark T, Svenning S and Johansen T:
Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays
Biochem. 61:609–624. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Mallet RT, Manukhina EB, Ruelas SS,
Caffrey JL and Downey HF: Cardioprotection by intermittent hypoxia
conditioning: Evidence, mechanisms, and therapeutic potential. Am J
Physiol Heart Circ Physiol. 315:H216–H232. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH
and Kao YH: Cobalt chloride induces RhoA/ROCK activation and
remodeling effect in H9c2 cardiomyoblasts: Involvement of PI3K/Akt
and MAPK pathways. Cell Signal. 36:25–33. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Munoz-Sanchez J and Chanez-Cardenas ME:
The use of cobalt chloride as a chemical hypoxia model. J Appl
Toxicol. 39:556–570. 2019. View Article : Google Scholar
|
37
|
Shi YN, Zhang XQ, Hu ZY, Zhang CJ, Liao
DF, Huang HL and Qin L: Genistein protects H9c2 cardiomyocytes
against chemical hypoxia-induced injury via inhibition of
apoptosis. Pharmacology. 103:282–290. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Caglayan C: The effects of naringin on
different cyclophosphamide-induced organ toxicities in rats:
Investigation of changes in some metabolic enzyme activities.
Environ Sci Pollut Res Int. 26:26664–26673. 2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
You Q, Wu Z, Wu B, Liu C, Huang R, Yang L,
Guo R, Wu K and Chen J: Naringin protects cardiomyocytes against
hyperglycemia-induced injuries in vitro and in vivo. J Endocrinol.
230:197–214. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Moosavi MA and Djavaheri-Mergny M:
Autophagy: New insights into mechanisms of action and resistance of
treatment in acute promyelocytic leukemia. Int J Mol Sci.
20:35592019. View Article : Google Scholar :
|
41
|
Ravanan P, Srikumar IF and Talwar P:
Autophagy: The spotlight for cellular stress responses. Life Sci.
188:53–67. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gao C, Wang R, Li B, Guo Y, Yin T, Xia Y,
Zhang F, Lian K, Liu Y, Wang H, et al: TXNIP/Redd1 signaling and
excessive autophagy: A novel mechanism of myocardial
ischemia/reperfusion injury in mice. Cardiovasc Res. 116:645–657.
2019. View Article : Google Scholar
|
43
|
McCormick J, Knight RA, Barry SP,
Scarabelli TM, Abounit K, Latchman DS and Stephanou A: Autophagy in
the stress-induced myocardium. Front Biosci (Elite Ed).
4:2131–2141. 2012. View
Article : Google Scholar
|
44
|
Ryter SW, Lee SJ, Smith A and Choi AM:
Autophagy in vascular disease. Proc Am Thorac Soc. 7:40–47. 2010.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen Y, Yan Q, Xu Y, Ye F, Sun X, Zhu H
and Wang H: BNIP3-mediated autophagy induced inflammatory response
and inhibited VEGF expression in cultured retinal pigment
epithelium cells under hypoxia. Curr Mol Med. 19:395–404. 2019.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Glick D, Barth S and Macleod KF:
Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12.
2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Maiuri MC, Zalckvar E, Kimchi A and
Kroemer G: Self-eating and self-killing: Crosstalk between
autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kaizuka T, Morishita H, Hama Y, Tsukamoto
S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T and
Mizushima N: An autophagic flux probe that releases an internal
control. Mol Cell. 64:835–849. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wu J and Lipinski MM: Autophagy in
neurotrauma: Good, bad, or dysregulated. Cells. 8:6932019.
View Article : Google Scholar :
|
50
|
Feng J, Chen X, Lu S, Li W, Yang D, Su W,
Wang X and Shen J: Naringin attenuates cerebral
ischemia-reperfusion injury through inhibiting
peroxynitrite-mediated mitophagy activation. Mol Neurobiol.
55:9029–9042. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Raha S, Yumnam S, Hong GE, Lee HJ,
Saralamma VV, Park HS, Heo JD, Lee SJ, Kim EH, Kim JA and Kim GS:
Naringin induces autophagy-mediated growth inhibition by
downregulating the PI3K/Akt/mTOR cascade via activation of MAPK
pathways in AGS cancer cells. Int J Oncol. 47:1061–1069. 2015.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Adams JM, Difazio LT, Rolandelli RH, Luján
JJ, Haskó G, Csóka B, Selmeczy Z and Németh ZH: HIF-1: A key
mediator in hypoxia. Acta Physiol Hung. 96:19–28. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Chinnadurai G, Vijayalingam S and Gibson
SB: BNIP3 subfamily BH3-only proteins: Mitochondrial stress sensors
in normal and pathological functions. Oncogene. 27(Suppl 1):
S114–S127. 2008. View Article : Google Scholar
|
54
|
Lu N, Li X, Tan R, An J, Cai Z, Hu X, Wang
F, Wang H, Lu C and Lu H: HIF-1α/beclin1-mediated autophagy is
involved in neuroprotection induced by hypoxic preconditioning. J
Mol Neurosci. 66:238–250. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Chen R, Jiang T, She Y, Xu J, Li C, Zhou
S, Shen H, Shi H and Liu S: Effects of cobalt chloride, a
hypoxia-mimetic agent, on autophagy and atrophy in skeletal C2C12
myotubes. Biomed Res Int. 2017:70975802017.PubMed/NCBI
|
56
|
Qian X, Zhu M, Qian W and Song J: Vitamin
D attenuates myocardial ischemia-reperfusion injury by inhibiting
inflammation via suppressing the RhoA/ROCK/NF-κB pathway.
Biotechnol Appl Biochem. 66:850–857. 2019. View Article : Google Scholar : PubMed/NCBI
|
57
|
Vinten-Johansen J, Jiang R, Reeves JG,
Mykytenko J, Deneve J and Jobe LJ: Inflammation, proinflammatory
mediators and myocardial ischemia-reperfusion Injury. Hematol Oncol
Clin North Am. 21:123–145. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhao H, Liu M, Liu H, Suo R and Lu C:
Naringin protects endothelial cells from apoptosis and inflammation
by regulating the hippo-YAP pathway. Biosci Rep.
40:BSR201934312020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Sun LJ, Qiao W, Xiao YJ, Cui L, Wang X and
Ren WD: Naringin mitigates myocardial strain and the inflammatory
response in sepsis-induced myocardial dysfunction through
regulation of PI3K/AKT/NF-κB pathway. Int Immunopharmacol.
75:1057822019. View Article : Google Scholar
|