Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review)
- Authors:
- Joshua Miguel C. Danac
- Aileen Geobee G. Uy
- Reynaldo L. Garcia
-
Affiliations: Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines - Published online on: April 21, 2021 https://doi.org/10.3892/ijmm.2021.4945
- Article Number: 112
-
Copyright: © Danac et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. Feb 4–2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Augestad KM, Bakaki PM, Rose J, Crawshaw BP, Lindsetmo RO, Dørum LM, Koroukian SM and Delaney CP: Metastatic spread pattern after curative colorectal cancer surgery. A retrospective, longitudinal analysis. Cancer Epidemiol. 39:734–744. 2015. View Article : Google Scholar : PubMed/NCBI | |
Van Cutsem E, Cervantes A and Nordlinger B: Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 25(Suppl 3): iii1–iii9. 2014. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nozawa H, Kawai K, Hata K, Tanaka T, Nishikawa T, Otani K, Sasaki K, Kaneko M, Emoto S and Murono K: High-risk stage II colorectal cancers carry an equivalent risk of peritoneal recurrence to stage III. In Vivo. 32:1235–1240. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hutchinson L: Understanding metastasis. Nat Rev Clin Oncol. 12:2472015. View Article : Google Scholar : PubMed/NCBI | |
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Soares AR, Martins-Marques T, Ribeiro-Rodrigues T, Ferreira JV, Catarino S, Pinho MJ, Zuzarte M, Isabel Anjo S, Manadas BPG, Sluijter J, et al: Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Rep. 5:132432015. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fristrom D: The cellular basis of epithelial morphogenesis. A review Tissue Cell. 20:645–690. 1988. View Article : Google Scholar | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Soltermann A, Tischler V, Arbogast S, Braun J, Probst-Hensch N, Weder W, Moch H and Kristiansen G: Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res. 14:7430–7437. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Chen L, Deng H, Xu B, Li M, Zheng X, Wu C and Jiang J: Epithelial-to-mesenchymal transition in human esophageal cancer associates with tumor progression and patient's survival. Int J Clin Exp Pathol. 7:6943–6949. 2014.PubMed/NCBI | |
Handra-Luca A, Hong SM, Walter K, Wolfgang C, Hruban R and Goggins M: Tumour epithelial vimentin expression and outcome of pancreatic ductal adenocarcinomas. Br J Cancer. 104:1296–1302. 2011. View Article : Google Scholar : PubMed/NCBI | |
DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S and Kuperwasser C: A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res. 69:5364–5373. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shioiri M, Shida T, Koda K, Oda K, Seike K, Nishimura M, Takano S and Miyazaki M: Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer. 94:1816–1822. 2006. View Article : Google Scholar : PubMed/NCBI | |
Spaderna S, Schmalhofer O, Hlubek F, Berx G, Eger A, Merkel S, Jung A, Kirchner T and Brabletz T: A transient, EMT-Linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology. 131:830–840. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshida-Noro C, Suzuki N and Takeichi M: Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Dev Biol. 101:19–27. 1984. View Article : Google Scholar : PubMed/NCBI | |
Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D and Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 113:173–185. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ikenouchi J, Matsuda M, Furuse M and Tsukita S: Regulation of tight junctions during the epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 116(Pt 10): 1959–1967. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H, Tulchinsky E, Van Roy F and Berx G: SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33:6566–6578. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D and Saftig P: ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and -catenin translocation. Proc Natl Acad Sci USA. 102:9182–9187. 2005. View Article : Google Scholar | |
Heuberger J and Birchmeier W: Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2:a0029152010. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Bueno G, Portillo F and Cano A: Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 27:6958–6969. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T and Ohno S: Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol. 152:1183–1196. 2001. View Article : Google Scholar : PubMed/NCBI | |
Roh MH, Makarova O, Liu CJ, Shin K, Lee S, Laurinec S, Goyal M, Wiggins R and Margolis B: The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol. 157:161–172. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen X and Macara IG: Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol. 7:262–269. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bilder D, Li M and Perrimon N: Cooperative regulation of cell polarity and growth by drosophila tumor suppressors. Science. 289:113–116. 2000. View Article : Google Scholar : PubMed/NCBI | |
Navarro C, Nola S, Audebert S, Santoni MJ, Arsanto JP, Ginestier C, Marchetto S, Jacquemier J, Isnardon D, Le Bivic A, et al: Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene. 24:4330–4339. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED and Thompson EW: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 213:374–383. 2007. View Article : Google Scholar : PubMed/NCBI | |
Haynes J, Srivastava J, Madson N, Wittmann T and Barber DL: Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell. 22:4750–4764. 2011. View Article : Google Scholar : PubMed/NCBI | |
Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT and Horwitz AF: FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 6:154–161. 2004. View Article : Google Scholar : PubMed/NCBI | |
Micalizzi DS, Farabaugh SM and Ford HL: Epithelial-mesenchymal transition in cancer: Parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 15:117–134. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pagan R, Martı́n I, Alonso A, Llobera M and Vilaró S: Vimentin filaments follow the preexisting cytokeratin network during epithelial-mesenchymal transition of cultured neonatal rat hepatocytes. Exp Cell Res. 222:333–344. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chen WT: Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool. 251:167–185. 1989. View Article : Google Scholar : PubMed/NCBI | |
Tsai JH and Yang J: Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tsai JH, Donaher JL, Murphy DA, Chau S and Yang J: Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 22:725–736. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang GJ, Zhou T, Tian HP, Liu ZL and Xia SS: High expression of ZEB1 correlates with liver metastasis and poor prognosis in colorectal cancer. Oncol Lett. 5:564–568. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kahlert C, Lahes S, Radhakrishnan P, Dutta S, Mogler C, Herpel E, Brand K, Steinert G, Schneider M, Mollenhauer M, et al: Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin Cancer Res. 17:7654–7663. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gomez I, Peña C, Herrera M, Muñoz C, Larriba MJ, Garcia V, Dominguez G, Silva J, Rodriguez R, Garcia de Herreros A, et al: TWIST1 is expressed in colorectal carcinomas and predicts patient survival. PLoS One. 6:e180232011. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Jin GZ, Liu K, Dong H, Yu H, Duan JC, Li Z, Dong W, Cong WM and Yang JH: Twist2 is a valuable prognostic biomarker for colorectal cancer. World J Gastroenterol. 19:2404–2411. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wu J, Wei P, Xu Y, Zhuo C, Wang Y, Li D and Cai S: Overexpression of forkhead Box C2 promotes tumor metastasis and indicates poor prognosis in colon cancer via regulating epithelial-mesenchymal transition. Am J Cancer Res. 5:2022–2034. 2015.PubMed/NCBI | |
Weng W, Okugawa Y, Toden S, Toiyama Y, Kusunoki M and Goel A: FOXM1 and FOXQ1 are promising prognostic biomarkers and novel targets of tumor-suppressive miR-342 in human colorectal cancer. Clin Cancer Res. 22:4947–4957. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li D, Li Q, Zhuo C, Xu Y and Cai S: Contribution of FOXC1 to the progression and metastasis and prognosis of human colon cancer. J Clin Oncol. 33(Suppl 3): S6362015. View Article : Google Scholar | |
Peinado H, Ballestar E, Esteller M and Cano A: Snail Mediates E-cadherin repression by the recruitment of the Sin3A/Histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 24:306–319. 2004. View Article : Google Scholar : | |
Bolos V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M and Cano A: The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. J Cell Sci. 116(Pt 3): 499–511. 2003. View Article : Google Scholar : PubMed/NCBI | |
Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A, Saldanha G, Osborne J, Hutchinson P, Tse G, et al: A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell. 24:466–480. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vu T and Datta P: Regulation of EMT in colorectal cancer: A culprit in metastasis. Cancers (Basel). 9:1712017. View Article : Google Scholar | |
Stemmler MP, Eccles RL, Brabletz S and Brabletz T: Non-redundant functions of EMT transcription factors. Nat Cell Biol. 21:102–112. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Venkatasubbarao K, Lazor JW, Sperry J, Jin C, Cao L and Freeman JW: Inhibition of STAT3 Tyr705 Phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res. 68:4221–4228. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E and Bottinger EP: Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA. 98:6686–6691. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wilkes MC, Mitchell H, Penheiter SG, Doré JJ, Suzuki K, Edens M, Sharma DK, Pagano RE and Leof EB: Transforming growth factor-beta activation of phosphatidylinositol 3-Kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-Activated Kinase-2. Cancer Res. 65:10431–10440. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW and MacBeath G: A Noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell. 159:844–856. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang RY, Guilford P and Thiery JP: Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci. 125(Pt 19): pp. 4417–4422. 2012, View Article : Google Scholar | |
Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D, Kren A, Went P, Derksen PW, Berns A, et al: NCAM-induced focal adhesion assembly: A functional switch upon loss of E-cadherin. EMBO J. 27:2603–2615. 2008. View Article : Google Scholar : PubMed/NCBI | |
Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, et al: Molecular definition of breast tumor heterogeneity. Cancer Cell. 11:259–273. 2007. View Article : Google Scholar : PubMed/NCBI | |
Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, et al: The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 15:848–862. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, Agrawal A, Bird D, Latif NA, Forrest H, Evans HR, et al: The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature. 522:106–110. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reichert M, Bakir B, Moreira L, Pitarresi JR, Feldmann K, Simon L, Suzuki K, Maddipati R, Rhim AD, Schlitter AM, et al: Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer. Dev Cell. 45:696–711.e8. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shaul YD, Freinkman E, Comb WC, Cantor JR, Tam WL, Thiru P, Kim D, Kanarek N, Pacold ME, Chen WW, et al: Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell. 158:1094–1109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim NH, Cha YH, Lee J, Lee SH, Yang JH, Yun JS, Cho ES, Zhang X, Nam M, Kim N, et al: Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun. 8:143742017. View Article : Google Scholar : PubMed/NCBI | |
Kudo-Saito C, Shirako H, Takeuchi T and Kawakami Y: Cancer metastasis is accelerated through immunosuppression during Snail-Induced EMT of cancer cells. Cancer Cell. 15:195–206. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM and Shibuya M: MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell. 2:289–300. 2002. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shimaoka M, Kawamoto E, Gaowa A, Okamoto T and Park E: Connexins and integrins in exosomes. Cancers. 11:1062019. View Article : Google Scholar : | |
Liu T, Zhang Q, Zhang J, Li C, Miao YR, Lei Q, Li Q and Guo AY: EVmiRNA: A database of miRNA profiling in extracellular vesicles. Nucleic Acids Res. 47(D1): D89–D93. 2019. View Article : Google Scholar : | |
Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Simpson RJ, Jensen SS and Lim JWE: Proteomic profiling of exosomes: Current perspectives. Proteomics. 8:4083–4099. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zeringer E, Barta T, Schageman J, Cheng A and Vlassov AV: Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc Lond B Biol Sci. 369:201305022014. View Article : Google Scholar : PubMed/NCBI | |
Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI | |
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC and Coffey RJ: Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics. 12:343–355. 2013. View Article : Google Scholar : | |
Lucchetti D, Calapà F, Palmieri V, Fanali C, Carbone F, Papa A, De Maria R, De Spirito M and Sgambato A: Differentiation affects the release of exosomes from colon cancer cells and their ability to modulate the behavior of recipient cells. Am J Pathol. 187:1633–1647. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, Zhang J, Chen L, Tang JH and Zhao JH: Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumor Biol. 35:10773–10779. 2014. View Article : Google Scholar | |
Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ and Sixma JJ: Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 94:3791–3799. 1999. View Article : Google Scholar : PubMed/NCBI | |
Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, Buzás EI and Lötvall J: Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2:206772013. View Article : Google Scholar | |
Pan BT, Teng K, Wu C, Adam M and Johnstone RM: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 101:942–948. 1985. View Article : Google Scholar : PubMed/NCBI | |
Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stoorvogel W, Kleijmeer MJ, Geuze HJ and Raposo G: The biogenesis and functions of exosomes. Traffic. 3:321–330. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wollert T and Hurley JH: Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 464:864–869. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, et al: Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 14:677–685. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roucourt B, Meeussen S, Bao J, Zimmermann P and David G: Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25:412–428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B and Simons M: Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319:1244–1247. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, Zhang R, Wu Y, Gao S and Kang T: RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 31:157–177. 2021. View Article : Google Scholar : | |
Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, et al: Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 12(19-30): 1–13. 2010. View Article : Google Scholar | |
Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, et al: Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 189:223–232. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, et al: Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 14:3192013. View Article : Google Scholar : PubMed/NCBI | |
Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM and Breakefield XO: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Boza J, Lion M and Struman I: Exploring the RNA landscape of endothelial exosomes. RNA. 24:423–435. 2018. View Article : Google Scholar : | |
Amorim MG, Valieris R, Drummond RD, Pizzi MP, Freitas VM, Sinigaglia-Coimbra R, Calin GA, Pasqualini R, Arap W, Silva IT, et al: A total transcriptome profiling method for plasma-derived extracellular vesicles: Applications for liquid biopsies. Sci Rep. 7:143952017. View Article : Google Scholar : PubMed/NCBI | |
Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B and Kurochkin IV: Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ. 1:e2012013. View Article : Google Scholar : PubMed/NCBI | |
Yuan T, Huang X, Woodcock M, Du M, Dittmar R, Wang Y, Tsai S, Kohli M, Boardman L, Patel T and Wang L: Plasma extracellular RNA profiles in healthy and cancer patients. Sci Rep. 6:194132016. View Article : Google Scholar : PubMed/NCBI | |
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M and Sánchez-Madrid F: Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 4:29802013. View Article : Google Scholar : PubMed/NCBI | |
Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A and Tripodi M: The RNA-Binding Protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling MicroRNA sorting. Cell Rep. 17:799–808. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao T, Shu J and Cui J: A systematic approach to RNA-associated motif discovery. BMC Genomics. 19:1462018. View Article : Google Scholar : PubMed/NCBI | |
Koppers-Lalic D, Hackenberg M, Bijnsdor p IV, van Eijndhoven MAJ, Sadek P, Sie D, Zini N, Middeldorp JM, Ylstra B, de Menezes RX, et al: Nontemplated Nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8:1649–1658. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y and Ochiya T: Secretory mechanisms and intercellular transfer of MicroRNAs in living cells. J Biol Chem. 285:17442–17452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F and Ochiya T: Neutral Sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic MicroRNAs regulate cancer cell metastasis. J Biol Chem. 288:10849–10859. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kubota S, Chiba M, Watanabe M, Sakamoto M and Watanabe N: Secretion of small/microRNAs including miR-638 into extracellular spaces by sphingomyelin phosphodiesterase 3. Oncol Rep. 33:67–73. 2015. View Article : Google Scholar | |
Yan S, Dang G, Zhang X, Jin C, Qin L, Wang Y, Shi M, Huang H and Duan Q: Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients. Oncotarget. 8:72220–72226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ and Simpson DA: Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 13:3572012. View Article : Google Scholar : PubMed/NCBI | |
McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, Patton JG and Weaver AM: KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15:978–987. 2016. View Article : Google Scholar : PubMed/NCBI | |
Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et al: Cancer exosomes perform cell-independent MicroRNA biogenesis and promote tumorigenesis. Cancer Cell. 26:707–721. 2014. View Article : Google Scholar : PubMed/NCBI | |
Savina A, Furlán M, Vidal M and Colombo MI: Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem. 278:20083–20090. 2003. View Article : Google Scholar : PubMed/NCBI | |
Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, et al: Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 284:34211–34222. 2009. View Article : Google Scholar : PubMed/NCBI | |
Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK and Sze SK: Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 9:1085–1099. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK and Simons M: Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 124(Pt 3): 447–458. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH and Xiao ZD: Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 289:22258–22267. 2014. View Article : Google Scholar : PubMed/NCBI | |
Harding C, Heuser J and Stahl P: Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 97:329–339. 1983. View Article : Google Scholar : PubMed/NCBI | |
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chiba M, Kimura M and Asari S: Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep. 28:1551–1558. 2012. View Article : Google Scholar : PubMed/NCBI | |
Takahashi K, Yan IK, Kogure T, Haga H and Patel T: Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio. 4:458–467. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S, et al: KRAS-dependent sorting of miRNA to exosomes. Elife. 4:e071972015. View Article : Google Scholar : PubMed/NCBI | |
Zhou MK, Liu XJ, Zhao ZG and Cheng YM: MicroRNA-100 functions as a tumor suppressor by inhibiting Lgr5 expression in colon cancer cells. Mol Med Rep. 11:2947–2952. 2015. View Article : Google Scholar | |
Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA and Multhoff G: Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65:5238–5247. 2005. View Article : Google Scholar : PubMed/NCBI | |
Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A, Colone M, Arancia G, Gentile M, et al: Human colorectal cancer cells induce T-Cell death through release of proapoptotic microvesicles: Role in immune escape. Gastroenterology. 128:1796–1804. 2005. View Article : Google Scholar : PubMed/NCBI | |
Takano Y, Masuda T, Iinuma H, Yamaguchi R, Sato K, Tobo T, Hirata H, Kuroda Y, Nambara S, Hayashi N, et al: Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget. 8:78598–78613. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang Z and Feng Y: Exosomes derived from hypoxic colorectal cancer cells promote angiogenesis through Wnt4-Induced β-catenin signaling in endothelial cells. Oncol Res. 25:651–661. 2017. View Article : Google Scholar | |
Bigagli E, Luceri C, Guasti D and Cinci L: Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210. Cancer Biol Ther. 17:1062–1069. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shedden K, Xie XT, Chandaroy P, Chang YT and Rosania GR: Expulsion of small molecules in vesicles shed by cancer cells: Association with gene expression and chemosensitivity profiles. Cancer Res. 63:4331–4337. 2003.PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sappino AP, Skalli O, Jackson B, Schürch W and Gabbiani G: Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer. 41:707–712. 1988. View Article : Google Scholar : PubMed/NCBI | |
Dai G, Yao X, Zhang Y, Gu J, Geng Y, Xue F and Zhang J: Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway. Bull Cancer. 105:336–349. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
Alcantara KMM and Garcia RL: MicroRNA-92a promotes cell proliferation, migration and survival by directly targeting the tumor suppressor gene NF2 in colorectal and lung cancer cells. Oncol Rep. 41:2103–2116. 2019.PubMed/NCBI | |
Yamada NO, Heishima K, Akao Y and Senda T: Extracellular vesicles containing MicroRNA-92a-3p facilitate partial endothelial-mesenchymal transition and angiogenesis in endothelial cells. Int J Mol Sci. 20:44062019. View Article : Google Scholar : | |
Li J, Zhou C, Ni S, Wang S, Ni C, Yang P and Ye M: Methylated claudin-11 associated with metastasis and poor survival of colorectal cancer. Oncotarget. 8:96249–96262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bhome R, Goh RW, Bullock MD, Pillar N, Thirdborough SM, Mellone M, Mirnezami R, Galea D, Veselkov K, Gu Q, et al: Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: Role in driving cancer progression. Aging (Albany NY). 9:2666–2694. 2017. View Article : Google Scholar | |
Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T and Hou Y: Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 8:3932–3948. 2018. View Article : Google Scholar : PubMed/NCBI | |
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL and Weinberg RA: Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA and Orimo A: Autocrine TGF- and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 107:20009–20014. 2010. View Article : Google Scholar | |
Philippeos C, Telerman SB, Oulès B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD and Watt FM: Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J Invest Dermatol. 138:811–825. 2018. View Article : Google Scholar : PubMed/NCBI | |
Croft AP, Campos J, Jansen K, Turner JD, Marshall J, Attar M, Savary L, Wehmeyer C, Naylor AJ, Kemble S, et al: Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 570:246–251. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu Y, Sun P, Leng K, Xu Y, Mei L, Han P, Zhang B, Yao K, Li C, et al: Colorectal cancer-derived exosomal miR-106b-3p promotes metastasis by down-regulating DLC-1 expression. Clin Sci (Lond). 134:419–434. 2020. View Article : Google Scholar | |
Kim TY, Vigil D, Der CJ and Juliano RL: Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev. 28:77–83. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, et al: Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 9:e929212014. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Li Y, Huang K, Li G and He M: Exosomal miR-1246 in body fluids is a potential biomarker for gastrointestinal cancer. Biomark Med. 12:1185–1196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris CC: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun. 9:7712018. View Article : Google Scholar : PubMed/NCBI | |
Tanaka S, Hosokawa M, Ueda K and Iwakawa S: Effects of decitabine on invasion and exosomal expression of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull. 38:1272–1279. 2015. View Article : Google Scholar : PubMed/NCBI | |
Senfter D, Holzner S, Kalipciyan M, Staribacher A, Walzl A, Huttary N, Krieger S, Brenner S, Jäger W, Krupitza G, et al: Loss of miR-200 family in 5-fluorouracil resistant colon cancer drives lymphendothelial invasiveness in vitro. Hum Mol Genet. 24:3689–3698. 2015.PubMed/NCBI | |
Holzner S, Senfter D, Stadler S, Staribacher A, Nguyen CH, Gaggl A, Geleff S, Huttary N, Krieger S, Jäger W, et al: Colorectal cancer cell-derived microRNA200 modulates the resistance of adjacent blood endothelial barriers in vitro. Oncol Rep. 36:3065–3071. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Bai J, Yin H, Long L, Zheng Z, Wang Q, Chen F, Yu X and Zhou Y: Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol Oncol. 14:2589–2608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, et al: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 11:1487–1495. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J and Song E: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Liao K and Zhou W: Exosomes regulate the transformation of cancer cells in cancer stem cell homeostasis. Stem Cells Int. 2018:48373702018. View Article : Google Scholar : PubMed/NCBI | |
Li H and Li F: Exosomes from BM-MSCs increase the population of CSCs via transfer of miR-142-3p. Br J Cancer. 119:744–755. 2018. View Article : Google Scholar : PubMed/NCBI | |
Farace C, Pisano A, Griñan-Lison C, Solinas G, Jiménez G, Serra M, Carrillo E, Scognamillo F, Attene F, Montella A, et al: Deregulation of cancer-stem-cell-associated miRNAs in tissues and sera of colorectal cancer patients. Oncotarget. 11:116–130. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, Wang L, Li P, Zhao Y, Duan W, et al: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 18:432019. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Yan C, Mu L, Huang K, Li X, Tao D, Wu Y and Qin J: Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One. 10:e01256252015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Chen X, Zeng K, Xu M, He B, Pan Y, Sun H, Pan B, Xu X, Xu T, et al: DNA-methylation-mediated silencing of miR-486-5p promotes colorectal cancer proliferation and migration through activation of PLAGL2/IGF2/β-catenin signal pathways. Cell Death Dis. 9:10372018. View Article : Google Scholar | |
Mizoguchi A, Takayama A, Arai T, Kawauchi J and Sudo H: MicroRNA-8073: Tumor suppressor and potential therapeutic treatment. PLoS One. 13:e02097502018. View Article : Google Scholar : PubMed/NCBI | |
Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, Deng Z, Kumar A, Zhang L, Merchant ML, et al: MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun. 8:144482017. View Article : Google Scholar : PubMed/NCBI | |
Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI | |
Dameron KM, Volpert OV, Tainsky MA and Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 265:1582–1584. 1994. View Article : Google Scholar : PubMed/NCBI | |
Soheilifar MH, Grusch M, Neghab HK, Amini R, Maadi H, Saidijam M and Wang Z: Angioregulatory microRNAs in colorectal cancer. Cancers (Basel). 12:712019. View Article : Google Scholar | |
Bhattacharya R, SenBanerjee S, Lin Z, Mir S, Hamik A, Wang P, Mukherjee P, Mukhopadhyay D and Jain MK: Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the kruppel-like factor KLF2. J Biol Chem. 280:28848–28851. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Wang P, Liu Y, Zhao L, Li Z and Xue Y: Krüppel-Like Factor 4 regulates blood-tumor barrier permeability via ZO-1, Occludin and Claudin-5. J Cell Physiol. 229:916–926. 2014. View Article : Google Scholar | |
Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, Zhou K, Liu X, Ren X, Wang F, et al: Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 9:53952018. View Article : Google Scholar : PubMed/NCBI | |
Yamada N, Nakagawa Y, Tsujimura N, Kumazaki M, Noguchi S, Mori T, Hirata I, Maruo K and Akao Y: Role of intracellular and extracellular MicroRNA-92a in colorectal cancer. Transl Oncol. 6:482–492. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hu HY, Yu CH, Zhang HH, Zhang SZ, Yu WY, Yang Y and Chen Q: Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int J Biol Macromol. 132:470–477. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shang A, Wang X, Gu C, Liu W, Sun J, Zeng B, Chen C, Ji P, Wu J, Quan W, et al: Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1. Aging (Albany NY). 12:8352–8371. 2020. View Article : Google Scholar | |
Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi K, Nakagawa Y, Naoe T and Akao Y: Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta. 1839:1256–1272. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi F, Gopalan V, Wahab R, Lu CT, Smith RA and Lam AK: Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance. Exp Cell Res. 339:333–341. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY and Srivastava D: MiR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 15:272–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE and Lawson ND: MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature. 464:1196–1200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hansen TF, Andersen CL, Nielsen BS, Spindler KL, Sørensen FB, Lindebjerg J, Brandslund I and Jakobsen A: Elevated microRNA-126 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in colorectal cancer. Oncol Lett. 2:1101–1106. 2011. View Article : Google Scholar | |
Zhang Y, Wang X, Xu B, Wang B, Wang Z, Liang Y, Zhou J, Hu J and Jiang B: Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep. 30:1976–1984. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hansen TF, Carlsen AL, Heegaard NH, Sørensen FB and Jakobsen A: Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br J Cancer. 112:624–629. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Gao C, Li Y, Sun M, Xu J, Li H, Jia L and Zhao Y: MiR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death Dis. 8:e29682017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yan F, Zhao Q, Zhan F, Wang R, Wang L, Zhang Y and Huang X: Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci Rep. 7:41502017. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Qiu J, Kang H, Wang Y and Qian J: MiR-125a-5p suppresses colorectal cancer progression by targeting VEGFA. Cancer Manag Res. 10:5839–5853. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Zhou L, Wu S, Shi X, Jiang G, Niu S and Ding D: MiR-125a-5p inhibits colorectal cancer cell epithelial-mesenchymal transition, invasion and migration by targeting TAZ. Onco Targets Ther. 12:3481–3489. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tong Z, Liu N, Lin L, Guo X, Yang D and Zhang Q: MiR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomed Pharmacother. 75:129–136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katoh H, Wang D, Daikoku T, Sun H, Dey SK and DuBois RN: CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 24:631–644. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ru P, Steele R, Hsueh EC and Ray RB: Anti-miR-203 Upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer. 2:720–727. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Stewart KN, Bishop E, Marek CJ, Kluth DC, Rees AJ and Wilson HM: Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J Immunol. 180:6270–6278. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang X, Si M, Yang J, Sun S, Wu H, Cui S, Qu X and Yu X: Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 474:36–52. 2020. View Article : Google Scholar : PubMed/NCBI | |
Noh GT, Kwon J, Kim J, Park M, Choi DW, Cho KA, Woo SY, Oh BY, Lee KY and Lee RA: Verification of the role of exosomal microRNA in colorectal tumorigenesis using human colorectal cancer cell lines. PLoS One. 15:e02420572020. View Article : Google Scholar : PubMed/NCBI | |
Cheng L, Sharples RA, Scicluna BJ and Hill AF: Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 3:237432014. View Article : Google Scholar | |
Ge Q, Zhou Y, Lu J, Bai Y, Xie X and Lu Z: MiRNA in plasma exosome is stable under different storage conditions. Molecules. 19:1568–1575. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD and Kloecker GH: Exosomal MicroRNA: A diagnostic marker for lung cancer. Clin Lung Cancer. 10:42–46. 2009. View Article : Google Scholar : PubMed/NCBI | |
Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano Y, et al: Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 113:275–281. 2015. View Article : Google Scholar : PubMed/NCBI |