In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review)
- Authors:
- Wencheng Song
- Shue Li
- Qingming Tang
- Lili Chen
- Zhenglin Yuan
-
Affiliations: Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China - Published online on: May 14, 2021 https://doi.org/10.3892/ijmm.2021.4961
- Article Number: 128
-
Copyright: © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Liu H, Gronthos S and Shi S: Dental pulp stem cells. Methods Enzymol. 419:99–113. 2006. View Article : Google Scholar : PubMed/NCBI | |
Heyeraas KJ and Kvinnsland I: Tissue pressure and blood flow in pulpal inflammation. Proc Finn Dent Soc. 88(Suppl 1): S393–S401. 1992. | |
Mohammadi Z and Dummer PMH: Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J. 44:697–730. 2011. View Article : Google Scholar : PubMed/NCBI | |
Siew K, Lee AH and Cheung GS: Treatment outcome of repaired root perforation: A systematic review and meta-analysis. J Endod. 41:1795–1804. 2015. View Article : Google Scholar : PubMed/NCBI | |
Juneja P and Kulkarni S: Clinical and radiographic comparison of biodentine, mineral trioxide aggregate and formocresol as pulpotomy agents in primary molars. Eur Arch Paediatr Dent. 18:271–278. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suhag K, Duhan J, Tewari S and Sangwan P: Success of direct pulp capping using mineral trioxide aggregate and calcium hydroxide in mature permanent molars with pulps exposed during carious tissue removal: 1-year follow-up. J Endod. 45:840–847. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gutmann JL and Pitt Ford TR: Management of the resected root end: A clinical review. Int Endod J. 26:273–283. 1993. View Article : Google Scholar : PubMed/NCBI | |
Abusrewil SM, McLean W and Scott JA: The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent J. 30:273–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Torabinejad M, Watson TF and Pitt Ford TR: Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 19:591–595. 1993. View Article : Google Scholar : PubMed/NCBI | |
Asgary S, Eghbal MJ and Parirokh M: Sealing ability of a novel endodontic cement as a root-end filling material. J Biomed Mater Res A. 87:706–709. 2008. View Article : Google Scholar : PubMed/NCBI | |
Parirokh M, Torabinejad M and Dummer PMH: Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview-part I: Vital pulp therapy. Int Endod J. 51:177–205. 2018. View Article : Google Scholar | |
Torabinejad M, Parirokh M and Dummer P: Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview part II: Other clinical applications and complications. Int Endod J. 51:284–317. 2018. View Article : Google Scholar | |
Majeed A and AlShwaimi E: Push-out bond strength and surface microhardness of calcium silicate-based biomaterials: An in vitro study. Med Princ Pract. 26:139–145. 2017. View Article : Google Scholar : | |
Song W, Sun W, Chen L and Yuan Z: In vivo biocompatibility and bioactivity of calcium silicate-based bioceramics in endodontics. Front Bioeng Biotechnol. 8:5809542020. View Article : Google Scholar : | |
Rodriguez-Lozano FJ, Lopez-Garcia S, Garcia-Bernal D, Sanz JL, Lozano A, Pecci-Lloret MP, Melo M, Lopez-Gines C and Forner L: Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin Oral Investig. Feb 27–2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Garrido M, Morales D, Saldias MP, Fernandez C, Villalobos V, Cerda O and Caceres M: Cellular response of human apical papilla cells to calcium hydroxide and tricalcium silicate-based cements. BMC Oral Health. 21:1062021. View Article : Google Scholar : PubMed/NCBI | |
Lemons JE: Ceramics: Past, present, and future. Bone. 19(Suppl 1): 121S–128S. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hench LL and Wilson J: Surface-active biomaterials. Science. 226:630–636. 1984. View Article : Google Scholar : PubMed/NCBI | |
Grech L, Mallia B and Camilleri J: Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 29:e20–e28. 2013. View Article : Google Scholar | |
Shokouhinejad N, Nekoofar MH, Razmi H, Sajadi S, Davies TE, Saghiri MA, Gorjestani H and Dummer PM: Bioactivity of EndoSequence root repair material and bioaggregate. Int Endod J. 45:1127–1134. 2012. View Article : Google Scholar : PubMed/NCBI | |
Han L, Okiji T and Okawa S: Morphological and chemical analysis of different precipitates on mineral trioxide aggregate immersed in different fluids. Dent Mater J. 29:512–517. 2010. View Article : Google Scholar : PubMed/NCBI | |
Camilleri J: Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater. 27:836–844. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Chang J and Zhai W: Self-setting properties and in vitro bioactivity of Ca3SiO5/CaSO4.1/2H2O composite cement. J Biomed Mater Res A. 85:336–344. 2008. View Article : Google Scholar | |
Zhao W, Wang J, Zhai W, Wang Z and Chang J: The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 26:6113–6121. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen I, Salhab I, Setzer FC, Kim S and Nah HD: A new calcium silicate-based bioceramic material promotes human osteo- and odontogenic stem cell proliferation and survival via the extracellular signal-regulated kinase signaling pathway. J Endod. 42:480–486. 2016. View Article : Google Scholar : PubMed/NCBI | |
Morsczeck C and Reichert TE: Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther. 18:187–196. 2018. View Article : Google Scholar | |
Aydin S and Sahin F: Stem cells derived from dental tissues. Adv Exp Med Biol. 1144:123–132. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Lozano FJ, Bueno C, Insausti CL, Meseguer L, Ramirez MC, Blanquer M, Marin N, Martinez S and Moraleda JM: Mesenchymal stem cells derived from dental tissues. Int Endod J. 44:800–806. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rombouts C, Giraud T, Jeanneau C and About I: Pulp Vascularization during tooth development, regeneration, and therapy. J Dent Res. 96:137–144. 2017. View Article : Google Scholar : PubMed/NCBI | |
Murray PE, Garcia-Godoy F and Hargreaves KM: Regenerative endodontics: A review of current status and a call for action. J Endodont. 33:377–390. 2007. View Article : Google Scholar | |
Orti V, Collart-Dutilleul PY, Piglionico S, Pall O, Cuisinier F and Panayotov I: Pulp regeneration concepts for nonvital teeth: From tissue engineering to clinical approaches. Tissue Eng Part B Rev. 24:419–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sugawara Y, Suzuki K, Koshikawa M, Ando M and Iida J: Necessity of enzymatic activity of alkaline phosphatase for mineralization of osteoblastic cells. Jpn J Pharmacol. 88:262–269. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cormier C: Markers of bone metabolism. Curr Opin Rheumatol. 7:243–248. 1995. View Article : Google Scholar : PubMed/NCBI | |
Rodan GA and Noda M: Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr. 1:85–98. 1991.PubMed/NCBI | |
Camilleri S and McDonald F: Runx2 and dental development. Eur J Oral Sci. 114:361–373. 2006. View Article : Google Scholar : PubMed/NCBI | |
Karsenty G and Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2:389–406. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rathinam E, Rajasekharan S, Chitturi RT, Martens L and De Coster P: Gene expression profiling and molecular signaling of dental pulp cells in response to tricalcium silicate cements: A systematic review. J Endod. 41:1805–1817. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Kokubu E, Wang X and Inoue T: Formation of bone-like tissue by dental follicle cells co-cultured with dental papilla cells. Cell Tissue Res. 342:221–231. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gibson MP, Zhu Q, Wang S, Liu Q, Liu Y, Wang X, Yuan B, Ruest LB, Feng JQ, D'Souza RN, et al: The rescue of dentin matrix protein 1 (DMP1)-deficient tooth defects by the transgenic expression of dentin sialophosphoprotein (DSPP) indicates that DSPP is a downstream effector molecule of DMP1 in dentinogenesis. J Biol Chem. 288:7204–7214. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee SK, Lee KE, Jeon D, Lee G, Lee H, Shin CU, Jung YJ, Lee SH, Hahn SH and Kim JW: A novel mutation in the DSPP gene associated with dentinogenesis imperfecta type II. J Dent Res. 88:51–55. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chang CC, Yeh CL, Chang HH, Kuo YF, Huang PY and Lin CP: Effect of different zinc concentrations on partially-stabilized cement for vital pulp therapy. J Formos Med Assoc. 118:1610–1615. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, He W, Song Z, Tong Z, Li S and Ni L: Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells. Mol Biol Rep. 39:215–220. 2012. View Article : Google Scholar | |
Tomas-Catala CJ, Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Forner L, Llena C, Lozano A, Castelo-Baz P, Moraleda JM and Rodriguez-Lozano FJ: Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J. 50(Suppl 2): e63–e72. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yan M, Fan Z, Ma L, Yu Y and Yu J: Mineral trioxide aggregate enhances the odonto/osteogenic capacity of stem cells from inflammatory dental pulps via NF-κB pathway. Oral Dis. 20:650–658. 2014. View Article : Google Scholar | |
Jaberiansari Z, Naderi S and Tabatabaei FS: Cytotoxic effects of various mineral trioxide aggregate formulations, calcium-enriched mixture and a new cement on human pulp stem cells. Iran Endod J. 9:271–276. 2014.PubMed/NCBI | |
Niu LN, Watson D, Thames K, Primus CM, Bergeron BE, Jiao K, Bortoluzzi EA, Cutler CW, Chen JH, Pashley DH and Tay FR: Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells. Sci Rep. 5:171772015. View Article : Google Scholar : PubMed/NCBI | |
Mohamed DA, Abdelfattah MI and Aboulezz EH: The effect of three different biomaterials on proliferation and viability of human dental pulp stem cells (In-vitro Study). Open Access Maced J Med Sci. 5:657–663. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kulan P, Karabiyik O, Kose GT and Kargul B: The effect of accelerated mineral trioxide aggregate on odontoblastic differentiation in dental pulp stem cell niches. Int Endod J. 51:758–766. 2018. View Article : Google Scholar | |
Youssef AR, Emara R, Taher MM, Al-Allaf FA, Almalki M, Almasri MA and Siddiqui SS: Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health. 19:1332019. View Article : Google Scholar : PubMed/NCBI | |
Minyong W, He L, Shenglin L and Man Q: Effects of mineral trioxide aggregate on the proliferation and differentiation of human pulp cells from primary and permanent teeth. Hua Xi Kou Qiang Yi Xue Za Zhi. 33:75–79. 2015.In Chinese. PubMed/NCBI | |
Camilleri J, Montesin FE, Papaioannou S, McDonald F and Pitt Ford TR: Biocompatibility of two commercial forms of mineral trioxide aggregate. Int Endod J. 37:699–704. 2004. View Article : Google Scholar : PubMed/NCBI | |
Demirkaya K, Can Demirdöğen B, Öncel Torun Z, Erdem O, Cetinkaya S and Akay C: In vivo evaluation of the effects of hydraulic calcium silicate dental cements on plasma and liver aluminium levels in rats. Eur J Oral Sci. 124:75–81. 2016. View Article : Google Scholar | |
Chung M, Lee S, Chen D, Kim U, Kim Y, Kim S and Kim E: Effects of different calcium silicate cements on the inflammatory response and odontogenic differentiation of lipopolysaccharide-stimulated human dental pulp stem cells. Materials (Basel). 12:12592019. View Article : Google Scholar | |
Chen M, Hu DN, Pan Z, Lu CW, Xue CY and Aass I: Curcumin protects against hyperosmoticity-induced IL-1beta elevation in human corneal epithelial cell via MAPK pathways. Exp Eye Res. 90:437–443. 2010. View Article : Google Scholar | |
Tang JJ, Shen ZS, Qin W and Lin Z: A comparison of the sealing abilities between Biodentine and MTA as root-end filling materials and their effects on bone healing in dogs after periradicular surgery. J Appl Oral Sci. 27:e201806932019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W and Peng B: Tissue reactions after subcutaneous and intraosseous implantation of iRoot SP, MTA and AH Plus. Dent Mater J. 34:774–780. 2015. View Article : Google Scholar : PubMed/NCBI | |
Masuda-Murakami Y, Kobayashi M, Wang X, Yamada Y, Kimura Y, Hossain M and Matsumoto K: Effects of mineral trioxide aggregate on the differentiation of rat dental pulp cells. Acta Histochem. 112:452–458. 2010. View Article : Google Scholar | |
Agrafioti A, Taraslia V, Chrepa V, Lymperi S, Panopoulos P, Anastasiadou E and Kontakiotis EG: Interaction of dental pulp stem cells with Biodentine and MTA after exposure to different environments. J Appl Oral Sci. 24:481–486. 2016. View Article : Google Scholar : PubMed/NCBI | |
Utneja S, Nawal RR, Talwar S and Verma M: Current perspectives of bio-ceramic technology in endodontics: Calcium enriched mixture cement-review of its composition, properties and applications. Restor Dent Endod. 40:1–13. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bin CV, Valera MC, Camargo SE, Rabelo SB, Silva GO, Balducci I and Camargo CH: Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. J Endod. 38:495–500. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhao M, Lu J, Ma J, Wei J and Wei S: Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int J Nanomedicine. 7:1239–1250. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanafy AK, Shinaishin SF, Eldeen GN and Aly RM: Nano Hydroxyapatite & mineral trioxide aggregate efficiently promote odontogenic differentiation of dental pulp stem cells. Open Access Maced J Med Sci. 6:1727–1731. 2018. View Article : Google Scholar : PubMed/NCBI | |
Paranjpe A, Zhang H and Johnson JD: Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. J Endod. 36:1042–1047. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seo MS, Hwang KG, Lee J, Kim H and Baek SH: The effect of mineral trioxide aggregate on odontogenic differentiation in dental pulp stem cells. J Endod. 39:242–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okamoto M, Ali M, Komichi S, Watanabe M, Huang H, Ito Y, Miura J, Hirose Y, Mizuhira M, Takahashi Y, et al: Surface pre-reacted glass filler contributes to tertiary dentin formation through a mechanism different than that of hydraulic calcium-silicate cement. J Clin Med. 8:14402019. View Article : Google Scholar : | |
Asgary S, Nazarian H, Khojasteh A and Shokouhinejad N: Gene expression and cytokine release during odontogenic differentiation of human dental pulp stem cells induced by 2 endodontic biomaterials. J Endod. 40:387–392. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paranjpe A, Cacalano NA, Hume WR and Jewett A: N-acetylcysteine protects dental pulp stromal cells from HEMA-induced apoptosis by inducing differentiation of the cells. Free Radic Biol Med. 43:1394–1408. 2007. View Article : Google Scholar : PubMed/NCBI | |
Caicedo R, Abbott PV, Alongi DJ and Alarcon MY: Clinical, radiographic and histological analysis of the effects of mineral trioxide aggregate used in direct pulp capping and pulpotomies of primary teeth. Aust Dent J. 51:297–305. 2006. View Article : Google Scholar | |
Maroto M, Barberia E, Planells P and García Godoy F: Dentin bridge formation after mineral trioxide aggregate (MTA) pulpotomies in primary teeth. Am J Dent. 18:151–154. 2005.PubMed/NCBI | |
Javid B, Panahandeh N, Torabzadeh H, Nazarian H, Parhizkar A and Asgary S: Bioactivity of endodontic biomaterials on dental pulp stem cells through dentin. Restor Dent Endod. 45:e32019. View Article : Google Scholar | |
Kulan P, Karabiyik O, Kose GT and Kargul B: Biocompatibility of accelerated mineral trioxide aggregate on stem cells derived from human dental pulp. J Endod. 42:276–279. 2016. View Article : Google Scholar | |
Kim JH, Kim SY, Woo SM, Jeong HN, Jung JY, Kim SM and Lim HS: Combination of mineral trioxide aggregate and propolis promotes odontoblastic differentiation of human dental pulp stem cells through ERK signaling pathway. Food Sci Biotechnol. 28:1801–1809. 2019. View Article : Google Scholar : PubMed/NCBI | |
Olcay K, Tasli PN, Guven EP, Ulker G, Ogut EE, Ciftcioglu E, Kiratli B and Sahin F: Effect of a novel bioceramic root canal sealer on the angiogenesis-enhancing potential of assorted human odontogenic stem cells compared with principal tricalcium silicate-based cements. J Appl Oral Sci. 28:e201902152020. View Article : Google Scholar : PubMed/NCBI | |
Tomas-Catala CJ, Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Forner L, Llena C, Lozano A, Moraleda JM and Rodriguez-Lozano FJ: Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and biodentine on human dental pulp stem cells. J Endod. 44:126–132. 2018. View Article : Google Scholar | |
Luo Z, Li D, Kohli MR, Yu Q, Kim S and He WX: Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells. J Dent. 42:490–497. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Kohli MR, Yu Q, Kim S, Qu T and He WX: Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways. J Endod. 40:937–942. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bortoluzzi EA, Niu LN, Palani CD, El-Awady AR, Hammond BD, Pei DD, Tian FC, Cutler CW, Pashley DH and Tay FR: Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent Mater. 31:1510–1522. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jeanneau C, Laurent P, Rombouts C, Giraud T and About I: Light-cured tricalcium silicate toxicity to the dental pulp. J Endod. 43:2074–2080. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weekate K, Chuenjitkuntaworn B, Chuveera P, Vaseenon S, Chompu-Inwai P, Ittichaicharoen J, Chattipakorn S and Srisuwan T: Alterations of mitochondrial dynamics, inflammation and mineralization potential of lipopolysaccharide-induced human dental pulp cells after exposure to N-acetyl cysteine, Biodentine or ProRoot MTA. Int Endod J. Jan 27–2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Loison-Robert LS, Tassin M, Bonte E, Berbar T, Isaac J, Berdal A, Simon S and Fournier BPJ: In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS One. 13:e1900142018. View Article : Google Scholar | |
Kuru S, Sepet E, Irez T, Aktas E, Yazir Y, Duruksu G, Osmanoglu Akyol E and Erguven M: Effects of different pulp-capping materials on cell death signaling pathways of lipoteichoic acid-stimulated human dental pulp stem cells. Odontology. 109:547–559. 2021. View Article : Google Scholar | |
Petta TM, Pedroni ACF, Saavedra DF, Faial KDCF, Marques MM and Couto RSD: The effect of three different pulp capping cements on mineralization of dental pulp stem cells. Dent Mater J. 39:222–228. 2020. View Article : Google Scholar | |
Tsujimoto M, Ookubo A, Wada Y, Matsunaga T, Tsujimoto Y and Hayashi Y: Surface changes of mineral trioxide aggregate after the application of bleaching agents: Electron microscopy and an energy-dispersive X-ray microanalysis. J Endod. 37:231–234. 2011. View Article : Google Scholar : PubMed/NCBI | |
Namazikhah MS, Nekoofar MH, Sheykhrezae MS, Salariyeh S, Hayes SJ, Bryant ST, Mohammadi MM and Dummer PM: The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J. 41:108–116. 2008. | |
Shie MY, Huang TH, Kao CT, Huang CH and Ding SJ: The effect of a physiologic solution pH on properties of white mineral trioxide aggregate. J Endod. 35:98–101. 2009. View Article : Google Scholar | |
Widbiller M, Lindner SR, Buchalla W, Eidt A, Hiller KA, Schmalz G and Galler KM: Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements. Clin Oral Investig. 20:237–246. 2016. View Article : Google Scholar | |
Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I and MacDougall M: Runx2, osx, and dspp in tooth development. J Dent Res. 88:904–909. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li S, Kong H, Yao N, Yu Q, Wang P, Lin Y, Wang J, Kuang R, Zhao X, Xu J, et al: The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem Biophys Res Commun. 410:698–704. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratajczak J, Vangansewinkel T, Wolfs E, Bronckaers A and Hilkens P: Dental pulp stem cells: Their potential in reinnervation and angiogenesis by using Scaffolds. J Endod. 43:S12–S16. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM and Dvorak HF: Vascular permeability factor/vascular endothelial growth factor: A multifunctional angiogenic cytokine. EXS. 79:233–269. 1997.PubMed/NCBI | |
Folkman J and Shing Y: Angiogenesis. J Biol Chem. 267:10931–10934. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bai F, Wang Z, Lu J, Liu J, Chen G, Lv R, Wang J, Lin K, Zhang J and Huang X: The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: A quantitative study. Tissue Eng Part A. 16:3791–3803. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Fangteng JZ and Liu H: Effect of iRoot BP Plus on biological behavior of deciduous tooth pulp stem cells and human pulp stem cells. Shanghai Kou Qiang Yi Xue. 28:251–258. 2019.In Chinese. PubMed/NCBI | |
Zhu L, Yang J, Zhang J, Lei D, Xiao L, Cheng X, Lin Y and Peng B: In vitro and in vivo evaluation of a nanoparticulate bioceramic paste for dental pulp repair. Acta Biomater. 10:5156–5168. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kuo JC: Mechanotransduction at focal adhesions: Integrating cytoskeletal mechanics in migrating cells. J Cell Mol Med. 17:704–712. 2013. View Article : Google Scholar : PubMed/NCBI | |
Plotnikov SV and Waterman CM: Guiding cell migration by tugging. Curr Opin Cell Biol. 25:619–626. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Luo T, Shen Y, Haapasalo M, Zou L and Liu J: Effect of iRoot fast set root repair material on the proliferation, migration and differentiation of human dental pulp stem cells in vitro. PLoS One. 12:e01868482017. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Liu J, Luo T, Shen Y and Zou L: Effects of two fast-setting pulp-capping materials on cell viability and osteogenic differentiation in human dental pulp stem cells: An in vitro study. Arch Oral Biol. 100:100–105. 2019. View Article : Google Scholar : PubMed/NCBI | |
Collado-Gonzalez M, Lopez-Garcia S, Garcia-Bernal D, Onate-Sanchez RE, Tomas-Catala CJ, Moraleda JM, Lozano A, Forner L and Rodriguez-Lozano FJ: Biological effects of acid-eroded MTA Repair HP and ProRoot MTA on human periodontal ligament stem cells. Clin Oral Investig. 23:3915–3924. 2019. View Article : Google Scholar : PubMed/NCBI | |
Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C and Rodriguez-Lozano FJ: Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J. 50:875–884. 2017. View Article : Google Scholar | |
Collado-Gonzalez M, Tomas-Catala CJ, Onate-Sanchez RE, Moraleda JM and Rodriguez-Lozano FJ: Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH Plus on human periodontal ligament stem cells. J Endod. 43:816–822. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Lozano FJ, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Forner L and Moraleda JM: Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int Endod J. 50:67–76. 2017. View Article : Google Scholar | |
Wang Y, Zhou Y, Jin L, Pang X, Lu Y, Wang Z, Yu Y and Yu J: Mineral trioxide aggregate enhances the osteogenic capacity of periodontal ligament stem cells via NF-κB and MAPK signaling pathways. J Cell Physiol. 233:2386–2397. 2018. View Article : Google Scholar | |
Abuarqoub D, Aslam N, Jafar H, Abu Harfil Z and Awidi A: Biocompatibility of Biodentine™(R) with periodontal ligament stem cells: In vitro study. Dent J (Basel). 8:172020. View Article : Google Scholar | |
Hakki SS, Bozkurt SB, Ozcopur B, Purali N and Belli S: Periodontal ligament fibroblast response to root perforations restored with different materials: A laboratory study. Int Endod J. 45:240–248. 2012. View Article : Google Scholar | |
Lee MN, Hwang HS, Oh SH, Roshanzadeh A, Kim JW, Song JH, Kim ES and Koh JT: Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med. 50:1–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
D'Anto V, Di Caprio MP, Ametrano G, Simeone M, Rengo S and Spagnuolo G: Effect of mineral trioxide aggregate on mesenchymal stem cells. J Endod. 36:1839–1843. 2010. View Article : Google Scholar : PubMed/NCBI | |
Eid AA, Hussein KA, Niu LN, Li GH, Watanabe I, Al-Shabrawey M, Pashley DH and Tay FR: Effects of tricalcium silicate cements on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Acta Biomater. 10:3327–3334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Edrees HY, Abu Zeid ST, Atta HM and AlQriqri MA: Induction of osteogenic differentiation of mesenchymal stem cells by bioceramic root repair material. Materials (Basel). 12:23112019. View Article : Google Scholar | |
Wang Y, Li J, Song W and Yu J: Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways. Cell Prolif. 47:241–248. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vidovic Zdrilic I, de Azevedo Queiroz IO, Matthews BG, Gomes-Filho JE, Mina M and Kalajzic I: Mineral trioxide aggregate improves healing response of periodontal tissue to injury in mice. J Periodontal Res. 52:1058–1067. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moon HJ, Lee JH, Kim JH, Knowles JC, Cho YB, Shin DH, Lee HH and Kim HW: Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements. J Tissue Eng. 9:20417314188073962018. View Article : Google Scholar : PubMed/NCBI | |
Gandolfi MG, Ciapetti G, Perut F, Taddei P, Modena E, Rossi PL and Prati C: Biomimetic calcium-silicate cements aged in simulated body solutions. Osteoblast response and analyses of apatite coating. J Appl Biomater Biomech. 7:160–170. 2009. | |
Lu J, Li Z, Wu X, Chen Y, Yan M, Ge X and Yu J: iRoot BP Plus promotes osteo/odontogenic differentiation of bone marrow mesenchymal stem cells via MAPK pathways and autophagy. Stem Cell Res Ther. 10:2222019. View Article : Google Scholar : PubMed/NCBI | |
De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI and Granjeiro JM: Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod. 35:1387–1390. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fathy SM, Abd El-Aziz AM and Labah DA: Cellular interaction and antibacterial efficacy of two hydraulic calcium silicate-based cements: Cell-dependent model. J Conserv Dent. 22:17–22. 2019.PubMed/NCBI | |
Margunato S, Tasli PN, Aydin S, Karapınar Kazandağ M and Sahin F: In Vitro evaluation of ProRoot MTA, biodentine, and MM-MTA on human alveolar bone marrow stem cells in terms of biocompatibility and mineralization. J Endod. 41:1646–1652. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sultana N, Singh M, Nawal RR, Chaudhry S, Yadav S, Mohanty S and Talwar S: Evaluation of biocompatibility and osteogenic potential of tricalcium silicate-based cements using human bone marrow-derived mesenchymal stem cells. J Endod. 44:446–451. 2018. View Article : Google Scholar : PubMed/NCBI | |
Costa F, Sousa Gomes P and Fernandes MH: Osteogenic and angiogenic response to calcium silicate-based endodontic sealers. J Endod. 42:113–119. 2016. View Article : Google Scholar | |
Ali MRW, Mustafa M, Bardsen A and Bletsa A: Tricalcium silicate cements: Osteogenic and angiogenic responses of human bone marrow stem cells. Eur J Oral Sci. 127:261–268. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grech L, Mallia B and Camilleri J: Characterization of set Intermediate Restorative Material, Biodentine, Bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J. 46:632–641. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kang JY, Lee BN, Son HJ, Koh JT, Kang SS, Son HH, Chang HS, Hwang IN, Hwang YC and Oh WM: Biocompatibility of mineral trioxide aggregate mixed with hydration accelerators. J Endod. 39:497–500. 2013. View Article : Google Scholar : PubMed/NCBI | |
Silva EJ, Rosa TP, Herrera DR, Jacinto RC, Gomes BP and Zaia AA: Evaluation of cytotoxicity and physicochemical properties of calcium silicate-based endodontic sealer MTA Fillapex. J Endod. 39:274–277. 2013. View Article : Google Scholar : PubMed/NCBI | |
Estrela C, Alencar AH, Kitten GT, Vencio EF and Gava E: Mesenchymal stem cells in the dental tissues: Perspectives for tissue regeneration. Braz Dent J. 22:91–98. 2011. View Article : Google Scholar : PubMed/NCBI | |
Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Ortolani-Seltenerich PS, Alvarez-Muro T, Lozano A, Forner L, Llena C, Moraleda JM and Rodriguez-Lozano FJ: Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J. 50(Suppl 2): e19–e30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Araujo LB, Cosme-Silva L, Fernandes AP, Oliveira TM, Cavalcanti BDN, Gomes Filho JE and Sakai VT: Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci. 26:e201606292018. View Article : Google Scholar : PubMed/NCBI | |
Dahake PT, Panpaliya NP, Kale YJ, Dadpe MV, Kendre SB and Bogar C: Response of stem cells from human exfoliated deciduous teeth (SHED) to three bioinductive materials-An in vitro experimental study. Saudi Dent J. 32:43–51. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hasweh N, Awidi A, Rajab L, Hiyasat A, Jafar H, Islam N, Hasan M and Abuarqoub D: Characterization of the biological effect of Biodentine(TM) on primary dental pulp stem cells. Indian J Dent Res. 29:787–793. 2018. View Article : Google Scholar : PubMed/NCBI | |
Athanasiadou E, Paschalidou M, Theocharidou A, Kontoudakis N, Arapostathis K and Bakopoulou A: Biological interactions of a calcium silicate based cement (Biodentine) with stem cells from human exfoliated deciduous teeth. Dent Mater. 34:1797–1813. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tsai CL, Ke MC, Chen YH, Kuo HK, Yu HJ, Chen CT, Tseng YC, Chuang PC and Wu PC: Mineral trioxide aggregate affects cell viability and induces apoptosis of stem cells from human exfoliated deciduous teeth. BMC Pharmacol Toxicol. 19:212018. View Article : Google Scholar : PubMed/NCBI | |
Saidon J, He J, Zhu Q, Safavi K and Spangberg LS: Cell and tissue reactions to mineral trioxide aggregate and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 95:483–489. 2003. View Article : Google Scholar : PubMed/NCBI | |
Torabinejad M, Hong CU, McDonald F and Pitt Ford TR: Physical and chemical properties of a new root-end filling material. J Endod. 21:349–353. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wongwatanasanti N, Jantarat J, Sritanaudomchai H and Hargreaves KM: Effect of bioceramic materials on proliferation and odontoblast differentiation of human stem cells from the apical papilla. J Endod. 44:1270–1275. 2018. View Article : Google Scholar : PubMed/NCBI | |
Peters OA, Galicia J, Arias A, Tolar M, Ng E and Shin SJ: Effects of two calcium silicate cements on cell viability, angiogenic growth factor release and related gene expression in stem cells from the apical papilla. Int Endod J. 49:1132–1140. 2016. View Article : Google Scholar | |
Schneider R, Holland GR, Chiego D Jr, Hu JC, Nör JE and Botero TM: White mineral trioxide aggregate induces migration and proliferation of stem cells from the apical papilla. J Endod. 40:931–936. 2014. View Article : Google Scholar : PubMed/NCBI | |
Saberi EA, Karkehabadi H and Mollashahi NF: Cytotoxicity of various endodontic materials on stem cells of human apical papilla. Iran Endod J. 11:17–22. 2016.PubMed/NCBI | |
Miller AA, Takimoto K, Wealleans J and Diogenes A: Effect of 3 bioceramic materials on stem cells of the apical papilla proliferation and differentiation using a dentin disk model. J Endod. 44:599–603. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du J, Lu Y, Song M, Yang L, Liu J, Chen X, Ma Y and Wang Y: Effects of ERK/p38 MAPKs signaling pathways on MTA-mediated osteo/odontogenic differentiation of stem cells from apical papilla: A vitro study. BMC Oral Health. 20:502020. View Article : Google Scholar : PubMed/NCBI | |
Saberi E, Farhad-Mollashahi N, Sargolzaei Aval F and Saberi M: Proliferation, odontogenic/osteogenic differentiation, and cytokine production by human stem cells of the apical papilla induced by biomaterials: A comparative study. Clin Cosmet Investig Dent. 11:181–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hajizadeh N, Madani ZS, Zabihi E, Golpour M, Zahedpasha A and Mohammadnia M: Effect of MTA and CEM on mineralization-associated gene expression in stem cells derived from apical papilla. Iran Endod J. 13:94–101. 2018.PubMed/NCBI | |
Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, Soo C, Al Hezaimi K, Zou W, Chen X, et al: NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci USA. 110:9469–9474. 2013. View Article : Google Scholar | |
Yan M, Wu J, Yu Y, Wang Y, Xie L, Zhang G, Yu J and Zhang C: Mineral trioxide aggregate promotes the odonto/osteogenic differentiation and dentinogenesis of stem cells from apical papilla via nuclear factor kappa B signaling pathway. J Endod. 40:640–647. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li H and Chang J: Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater. 9:6981–6991. 2013. View Article : Google Scholar : PubMed/NCBI | |
Day RM: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 11:768–777. 2005. View Article : Google Scholar : PubMed/NCBI | |
Leu A and Leach JK: Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res. 25:1222–1229. 2008. View Article : Google Scholar | |
Wang G, Roohani-Esfahani SI, Zhang W, Lv K, Yang G, Ding X, Zou D, Cui D, Zreiqat H and Jiang X: Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Sci Rep. 7:411352017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu XM, Bi J, Yu S, Yang N, Song B and Chen X: Cell migration and osteo/odontogenesis stimulation of iRoot FS as a potential apical barrier material in apexification. Int Endod J. 53:467–477. 2020. View Article : Google Scholar | |
Bi J, Liu Y, Liu XM, Jiang LM and Chen X: iRoot FM exerts an antibacterial effect on Porphyromonas endodontalis and improves the properties of stem cells from the apical papilla. Int Endod J. 51:1139–1148. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dogan A, Yalvac ME, Sahin F, Kabanov AV, Palotas A and Rizvanov AA: Differentiation of human stem cells is promoted by amphiphilic pluronic block copolymers. Int J Nanomedicine. 7:4849–4860. 2012.PubMed/NCBI | |
Dogan A, Demirci S and Sahin F: In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 39:94–103. 2015. View Article : Google Scholar | |
Guven EP, Yalvac ME, Sahin F, Yazici MM, Rizvanov AA and Bayirli G: Effect of dental materials calcium hydroxidecontaining cement, mineral trioxide aggregate, and enamel matrix derivative on proliferation and differentiation of human tooth germ stem cells. J Endod. 37:650–656. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guven EP, Yalvac ME, Kayahan MB, Sunay H, Sahin F and Bayirli G: Human tooth germ stem cell response to calcium-silicate based endodontic cements. J Appl Oral Sci. 21:351–357. 2013. View Article : Google Scholar : PubMed/NCBI | |
Güven EP, Taşlı PN, Yalvac ME, Sofiev N, Kayahan MB and Sahin F: In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J. 46:1173–1182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang N, Guo W, Chen M, Zheng Y, Zhou J, Kim SG, Embree MC, Songhee Song K, Marao HF and Mao JJ: Periodontal ligament and alveolar bone in health and adaptation: Tooth movement. Front Oral Biol. 18:1–8. 2016. | |
Zhou Y, Wu C and Xiao Y: Silicate-based bioceramics for periodontal regeneration. J Mater Chem B. 2:3907–3910. 2014. View Article : Google Scholar : PubMed/NCBI | |
Proksch S, Brossart J, Vach K, Hellwig E, Altenburger MJ and Karygianni L: Evaluation of the bioactivity of fluoride-enriched mineral trioxide aggregate on osteoblasts. Int Endod J. 51:912–923. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nakayama A, Ogiso B, Tanabe N, Takeichi O, Matsuzaka K and Inoue T: Behaviour of bone marrow osteoblast-like cells on mineral trioxide aggregate: Morphology and expression of type I collagen and bone-related protein mRNAs. Int Endod J. 38:203–210. 2005. View Article : Google Scholar : PubMed/NCBI | |
Castro-Raucci LM, Teixeira LN, Oliveira IR, Raucci-Neto W, Jacobovitz M, Rosa AL and de Oliveira PT: Osteogenic cell response to calcium aluminate-based cement. Int Endod J. 50:771–779. 2017. View Article : Google Scholar | |
Castro-Raucci LM, Oliveira IR, Teixeira LN, Rosa AL, Oliveira PT and Jacobovitz M: Effects of a novel calcium aluminate cement on the early events of the progression of osteogenic cell cultures. Braz Dent J. 22:99–104. 2011. View Article : Google Scholar : PubMed/NCBI | |
Orrenius S, Zhivotovsky B and Nicotera P: Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol. 4:552–565. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dvorak MM and Riccardi D: Ca2+ as an extracellular signal in bone. Cell Calcium. 35:249–255. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oliveira IR, Andrade TL, Jacobovitz M and Pandolfelli VC: Bioactivity of calcium aluminate endodontic cement. J Endod. 39:774–778. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pires-de-Souza FC, Moraes PC, Garcia Lda F, Aguilar FG and Watanabe E: Evaluation of pH, calcium ion release and antimicrobial activity of a new calcium aluminate cement. Braz Oral Res. 27:324–330. 2013. View Article : Google Scholar | |
Scelza MZ, Nascimento JC, Silva LE, Gameiro VS, DE Deus G and Alves G: Biodentine™ is cytocompatible with human primary osteoblasts. Braz Oral Res. 31:e812017. View Article : Google Scholar | |
Coelho MJ and Fernandes MH: Human bone cell cultures in biocompatibility testing. Part II: Effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials. 21:1095–1102. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rifaey HS, Villa M, Zhu Q, Wang YH, Safavi K and Chen IP: Comparison of the osteogenic potential of mineral trioxide aggregate and endosequence root repair material in a 3-dimensional culture system. J Endod. 42:760–765. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ciasca M, Aminoshariae A, Jin G, Montagnese T and Mickel A: A comparison of the cytotoxicity and proinflammatory cytokine production of EndoSequence root repair material and ProRoot mineral trioxide aggregate in human osteoblast cell culture using reverse-transcriptase polymerase chain reaction. J Endod. 38:486–489. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tani-Ishii N, Hamada N, Watanabe K, Tujimoto Y, Teranaka T and Umemoto T: Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide. J Endod. 33:836–839. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yoshimine Y, Ono M and Akamine A: In vitro comparison of the biocompatibility of mineral trioxide aggregate, 4META/MMA-TBB resin, and intermediate restorative material as root-end-filling materials. J Endod. 33:1066–1069. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maeda T, Suzuki A, Yuzawa S, Baba Y, Kimura Y and Kato Y: Mineral trioxide aggregate induces osteoblastogenesis via Atf6. Bone Rep. 2:36–43. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee GW, Yoon JH, Jang JH, Chang HS, Hwang YC, Hwang IN, Oh WM and Lee BN: Effects of newly-developed retrograde filling material on osteoblastic differentiation in vitro. Dent Mater J. 38:528–533. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R and Kawashima I: Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 31:97–100. 2005. View Article : Google Scholar : PubMed/NCBI | |
Estrela C, Sydney GB, Pesce HF and Felippe Júnior O: Dentinal diffusion of hydroxyl ions of various calcium hydroxide pastes. Braz Dent J. 6:5–9. 1995.PubMed/NCBI | |
Ko H, Yang W, Park K and Kim M: Cytotoxicity of mineral trioxide aggregate (MTA) and bone morphogenetic protein 2 (BMP-2) and response of rat pulp to MTA and BMP-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 109:e103–e108. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wozney JM: The bone morphogenetic protein family: Multifunctional cellular regulators in the embryo and adult. Eur J Oral Sci. 106(Suppl 1): S160–S166. 1998. View Article : Google Scholar | |
Zhu Q, Haglund R, Safavi KE and Spangberg LS: Adhesion of human osteoblasts on root-end filling materials. J Endod. 26:404–406. 2000. View Article : Google Scholar | |
Pelliccioni GA, Ciapetti G, Cenni E, Granchi D, Nanni M, Pagani S and Giunti A: Evaluation of osteoblast-like cell response to Proroot MTA (mineral trioxide aggregate) cement. J Mater Sci Mater Med. 15:167–173. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tanomaru-Filho M, Andrade AS, Rodrigues EM, Viola KS, Faria G, Camilleri J and Guerreiro-Tanomaru JM: Biocompatibility and mineralized nodule formation of Neo MTA Plus and an experimental tricalcium silicate cement containing tantalum oxide. Int Endod J. 50(Suppl 2): e31–e39. 2017. View Article : Google Scholar : PubMed/NCBI | |
Modareszadeh MR, Di Fiore PM, Tipton DA and Salamat N: Cytotoxicity and alkaline phosphatase activity evaluation of endosequence root repair material. J Endod. 38:1101–1105. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Peng B, Jiang H, Bian Z and Yan P: Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod. 36:1145–1148. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jung S, Mielert J, Kleinheinz J and Dammaschke T: Human oral cells' response to different endodontic restorative materials: An in vitro study. Head Face Med. 10:552014. View Article : Google Scholar : PubMed/NCBI | |
Attik GN, Villat C, Hallay F, Pradelle-Plasse N, Bonnet H, Moreau K, Colon P and Grosgogeat B: In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: Biodentine versus MTA((®)). Int Endod J. 47:1133–1141. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Kim S, Ko H, Song M and Kim M: Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity. Restor Dent Endod. 44:e172019. View Article : Google Scholar : PubMed/NCBI | |
Gomes-Cornelio AL, Rodrigues EM, Salles LP, Mestieri LB, Faria G, Guerreiro-Tanomaru JM and Tanomaru-Filho M: Bioactivity of MTA Plus, Biodentine and an experimental calcium silicate-based cement on human osteoblast-like cells. Int Endod J. 50:39–47. 2017. View Article : Google Scholar | |
De-Deus G, Canabarro A, Alves GG, Marins JR, Linhares AB and Granjeiro JM: Cytocompatibility of the ready-to-use bioceramic putty repair cement iRoot BP Plus with primary human osteoblasts. Int Endod J. 45:508–513. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tian J, Zhang Y, Lai Z, Li M, Huang Y, Jiang H and Wei X: Ion release, microstructural, and biological properties of iRoot BP Plus and ProRoot MTA exposed to an acidic environment. J Endod. 43:163–168. 2017. View Article : Google Scholar | |
Lv F, Zhu L, Zhang J, Yu J, Cheng X and Peng B: Evaluation of the in vitro biocompatibility of a new fast-setting ready-to-use root filling and repair material. Int Endod J. 50:540–548. 2017. View Article : Google Scholar | |
Jiang Y, Zheng Q, Zhou X, Gao Y and Huang D: A comparative study on root canal repair materials: A cytocompatibility assessment in L929 and MG63 cells. ScientificWorldJournal. 2014:4638262014. View Article : Google Scholar : PubMed/NCBI | |
Levine BR, Sporer S, Poggie RA, Della Valle CJ and Jacobs JJ: Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials. 27:4671–4681. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Li Z and Peng B: Effects of iRoot SP on mineralization-related genes expression in MG63 cells. J Endod. 36:1978–1982. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhu L and Peng B: Effect of BioAggregate on osteoclast differentiation and inflammatory bone resorption in vivo. Int Endod J. 48:1077–1085. 2015. View Article : Google Scholar | |
Tian J, Qi W, Zhang Y, Glogauer M, Wang Y, Lai Z and Jiang H: Bioaggregate inhibits osteoclast differentiation, fusion, and bone resorption in vitro. J Endodont. 41:1500–1506. 2015. View Article : Google Scholar | |
Zhang J, Zhu L, Yan P and Peng B: Effect of BioAggregate on receptor activator of nuclear factor-kappa B ligand-induced osteoclastogenesis from murine macrophage cell line in vitro. J Endod. 41:1265–1271. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Zhu L, Zhang J, Yu J, Liu S, Lv F, Lin Y, Liu G and Peng B: Anti-osteoclastogenesis of mineral trioxide aggregate through inhibition of the autophagic pathway. J Endodont. 43:766–773. 2017. View Article : Google Scholar | |
Hashiguchi D, Fukushima H, Nakamura M, Morikawa K, Yasuda H, Udagawa N, Maki K and Jimi E: Mineral trioxide aggregate solution inhibits osteoclast differentiation through the maintenance of osteoprotegerin expression in osteoblasts. J Biomed Mater Res A. 96:358–364. 2011. View Article : Google Scholar | |
Hashiguchi D, Fukushima H, Yasuda H, Masuda W, Tomikawa M, Morikawa K, Maki K and Jimi E: Mineral trioxide aggregate inhibits osteoclastic bone resorption. J Dent Res. 90:912–917. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Kim S, Ko H and Song M: Effect of ProRoot MTA® and Biodentine® on osteoclastic differentiation and activity of mouse bone marrow macrophages. J Appl Oral Sci. 27:e201801502019. View Article : Google Scholar | |
Choi SC, Kwon YD, Kim KC and Kim GT: The effects of topical application of bisphosphonates on replanted rat molars. Dent Traumatol. 26:476–480. 2010. View Article : Google Scholar : PubMed/NCBI | |
Komatsu K, Shimada A, Shibata T, Shimoda S, Oida S, Kawasaki K and Nifuji A: Long-term effects of local pretreatment with alendronate on healing of replanted rat teeth. J Periodontal Res. 43:194–200. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tu MG, Sun KT, Wang TH, He YZ, Hsia SM, Tsai BH, Shih YH and Shieh TM: Effects of mineral trioxide aggregate and bioceramics on macrophage differentiation and polarization in vitro. J Formos Med Assoc. 118:1458–1465. 2019. View Article : Google Scholar : PubMed/NCBI | |
Camilleri J: Characterization of hydration products of mineral trioxide aggregate. Int Endod J. 41:408–417. 2008. View Article : Google Scholar : PubMed/NCBI | |
Varanasi VG, Leong KK, Dominia LM, Jue SM, Loomer PM and Marshall GW: Si and Ca individually and combinatorially target enhanced MC3T3-E1 subclone 4 early osteogenic marker expression. J Oral Implantol. 38:325–336. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Yin Z, Mao L, Wang X, Liu J, Jiang X, Zhang Z, Lin K, Chang J and Fang B: Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration. Sci Rep. 6:220052016. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Chen Z, Yi D, Chang J and Xiao Y: Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS Appl Mater Interfaces. 6:4264–4276. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hung CJ, Kao CT, Chen YJ, Shie MY and Huang TH: Antiosteoclastogenic activity of silicate-based materials antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine marcophages. J Endod. 39:1557–1561. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Wang M, Shao Y, Wang L and Zhu Y: The effect and osteoblast signaling response of trace silicon doping hydroxyapatite. Biol Trace Elem Res. 181:82–94. 2018. View Article : Google Scholar | |
Wang S, Wang X, Draenert FG, Albert O, Schroder HC, Mailander V, Mitov G and Muller WE: Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 67:292–304. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Chen G and Chang J: Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9:8004–8014. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gough JE, Notingher I and Hench LL: Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res A. 68:640–650. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gough JE, Clupper DC and Hench LL: Osteoblast responses to tape-cast and sintered bioactive glass ceramics. J Biomed Mater Res A. 69:621–628. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ibrahim S, Sabudin S, Sahid S, Marzuke MA, Hussin ZH, Kader Bashah NS and Jamuna-Thevi K: Bioactivity studies and adhesion of human osteoblast (hFOB) on silicon-biphasic calcium phosphate material. Saudi J Biol Sci. 23:S56–S63. 2016. View Article : Google Scholar : PubMed/NCBI | |
Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L, Petit JP, Terwilliger E, Kamel S, Brown EM, et al: Strontium ranelate decreases receptor activator of nuclear factor-κB ligand-induced osteoclastic differentiation in vitro: Involvement of the calcium-sensing receptor. Mol Pharmacol. 78:569–576. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mladenovic Z, Johansson A, Willman B, Shahabi K, Bjorn E and Ransjo M: Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater. 10:406–418. 2014. View Article : Google Scholar | |
Okabe T, Sakamoto M, Takeuchi H and Matsushima K: Effects of pH on mineralization ability of human dental pulp cells. J Endod. 32:198–201. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stuart CH, Schwartz SA, Beeson TJ and Owatz CB: Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J Endod. 32:93–98. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Wang M, Shi C, Wang L, Wang D and Zhu Y: Synthesis of trace element Si and Sr codoping hydroxyapatite with non-cytotoxicity and enhanced cell proliferation and differentiation. Biol Trace Elem Res. 174:208–217. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin LM and Rosenberg PA: Repair and regeneration in endodontics. Int Endod J. 44:889–906. 2011. View Article : Google Scholar : PubMed/NCBI | |
Koulaouzidou EA, Economides N, Beltes P, Geromichalos G and Papazisis K: In vitro evaluation of the cytotoxicity of ProRoot MTA and MTA Angelus. J Oral Sci. 50:397–402. 2008. View Article : Google Scholar : PubMed/NCBI | |
Peng W, Liu W, Zhai W, Jiang L, Li L, Chang J and Zhu Y: Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod. 37:1240–1246. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim DH, Jang JH, Lee BN, Chang HS, Hwang IN, Oh WM, Kim SH, Min KS, Koh JT and Hwang YC: Anti-inflammatory and mineralization effects of ProRoot MTA and endocem MTA in studies of human and rat dental pulps in vitro and in vivo. J Endod. 44:1534–1541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu CH, Huang TH, Hung CJ, Lai WY, Kao CT and Shie MY: The synergistic effects of fibroblast growth factor-2 and mineral trioxide aggregate on an osteogenic accelerator in vitro. Int Endod J. 47:843–853. 2014. View Article : Google Scholar | |
Chung CJ, Kim E, Song M, Park JW and Shin SJ: Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells. Odontology. 104:143–151. 2016. View Article : Google Scholar | |
Chang SW, Lee SY, Kum KY and Kim EC: Effects of ProRoot MTA, Bioaggregate, and Micromega MTA on odontoblastic differentiation in human dental pulp cells. J Endod. 40:113–118. 2014. View Article : Google Scholar | |
Jung JY, Woo SM, Lee BN, Koh JT, Nor JE and Hwang YC: Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp cells. Int Endod J. 48:177–184. 2015. View Article : Google Scholar | |
Zhu L, Yang J, Zhang J and Peng B: A comparative study of BioAggregate and ProRoot MTA on adhesion, migration, and attachment of human dental pulp cells. J Endod. 40:1118–1123. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Yang X and Fan M: BioAggregate and iRoot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. Int Endod J. 46:923–929. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ and Cooper PR: Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 35:636–642. 2007. View Article : Google Scholar : PubMed/NCBI | |
Laurent P, Camps J and About I: Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 45:439–448. 2012. View Article : Google Scholar | |
Zanini M, Sautier JM, Berdal A and Simon S: Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod. 38:1220–1226. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Wang S and Dong Y: Evaluation of a bioceramic as a pulp capping agent in vitro and in vivo. J Endod. 41:652–657. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhu LX, Cheng X, Lin Y, Yan P and Peng B: Promotion of dental pulp cell migration and pulp repair by a bioceramic putty involving FGFR-mediated signaling pathways. J Dent Res. 94:853–862. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kierat A, Laszczynska M, Kowalska E and Weyna E: Comparison of the influence of mineral trioxide aggregate and calcium hydroxide on dental pulp of permanent teeth in biological treatment and cell cultures. Ann Acad Med Stetin. 56:89–96. 2010.In Polish. | |
Zakerzadeh A, Esnaashari E and Dadfar S: In Vitro comparison of cytotoxicity and genotoxicity of three vital pulp capping materials. Iran Endod J. 12:419–425. 2017.PubMed/NCBI | |
Nikfarjam F, Beyer K, Konig A, Hofmann M, Butting M, Valesky E, Kippenberger S, Kaufmann R, Heidemann D, Bernd A and Zöller NN: Influence of Biodentine(R)-A dentine substitute-on collagen type i synthesis in pulp fibroblasts in vitro. PLoS One. 11:e1676332016. View Article : Google Scholar | |
Begue-Kirn C, Smith AJ, Ruch JV, Wozney JM, Purchio A, Hartmann D and Lesot H: Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol. 36:491–503. 1992.PubMed/NCBI | |
Strong DD, Beachler AL, Wergedal JE and Linkhart TA: Insulinlike growth factor II and transforming growth factor beta regulate collagen expression in human osteoblastlike cells in vitro. J Bone Miner Res. 6:15–23. 1991. View Article : Google Scholar : PubMed/NCBI | |
Helder MN, Bronckers AL and Woltgens JH: Dissimilar expression patterns for the extracellular matrix proteins osteopontin (OPN) and collagen type I in dental tissues and alveolar bone of the neonatal rat. Matrix. 13:415–425. 1993. View Article : Google Scholar : PubMed/NCBI | |
Mathieu S, Jeanneau C, Sheibat-Othman N, Kalaji N, Fessi H and About I: Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration. J Endod. 39:228–235. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shimabukuro Y, Ueda M, Ozasa M, Anzai J, Takedachi M, Yanagita M, Ito M, Hashikawa T, Yamada S and Murakami S: Fibroblast growth factor-2 regulates the cell function of human dental pulp cells. J Endod. 35:1529–1535. 2009. View Article : Google Scholar : PubMed/NCBI | |
Giraud T, Jeanneau C, Bergmann M, Laurent P and About I: Tricalcium silicate capping materials modulate pulp healing and inflammatory activity in vitro. J Endod. 44:1686–1691. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo RF and Ward PA: Role of C5a in inflammatory responses. Annu Rev Immunol. 23:821–852. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chmilewsky F, Jeanneau C, Dejou J and About I: Sources of dentin-pulp regeneration signals and their modulation by the local microenvironment. J Endod. 40(Suppl 4): S19–S25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giraud T, Rufas P, Chmilewsky F, Rombouts C, Dejou J, Jeanneau C and About I: Complement activation by pulp capping materials plays a significant role in both inflammatory and pulp stem cells' recruitment. J Endod. 43:1104–1110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Karimjee CK, Koka S, Rallis DM and Gound TG: Cellular toxicity of mineral trioxide aggregate mixed with an alternative delivery vehicle. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 102:e115–e120. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maeda H, Nakano T, Tomokiyo A, Fujii S, Wada N, Monnouchi S, Hori K and Akamine A: Mineral trioxide aggregate induces bone morphogenetic protein-2 expression and calcification in human periodontal ligament cells. J Endod. 36:647–652. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kasaj A, Willershausen B, Reichert C, Rohrig B, Smeets R and Schmidt M: Ability of nanocrystalline hydroxyapatite paste to promote human periodontal ligament cell proliferation. J Oral Sci. 50:279–285. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang MC, Yeh LY, Shih WY, Li WC, Chang KW and Lin SC: Portland cement induces human periodontal ligament cells to differentiate by upregulating miR-146a. J Formos Med Assoc. 117:308–315. 2018. View Article : Google Scholar | |
Luo T, Liu J, Sun Y, Shen Y and Zou L: Cytocompatibility of Biodentine and iRoot FS with human periodontal ligament cells: An in vitro study. Int Endod J. 51:779–788. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chang SW, Lee SY, Kang SK, Kum KY and Kim EC: In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod. 40:1642–1648. 2014. View Article : Google Scholar : PubMed/NCBI | |
Willershausen I, Wolf T, Kasaj A, Weyer V, Willershausen B and Marroquin BB: Influence of a bioceramic root end material and mineral trioxide aggregates on fibroblasts and osteoblasts. Arch Oral Biol. 58:1232–1237. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gupta SK, Saxena P, Pant VA and Pant AB: Adhesion and biologic behavior of human periodontal fibroblast cells to resin ionomer Geristore: A comparative analysis. Dent Traumatol. 29:389–393. 2013. View Article : Google Scholar | |
Balto HA: Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: A scanning electron microscope study. J Endod. 30:25–29. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bonson S, Jeansonne BG and Lallier TE: Root-end filling materials alter fibroblast differentiation. J Dent Res. 83:408–413. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gorduysus M, Avcu N, Gorduysus O, Pekel A, Baran Y, Avcu F and Ural AU: Cytotoxic effects of four different endodontic materials in human periodontal ligament fibroblasts. J Endod. 33:1450–1454. 2007. View Article : Google Scholar : PubMed/NCBI | |
Badr AE: Marginal adaptation and cytotoxicity of bone cement compared with amalgam and mineral trioxide aggregate as root-end filling materials. J Endod. 36:1056–1060. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshino P, Nishiyama CK, Modena KC, Santos CF and Sipert CR: In vitro cytotoxicity of white MTA, MTA Fillapex(R) and Portland cement on human periodontal ligament fibroblasts. Braz Dent J. 24:111–116. 2013. View Article : Google Scholar | |
Keiser K, Johnson CC and Tipton DA: Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod. 26:288–291. 2000. View Article : Google Scholar | |
Al-Haj Ali SN, Al-Jundi SH and Ditto DJ: In vitro toxicity of formocresol, ferric sulphate, and grey MTA on human periodontal ligament fibroblasts. Eur Arch Paediatr Dent. 16:51–55. 2015. View Article : Google Scholar | |
Al-Haj AS: In vitro toxicity of propolis in comparison with other primary teeth pulpotomy agents on human fibroblasts. J Investig Clin Dent. 7:308–313. 2016. View Article : Google Scholar | |
Samyuktha V, Ravikumar P, Nagesh B, Ranganathan K, Jayaprakash T and Sayesh V: Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts. J Conserv Dent. 17:467–470. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kucukkaya S, Gorduysus MO, Zeybek ND and Muftuoglu SF: In vitro cytotoxicity of calcium silicate-based endodontic cement as root-end filling materials. Scientifica (Cairo). 2016:92039322016. | |
Jang YE, Lee BN, Koh JT, Park YJ, Joo NE, Chang HS, Hwang IN, Oh WM and Hwang YC: Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials. Restor Dent Endod. 39:89–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
Akbulut MB, Arpaci PU and Eldeniz AU: Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts. Restor Dent Endod. 43:e242018. View Article : Google Scholar : PubMed/NCBI | |
Camilleri J, Sorrentino F and Damidot D: Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 29:580–593. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim JR, Nosrat A and Fouad AF: Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J Dent. 43:241–247. 2015. View Article : Google Scholar | |
Gomes Cornélio AL, Salles LP, Campos da Paz M, Cirelli JA, Guerreiro-Tanomaru JM and Tanomaru Filho M: Cytotoxicity of Portland cement with different radiopacifying agents: A cell death study. J Endod. 37:203–210. 2011. View Article : Google Scholar : PubMed/NCBI | |
Akbulut MB, Uyar Arpaci P and Unverdi Eldeniz A: Effects of novel root repair materials on attachment and morphological behaviour of periodontal ligament fibroblasts: Scanning electron microscopy observation. Microsc Res Tech. 79:1214–1221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Escobar-Garcia DM, Aguirre-Lopez E, Mendez-Gonzalez V and Pozos-Guillen A: Cytotoxicity and initial biocompatibility of endodontic biomaterials (MTA and Biodentine™) used as root-end filling materials. Biomed Res Int. 2016:79269612016. View Article : Google Scholar | |
Futami T, Fujii N, Ohnishi H, Taguchi N, Kusakari H, Ohshima H and Maeda T: Tissue response to titanium implants in the rat maxilla: Ultrastructural and histochemical observations of the bone-titanium interface. J Periodontol. 71:287–298. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kou PM and Babensee JE: Macrophage and dendritic cell phenotypic diversity in the context of biomaterials. J Biomed Mater Res A. 96:239–260. 2011. View Article : Google Scholar | |
Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K and Goerdt S: Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol. 53:386–392. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brackett MG, Lewis JB, Messer RL, Lei L, Lockwood PE and Wataha JC: Dysregulation of monocytic cytokine secretion by endodontic sealers. J Biomed Mater Res B Appl Biomater. 97:49–57. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kabashima H, Nagata K, Maeda K and Iijima T: Involvement of substance P, mast cells, TNF-alpha and ICAM-1 in the infiltration of inflammatory cells in human periapical granulomas. J Oral Pathol Med. 31:175–180. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro RA, Souza-Filho MV, Souza MH, Oliveira SH, Costa CH, Cunha FQ and Ferreira HS: Role of resident mast cells and macrophages in the neutrophil migration induced by LTB4, fMLP and C5a des arg. Int Arch Allergy Immunol. 112:27–35. 1997. View Article : Google Scholar : PubMed/NCBI | |
Gomes AC, Gomes-Filho JE and Oliveira SH: Mineral trioxide aggregate stimulates macrophages and mast cells to release neutrophil chemotactic factors: Role of IL-1beta, MIP-2 and LTB(4). Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 109:e135–e142. 2010. View Article : Google Scholar : PubMed/NCBI | |
Baggiolini M: Chemokines and leukocyte traffic. Nature. 392:565–568. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gomes AC, Filho JE and de Oliveira SH: MTA-induced neutrophil recruitment: A mechanism dependent on IL-1beta, MIP-2, and LTB4. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 106:450–456. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cavalcanti BN, Rode Sde M, Franca CM and Marques MM: Pulp capping materials exert an effect on the secretion of IL-1β and IL-8 by migrating human neutrophils. Braz Oral Res. 25:13–18. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chang F, Kim JM, Choi Y and Park K: MTA promotes chemotaxis and chemokinesis of immune cells through distinct calcium-sensing receptor signaling pathways. Biomaterials. 150:14–24. 2018. View Article : Google Scholar | |
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F000Prime Rep. 6:132014. | |
Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Yuan Z, Yan P, Li Y, Jiang H and Huang S: Effect of iRoot SP and mineral trioxide aggregate (MTA) on the viability and polarization of macrophages. Arch Oral Biol. 80:27–33. 2017. View Article : Google Scholar : PubMed/NCBI | |
Braga JM, Oliveira RR, Martins RC and Ribeiro Sobrinho AP: The effects of a mineral trioxide aggregate-based sealer on the production of reactive oxygen species, nitrogen species and cytokines by two macrophage subtypes. Int Endod J. 47:909–919. 2014. View Article : Google Scholar | |
Rezende TM, Vieira LQ, Cardoso FP, Oliveira RR, de Oliveira Mendes ST, Jorge ML and Ribeiro Sobrinho AP: The effect of mineral trioxide aggregate on phagocytic activity and production of reactive oxygen, nitrogen species and arginase activity by M1 and M2 macrophages. Int Endod J. 40:603–611. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yuan Z, Zhu X, Li Y, Yan P and Jiang H: Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide. BMC Oral Health. 18:562018. View Article : Google Scholar : PubMed/NCBI | |
Yeh HW, Chiang CF, Chen PH, Su CC, Wu YC, Chou L, Huang RY, Liu SY and Shieh YS: Axl involved in mineral trioxide aggregate induces macrophage polarization. J Endod. 44:1542–1548. 2018. View Article : Google Scholar : PubMed/NCBI | |
da Silva GN, Braz MG, de Camargo EA, Salvadori DM and Ribeiro DA: Genotoxicity in primary human peripheral lymphocytes after exposure to regular and white mineral trioxide aggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 102:e50–e54. 2006. View Article : Google Scholar : PubMed/NCBI | |
Barczak K, Palczewska-Komsa M, Nowicka A, Chlubek D and Buczkowska-Radlinska J: Analysis of the activity and expression of cyclooxygenases COX1 and COX2 in THP-1 monocytes and macrophages cultured with Biodentine™ Silicate cement. Int J Mol Sci. 21:22372020. View Article : Google Scholar | |
Khedmat S, Dehghan S, Hadjati J, Masoumi F, Nekoofar MH and Dummer PM: In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay. Restor Dent Endod. 39:149–154. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chiang YC, Chang HH, Wong CC, Wang YP, Wang YL, Huang WH and Lin CP: Nanocrystalline calcium sulfate/hydroxyapatite biphasic compound as a TGF-β1/VEGF reservoir for vital pulp therapy. Dent Mater. 32:1197–1208. 2016. View Article : Google Scholar : PubMed/NCBI |