Histone deacetylase‑2: A potential regulator and therapeutic target in liver disease (Review)
- Authors:
- Ya-Ru Liu
- Jie-Quan Wang
- Zhao-Gang Huang
- Ruo-Nan Chen
- Xi Cao
- Dong-Chun Zhu
- Hai-Xia Yu
- Xiu-Rong Wang
- Hai-Yun Zhou
- Quan Xia
- Jun Li
-
Affiliations: Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China, Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China, The Key Laboratory of Anti‑inflammatory Immune Medicines, School of Pharmacy, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, P.R. China - Published online on: May 18, 2021 https://doi.org/10.3892/ijmm.2021.4964
- Article Number: 131
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cai C, Yu H, Huang G, Du X, Yu X, Zhou Y and Shen W: Histone modifications in fatty acid synthase modulated by carbohydrate responsive element binding protein are associated with non-alcoholic fatty liver disease. Int J Mol Med. 42:1215–1228. 2018.PubMed/NCBI | |
Ferriero R, Nusco E, De Cegli R, Carissimo A, Manco G and Brunetti-Pierri N: Pyruvate dehydrogenase complex and lactate dehydrogenase are targets for therapy of acute liver failure. J Hepatol. 69:325–335. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kanyal A, Rawat M, Gurung P, Choubey D, Anamika K and Karmodiya K: Genome-wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of Plasmodium falciparum. FEBS J. 285:1767–1782. 2018. View Article : Google Scholar | |
Berger SL: The complex language of chromatin regulation during transcription. Nature. 447:407–412. 2007. View Article : Google Scholar : PubMed/NCBI | |
Khangura RK, Bali A, Jaggi AS and Singh N: Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle? Eur J Pharmacol. 795:36–42. 2017. View Article : Google Scholar | |
Kouzarides T: Chromatin modifications and their function. Cell. 128:693–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
Leipe DD and Landsman D: Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res. 25:3693–3697. 1997. View Article : Google Scholar : PubMed/NCBI | |
West AC and Johnstone RW: New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 124:30–39. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ibi D and Gonzalez-Maeso J: Epigenetic signaling in schizophrenia. Cell Signal. 27:2131–2136. 2015. View Article : Google Scholar : PubMed/NCBI | |
Levenson JM, O'Riordan KJ, Brown KD, Trinh MA, Molfese DL and Sweatt JD: Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 279:40545–40559. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cao YN, Xue Y, Xue L, Jiang X, Wang X, Zhang Z, Yang J, Lu J, Zhang C, Wang W and Ning G: Hepatic menin recruits SIRT1 to control liver steatosis through histone deacetylation. J Hepatol. 59:1299–1306. 2013. View Article : Google Scholar : PubMed/NCBI | |
Simões-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA and Cuendet M: HDAC6 as a target for neurodegenerative diseases: What makes it different from the other HDACs? Mol Neurodegener. 8:72013. View Article : Google Scholar : PubMed/NCBI | |
Kim HJ and Bae SC: Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 3:166–179. 2011.PubMed/NCBI | |
Glauben R, Batra A, Stroh T, Erben U, Fedke I, Lehr HA, Leoni F, Mascagni P, Dinarello CA, Zeitz M and Siegmund B: Histone deacetylases: Novel targets for prevention of colitis-associated cancer in mice. Gut. 57:613–622. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dokmanovic M, Clarke C and Marks PA: Histone deacetylase inhibitors: Overview and perspectives. Mol Cancer Res. 5:981–989. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marchion DC, Bicaku E, Turner JG, Schmitt ML, Morelli DR and Munster PN: HDAC2 regulates chromatin plasticity and enhances DNA vulnerability. Mol Cancer Ther. 8:794–801. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jahan S, Sun JM, He S and Davie JR: Transcription-dependent association of HDAC2 with active chromatin. J Cell Physiol. 233:1650–1657. 2018. View Article : Google Scholar | |
Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H and Lee HB: Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol. 297:F729–F739. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang FQ, Liu M, Yang FP, Che J, Li W, Zhai W, Wang GC, Zheng JH and Li X: VPA inhibits renal cancer cell migration by targeting HDAC2 and down-regulating HIF–1α. Mol Biol Rep. 41:1511–1518. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fritzsche FR, Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K, Scholman K, Denkert C, Dietel M and Kristiansen G: Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer. 8:3812008. View Article : Google Scholar : PubMed/NCBI | |
Shang L, Pin L, Zhu S, Zhong X, Zhang Y, Shun M, Liu Y and Hou M: Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/GSK–3β signaling pathway. Chem Biol Interact. 307:21–28. 2019. View Article : Google Scholar : PubMed/NCBI | |
Datta M, Staszewski O, Raschi E, Frosch M, Hagemeyer N, Tay TL, Blank T, Kreutzfeldt M, Merkler D, Ziegler-Waldkirch S, et al: Histone deacetylases 1 and 2 regulate microglia function during development, homeostasis, and neurodegeneration in a context-dependent manner. Immunity. 48:514–529.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bin YF, Wu LJ, Sun XJ, Liang Y, Bai J, Zhang JQ, Li MH, Zhong XN, Liang YJ and He ZY: Expression of GR-α and HDAC2 in steroid-Sensitive and steroid-Insensitive interstitial lung disease. Biomed Pharmacother. 118:1093802019. View Article : Google Scholar | |
Mahady L, Nadeem M, Malek-Ahmadi M, Chen K, Perez SE and Mufson EJ: HDAC2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer's disease. Neuropathol Appl Neurobiol. 45:380–397. 2019. View Article : Google Scholar | |
Lin CL, Tsai ML, Lin CY, Hsu KW, Hsieh WS, Chi WM, Huang LC and Lee CH: HDAC1 and HDAC2 double knockout triggers cell apoptosis in advanced thyroid cancer. Int J Mol Sci. 20:4542019. View Article : Google Scholar : | |
Stojanovic N, Hassan Z, Wirth M, Wenzel P, Beyer M, Schäfer C, Brand P, Kroemer A, Stauber RH, Schmid RM, et al: HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene. 36:1804–1815. 2017. View Article : Google Scholar | |
Tang W, Zhou W, Xiang L, Wu X, Zhang P, Wang J, Liu G, Zhang W, Peng Y, Huang X, et al: The p300/YY1/miR-500a-5p/HDAC2 signalling axis regulates cell proliferation in human colorectal cancer. Nat Commun. 10:6632019. View Article : Google Scholar : PubMed/NCBI | |
Lai T, Wu M, Zhang C, Che L, Xu F, Wang Y, Wu Y, Xuan N, Cao C, Du X, et al: HDAC2 attenuates airway inflammation by suppressing IL-17A production in HDM-challenged mice. Am J Physiol Lung Cell Mol Physiol. 316:L269–L279. 2019. View Article : Google Scholar | |
Barnes PJ: Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 131:636–645. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, DePinho RA and Dannenberg JH: Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J. 29:2586–2597. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yang F, Jiao FZ, Chen Q, Zhang WB, Wang LW and Gong ZJ: Modulations of histone deacetylase 2 offer a protective effect through the mitochondrial apoptosis pathway in acute liver failure. Oxid Med Cell Longev. 2019:81730162019.PubMed/NCBI | |
Wu J, Zhu P, Lu T, Du Y, Wang Y, He L, Ye B, Liu B, Yang L, Wang J, et al: The long non-coding RNA LncHDAC2 drives the self-renewal of liver cancer stem cells via activation of Hedgehog signaling. J Hepatol. 70:918–929. 2019. View Article : Google Scholar | |
Verdone L, Agricola E, Caserta M and Di Mauro E: Histone acetylation in gene regulation. Brief Funct Genomic Proteomic. 5:209–221. 2006. View Article : Google Scholar : PubMed/NCBI | |
Millard CJ, Fairall L, Ragan TJ, Savva CG and Schwabe JWR: The topology of chromatin-binding domains in the NuRD deacetylase complex. Nucleic Acids Res. 48:12972–12982. 2020. View Article : Google Scholar : PubMed/NCBI | |
Verdone L, Caserta M and Di Mauro E: Role of histone acetylation in the control of gene expression. Biochem Cell Biol. 83:344–353. 2005. View Article : Google Scholar : PubMed/NCBI | |
Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY and Allis CD: Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 84:843–851. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kurdistani SK and Grunstein M: Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol. 4:276–284. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu WG, Qin J, Honig B and Gu W: Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 538:118–122. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W and Zhao K: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 138:1019–1031. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abel T and Zukin RS: Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 8:57–64. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Ruijter AJ, van Gennip AH, Caron HN, Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J. 370(Pt 3): 737–749. 2003. View Article : Google Scholar | |
Gregoretti IV, Lee YM and Goodson HV: Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol. 338:17–31. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kiweler N, Brill B, Wirth M, Breuksch I, Laguna T, Dietrich C, Strand S, Schneider G, Groner B, Butter F, et al: The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch Toxicol. 92:2227–2243. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bush EW and McKinsey TA: Protein acetylation in the cardiorenal axis: The promise of histone deacetylase inhibitors. Circ Res. 106:272–284. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang XJ and Seto E: The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat Rev Mol Cell Biol. 9:206–218. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang WM, Tsai SC, Wen YD, Fejer G and Seto E: Functional domains of histone deacetylase-3. J Biol Chem. 277:9447–9454. 2002. View Article : Google Scholar : PubMed/NCBI | |
Martin M, Kettmann R and Dequiedt F: Class IIa histone deacetylases: Regulating the regulators. Oncogene. 26:5450–5467. 2007. View Article : Google Scholar : PubMed/NCBI | |
Haberland M, Montgomery RL and Olson EN: The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet. 10:32–42. 2009. View Article : Google Scholar | |
Guardiola AR and Yao TP: Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem. 277:3350–3356. 2002. View Article : Google Scholar | |
Grozinger CM, Hassig CA and Schreiber SL: Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA. 96:4868–4873. 1999. View Article : Google Scholar : PubMed/NCBI | |
Marks PA and Breslow R: Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anti-cancer drug. Nat Biotechnol. 25:84–90. 2007. View Article : Google Scholar : PubMed/NCBI | |
Johnstone RW: Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat Rev Drug Discov. 1:287–299. 2002. View Article : Google Scholar : PubMed/NCBI | |
Michan S and Sinclair D: Sirtuins in mammals: Insights into their biological function. Biochem J. 404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abbas A and Gupta S: The role of histone deacetylases in prostate cancer. Epigenetics. 3:300–309. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto H, Schoonjans K and Auwerx J: Sirtuin functions in health and disease. Mol Endocrinol. 21:1745–1755. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xu WS, Parmigiani RB and Marks PA: Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene. 26:5541–5552. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Cueto MA, Asselbergs F and Atadja P: Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 277:25748–25755. 2002. View Article : Google Scholar : PubMed/NCBI | |
Verdin E and Ott M: 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 16:258–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gong F and Miller KM: Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutat Res. 750:23–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brunmeir R, Lagger S and Seiser C: Histone deacetylase HDAC1/HDAC2-controlled embryonic development and cell differentiation. Int J Dev Biol. 53:275–289. 2009. View Article : Google Scholar : PubMed/NCBI | |
Montgomery RL, Hsieh J, Barbosa AC, Richardson JA and Olson EN: Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA. 106:7876–7881. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bressi JC, Jennings AJ, Skene R, Wu Y, Melkus R, De Jong R, O'Connell S, Grimshaw CE, Navre M and Gangloff AR: Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg Med Chem Lett. 20:3142–3145. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Feng C, Li Z, Fang Q, Wang H, Gu G, Shi Y, Liu P, Xu F, Yin Z, et al: Structure-based optimization of click-based histone deacetylase inhibitors. Eur J Med Chem. 46:3190–3200. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Wang C, Ye J, Chen H and Tao R: Design, virtual screening, molecular docking and molecular dynamics studies of novel urushiol derivatives as potential HDAC2 selective inhibitors. Gene. 637:63–71. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie R, Yao Y, Tang P, Chen G, Liu X, Yun F, Cheng C, Wu X and Yuan Q: Design, synthesis and biological evaluation of novel hydroxamates and 2-aminobenzamides as potent histone deacetylase inhibitors and antitumor agents. Eur J Med Chem. 134:1–12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhou J, He F, Gao L, Wen Y, Gao L, Wang P, Kang D and Hu L: Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur J Med Chem. 192:112–189. 2020. View Article : Google Scholar | |
Fournier JF, Bhurruth-Alcor Y, Musicki B, Aubert J, Aurelly M, Bouix-Peter C, Bouquet K, Chantalat L, Delorme M, Drean B, et al: Squaramides as novel class I and IIB histone deacetylase inhibitors for topical treatment of cutaneous t-cell lymphoma. Bioorg Med Chem Lett. 28:2985–2992. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yun F, Cheng C, Ullah S, He J, Zahi MR and Yuan Q: Thioether-based 2-aminobenzamide derivatives: Novel HDAC inhibitors with potent in vitro and in vivo antitumor activity. Eur J Med Chem. 176:195–207. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alsawalha M, Rao Bolla S, Kandakatla N, Srinivasadesikan V, Veeraraghavan VP and Surapaneni KM: Molecular docking and ADMET analysis of hydroxamic acids as HDAC2 inhibitors. Bioinformation. 15:380–387. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ford J, Ahmed S, Allison S, Jiang M and Milner J: JNK2-dependent regulation of SIRT1 protein stability. Cell cycle. 7:3091–3097. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sun JM, Chen HY and Davie JR: Differential distribution of unmodified and phosphorylated histone deacetylase 2 in chromatin. J Biol Chem. 282:33227–33236. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ashktorab H, Belgrave K, Hosseinkhah F, Brim H, Nouraie M, Takkikto M, Hewitt S, Lee EL, Dashwood RH and Smoot D: Global Histone H4 Acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci. 54:2109–2117. 2009. View Article : Google Scholar : | |
Krämer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T and Göttlicher M: The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 22:3411–3420. 2003. View Article : Google Scholar : PubMed/NCBI | |
Brandl A, Wagner T, Uhlig KM, Knauer SK, Stauber RH, Melchior F, Schneider G, Heinzel T and Krämer OH: Dynamically regulated sumoylation of HDAC2 controls p53 deacetylation and restricts apoptosis following genotoxic stress. J Mol Cell Biol. 4:284–293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Adenuga D and Rahman I: Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys. 498:62–73. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tsai SC and Seto E: Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem. 277:31826–31833. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen PJ, Cai SP, Huang C, Meng XM and Li J: Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology. 337:10–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kan C, Ungelenk L, Lupp A, Dirsch O and Dahmen U: Ischemia-Reperfusion injury in aged Livers-The energy metabolism, inflammatory response, and autophagy. Transplantation. 102:368–377. 2018. View Article : Google Scholar | |
Guicciardi ME, Malhi H, Mott JL and Gores GJ: Apoptosis and necrosis in the liver. Compr Physiol. 3:977–1010. 2013.PubMed/NCBI | |
Lei WW, Zhang KH, Pan XC, Wang DM, Hu Y, Yang YN and Song JG: Histone deacetylase 1 and 2 differentially regulate apoptosis by opposing effects on extracellular signal-regulated kinase 1/2. Cell Death Dis. 1:e442010. View Article : Google Scholar | |
Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks WT, Holdren MS, Her MF, Gautam S, Magnuson M, et al: Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene. 24:3028–3041. 2005. View Article : Google Scholar : PubMed/NCBI | |
Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O'Duibhir E, Dwyer BJ, Thomson JP, Meehan RR, Bogorad R, Koteliansky V, et al: Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature. 547:350–354. 2017. View Article : Google Scholar : PubMed/NCBI | |
Willis-Martinez D, Richards HW, Timchenko NA and Medrano EE: Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol. 45:279–285. 2010. View Article : Google Scholar : | |
Harms KL and Chen X: Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res. 67:3145–3152. 2007. View Article : Google Scholar : PubMed/NCBI | |
Turgeon N, Blais M, Gagne JM, Tardif V, Boudreau F, Perreault N and Asselin C: HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS One. 8:e737852013. View Article : Google Scholar : PubMed/NCBI | |
Ler SY, Leung CH, Khin LW, Lu GD, Salto-Tellez M, Hartman M, Iau PT, Yap CT and Hooi SC: HDAC1 and HDAC2 independently predict mortality in hepatocellular carcinoma by a competing risk regression model in a Southeast Asian population. Oncol Rep. 34:2238–2250. 2015. View Article : Google Scholar : PubMed/NCBI | |
Noh JH, Chang YG, Kim MG, Jung KH, Kim JK, Bae HJ, Eun JW, Shen Q, Kim SJ, Kwon SH, et al: MiR–145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer. Cancer Lett. 335:455–462. 2013. View Article : Google Scholar : PubMed/NCBI | |
Makar AB, Mcmartin KE, Palese M and Tephly TR: Formate assay in body fluids: Application in methanol poisoning App. Biochem Med. 13:117–126. 1975. View Article : Google Scholar : PubMed/NCBI | |
Noh JH, Jung KH, Kim JK, Eun JW, Bae HJ, Xie HJ, Chang YG, Kim MG, Park WS, Lee JY and Nam SW: Aberrant Regulation of HDAC2 Mediates proliferation of hepatocellular carcinoma cells by deregulating expression of G1/S cell cycle proteins. PLoS One. 6:e281032011. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Yan S, Zhao J, Shi D, Yuan B, Dai W, Jiao B, Zhang W and Miao M: Lipid metabolism and peroxisome proliferator-activated receptor signaling pathways participate in late-phase liver regeneration. J Proteome Res. 10:1179–1190. 2011. View Article : Google Scholar : PubMed/NCBI | |
Michalopoulos GK and Bhushan B: Liver regeneration: Biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 18:40–55. 2021. View Article : Google Scholar | |
Michalopoulos GK: Principles of liver regeneration and growth homeostasis. Compr Physiol. 3:485–513. 2013.PubMed/NCBI | |
Li L, Guo J, Chen Y, Chang C and Xu C: Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration. BMC Genomics. 18:802017. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Zhou Y, Ji H, Wang Y, Wu Q, Bao J, Ye F, Shi Y and Bu H: Loss of Histone Deacetylases 1 and 2 in hepatocytes impairs murine liver regeneration through Ki67 depletion. Hepatology. 58:2089–2098. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ye F, Ke Q, Wu Q, Yang R and Bu H: Gender-dependent histone deacetylases injury may contribute to differences in liver recovery rates of male and female mice. Transplant Proc. 45:463–473. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bansal R, Nagorniewicz B and Prakash J: Clinical advancements in the targeted therapies against liver fibrosis. Mediators Inflamm. 2016:76297242016. View Article : Google Scholar : PubMed/NCBI | |
Aydın MM and Akçalı KC: Liver fibrosis. Turk J Gastroenterol. 29:14–21. 2018. View Article : Google Scholar | |
Gounder PP, Haering C, Bruden DJ, Townshend-Bulson L, Simons BC, Spradling PR and McMahon BJ: Does incorporating change in APRI or FIB–4 indices over time improve the accuracy of a single index for identifying liver fibrosis in persons with chronic hepatitis C virus infection? J Clin Gastroenterol. 52:60–66. 2018. View Article : Google Scholar | |
Bilal U, Lau B, Lazo M, McCaul ME, Hutton HE, Sulkowski MS, Moore RD and Chander G: Interaction between alcohol consumption patterns, antiretroviral therapy type, and liver fibrosis in persons living with HIV. AIDS Patient Care STDS. 30:200–207. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lainé F, Bendavid C, Moirand R, Tessier S, Perrin M, Guillygomarc'h A, Guyader D, Calon E, Renault A, Brissot P, et al: Prediction of liver fibrosis in patients with features of the metabolic syndrome regardless of alcohol consumption. Hepatology. 39:1639–1646. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sunami Y, Leithäuser F, Gul S, Fiedler K, Güldiken N, Espenlaub S, Holzmann KH, Hipp N, Sindrilaru A, Luedde T, et al: Hepatic activation of IKK/NFκB signaling induces liver fibrosis via macrophage-mediated chronic inflammation. Hepatology. 56:1117–1128. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wu P, Chen F, Hao Y, Lao Y, Ren L, Sun L, Sun W, Wei H, Chan DW, et al: SILAC-based quantitative proteomic analysis of secretome between activated and reverted hepatic stellate cells. Proteomics. 14:1977–1986. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mannaerts I, Eysackers N, Onyema OO, Van Beneden K, Valente S, Mai A, Odenthal M and van Grunsven LA: Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA–29. PLoS One. 8:e557862013. View Article : Google Scholar | |
Pannem RR, Dorn C, Hellerbrand C and Massoumi R: Cylindromatosis gene CYLD regulates hepatocyte growth factor expression in hepatic stellate cells through interaction with histone deacetylase 7. Hepatology. 60:1066–1081. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA and Geerts A: Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology. 51:603–614. 2010. View Article : Google Scholar | |
Qin L and Han YP: Epigenetic repression of matrix metalloproteinases in myofibroblastic hepatic stellate cells through histone deacetylases 4: Implication in tissue fibrosis. Am J Pathol. 177:1915–1928. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z, Przybranowski S, White ES and Peters-Golden M: Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 4:e6212013. View Article : Google Scholar : PubMed/NCBI | |
Lee YH, Seo D, Choi KJ, Andersen JB, Won MA, Kitade M, Gómez-Quiroz LE, Judge AD, Marquardt JU, Raggi C, et al: Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Res. 74:4752–4761. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wu XQ, Xu T, Li XF, Yang Y, Li WX, Huang C, Meng XM and Li J: Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis. Toxicol Appl Pharmacol. 306:58–68. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P and Gressner AM: Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 125:178–191. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dooley S, Hamzavi J, Ciuclan L, Godoy P, Ilkavets I, Ehnert S, Ueberham E, Gebhardt R, Kanzler S, Geier A, et al: Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology. 135:642–659. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hamzavi J, Ehnert S, Godoy P, Ciuclan L, Weng H, Mertens PR, Heuchel R and Dooley S: Disruption of the Smad7 gene enhances CCI4-dependent liver damage and fibrogenesis in mice. J Cell Mol Med. 12(5B): 2130–2144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oseini AM and Sanyal AJ: Therapies in non-alcoholic steatohepatitis (NASH). Liver Int. 37(Suppl 1): S97–S103. 2017. View Article : Google Scholar | |
Utsunomiya H, Yamamoto Y, Takeshita E, Tokumoto Y, Tada F, Miyake T, Hirooka M, Abe M, Kumagi T, Matsuura B, et al: Upregulated absorption of dietary palmitic acids with changes in intestinal transporters in non-alcoholic steatohepatitis (NASH). J Gastroenterol. 52:940–954. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fukushima J, Kamada Y, Matsumoto H, Yoshida Y, Ezaki H, Takemura T, Saji Y, Igura T, Tsutsui S, Kihara S, et al: Adiponectin prevents progression of steatohepatitis in mice by regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol Res. 39:724–738. 2009. View Article : Google Scholar : PubMed/NCBI | |
Afrin R, Arumugam S, Rahman A, Wahed MI, Karuppagounder V, Harima M, Suzuki H, Miyashita S, Suzuki K, Yoneyama H, et al: Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int Immunopharmacol. 44:174–182. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong S, Zhao L, Wang Y, Zhang C, Liu J, Wang P, Zhou W, Yang P, Varghese Z, Moorhead JF, et al: CD36 deficiency aggravates macrophage infiltration and hepatic inflammation by up-regulating MCP–1 expression of hepatocytes through HDAC2-dependant pathway. Antioxid Redox Signal. Aug 1–2017.Epub ahead of print. View Article : Google Scholar | |
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N and Zhao Y: Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 10:2993–3036. 2020.PubMed/NCBI | |
Lee JS, Chu IS, Heo J, Calvisi DF, Sun Z, Roskams T, Durnez A, Demetris AJ and Thorgeirsson SS: Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 40:667–676. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ropero S and Esteller M: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 1:19–25. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bayat S, Mansoori Derakhshan S, Mansoori Derakhshan N, Shekari Khaniani M and Alivand MR: Downregulation of HDAC2 and HDAC3 via oleuropein as a potent prevention and therapeutic agent in MCF–7 breast cancer cells. J Cell Biochem. 120:9172–9180. 2019. View Article : Google Scholar : PubMed/NCBI | |
Quint K, Agaimy A, Di Fazio P, Montalbano R, Steindorf C, Jung R, Hellerbrand C, Hartmann A, Sitter H, Neureiter D and Ocker M: Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC. Virchows Arch. 459:129–139. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim HS, Chang YG, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Lee EK, Park S, Ahn YM, et al: Oncogenic potential of CK2α and its regulatory role in EGF-induced HDAC2 expression in human liver cancer. FEBS J. 281:851–861. 2014. View Article : Google Scholar : PubMed/NCBI | |
Noh JH, Bae HJ, Eun JW, Shen Q, Park SJ, Kim HS, Nam B, Shin WC, Lee EK, Lee K, et al: HDAC2 provides a critical support to malignant progression of hepatocellular carcinoma through feedback control of mTORC1 and AKT. Cancer Res. 74:1728–1738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Yang G, Huang Y, Kong W and Zhang S: 1,25(OH)2D3 inhibits the progression of hepatocellular carcinoma via down-regulating HDAC2 and upregulating P21(WAFI/CIP1). Mol Med Re. 13:1373–1380. 2016. View Article : Google Scholar | |
Huang J, Yang G, Huang Y and Zhang S: Inhibitory effects of 1,25(OH)2D3 on the proliferation of hepatocellular carcinoma cells through the downregulation of HDAC2. Oncol Rep. 38:1845–1850. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Kohashi K, Yoshizumi T, Okumura Y, Tanaka Y, Shimokawa M, Iwasaki T, Aishima S, Maehara Y and Oda Y: Coexpression of SALL4 with HDAC1 and/or HDAC2 is associated with underexpression of PTEN and poor prognosis in patients with hepatocellular carcinoma. Hum Pathol. 64:69–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gryder BE, Pomella S, Sayers C, Wu XS, Song Y, Chiarella AM, Bagchi S, Chou HC, Sinniah RS, Walton A, et al: Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma. Nat Genet. 51:1714–1722. 2019. View Article : Google Scholar : PubMed/NCBI | |
Methot JL, Hamblett CL, Mampreian DM, Jung J, Harsch A, Szewczak AA, Dahlberg WK, Middleton RE, Hughes B, Fleming JC, et al: SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors (SHI–1:2). Bioorg Med Chem Lett. 18:6104–6109. 2008. View Article : Google Scholar : PubMed/NCBI | |
Methot JL, Chakravarty PK, Chenard M, Close J, Cruz JC, Dahlberg WK, Fleming J, Hamblett CL, Hamill JE, Harrington P, et al: Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg Med Chem Lett. 18:973–978. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qi Z, Wang C, Jiang J and Wu C: Novel C15 Triene Triazole, D-A derivatives anti-HepG2, and as HDAC2 inhibitors: A synergy study. Int J Mol Sci. 19:31842018. View Article : Google Scholar : | |
Venturelli S, Niessner H, Sinnberg T, Berger A, Burkard M, Urmann C, Donaubauer K, Böcker A, Leischner C, Riepl H, et al: 6– and 8-Prenylnaringenin, novel natural histone deacetylase inhibitors found in hops, exert antitumor activity on melanoma cells. Cell Physiol Biochem. 51:543–556. 2018. View Article : Google Scholar | |
Al-Sanea MM, Gotina L, Mohamed MF, Grace Thomas Parambi D, Gomaa HA, Mathew B, Youssif BG, Alharbi KS, Elsayed ZM, Abdelgawad MA and Eldehna WM: Design, synthesis and biological evaluation of new HDAC1 and HDAC2 inhibitors endowed with ligustrazine as a novel cap moiety. Drug Des Devel Ther. 14:497–508. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jang YG, Hwang KA and Choi KC: Rosmarinic acid, a component of rosemary tea, induced the cell cycle arrest and apoptosis through modulation of HDAC2 expression in prostate cancer cell lines. Nutrients. 10:17842018. View Article : Google Scholar : | |
Deng L, Tang J, Yang H, Cheng C, Lu S, Jiang R and Sun B: MTA1 modulated by miR–30e contributes to epithelial-to-mesenchymal transition in hepatocellular carcinoma through an ErbB2-dependent pathway. Oncogene. 36:3976–3985. 2017. View Article : Google Scholar : PubMed/NCBI | |
Buurman R, Gürlevik E, Schäffer V, Eilers M, Sandbothe M, Kreipe H, Wilkens L, Schlegelberger B, Kühnel F and Skawran B: Histone deacetylases activate hepatocyte growth factor signaling by repressing MicroRNA–449 in hepatocellular carcinoma cells. Gastroenterology. 143:811–820.e15. 2012. View Article : Google Scholar | |
He QL, Qin SY, Tao L, Ning HJ and Jiang HX: Prognostic value and prospective molecular mechanism of miR–100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett. 18:6126–6142. 2019.PubMed/NCBI | |
Kim HS, Lee KS, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Yang HD, Park M, Park WS, et al: MicroRNA–31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget. 6:8089–8102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dai W, Dai JL, Tang MH, Ye MS and Fang S: lncRNA-SNHG15 accelerates the development of hepatocellular carcinoma by targeting miR–490-3p/histone deacetylase 2 axis. World J Gastroenterol. 25:5789–5799. 2019. View Article : Google Scholar : PubMed/NCBI | |
Turner BM: Cellular memory and the histone code. Cell. 111:285–291. 2002. View Article : Google Scholar : PubMed/NCBI | |
Khan SN and Khan AU: Role of histone acetylation in cell physiology and diseases: An update. Clin Chim Acta. 411:1401–1411. 2010. View Article : Google Scholar : PubMed/NCBI | |
Budillon A, Di Gennaro E, Bruzzese F, Rocco M, Manzo G and Caraglia M: Histone deacetylase inhibitors: A new wave of molecular targeted anticancer agents. Recent Pat Anticancer Drug Discov. 2:119–134. 2007. View Article : Google Scholar | |
Wade PA: Transcriptional control at regulatory checkpoints by histone deacetylases: Molecular connections between cancer and chromatin. Hum Mol Genet. 10:693–698. 2001. View Article : Google Scholar : PubMed/NCBI | |
Forsberg EC and Bresnick EH: Histone acetylation beyond promoters: Long-range acetylation patterns in the chromatin world. Bioessays. 23:820–830. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Qiu Z, Hu Y, Yang F, Yan S, Zhao L, Li B, He S, Huang M, Li J and Li L: ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter-associated histone acetylation. Physiol Plant. 143:287–296. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tian XL, Lu X, Feng JB, Cai TJ, Li S, Tian M and Liu QJ: Alterations in histone acetylation following exposure to 60Co ү-rays and their relationship with chromosome damage in human lymphoblastoid cells. Radiat Environ Biophys. 57:215–222. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heinz KS, Rapp A, Casas-Delucchi CS, Lehmkuhl A, Romero-Fernández I, Sánchez A, Krämer OH, Marchal JA and Cardoso MC: DNA replication dynamics of vole genome and its epigenetic regulation. Epigenetics Chromatin. 12:182019. View Article : Google Scholar : PubMed/NCBI | |
Ibi D, de la Fuente Revenga M, Kezunovic N, Muguruza C, Saunders JM, Gaitonde SA, Moreno JL, Ijaz MK, Santosh V, Kozlenkov A, et al: Antipsychotic-induced Hdac2 transcription via NF-kB leads to synaptic and cognitive side effects. Nat Neurosci. 20:1247–1259. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bhandari DR, Seo KW, Jung JW, Kim HS, Yang SR and Kang KS: The regulatory role of c-MYC on HDAC2 and PcG expression in human multipotent stem cells. J Cell Mol Med. 15:1603–1614. 2011. View Article : Google Scholar | |
Yang H, Salz T, Zajac-Kaye M, Liao D, Huang S and Qiu Y: Overexpression of histone deacetylases in cancer cells is controlled by interplay of transcription factors and epigenetic modulators. FASEB J. 28:4265–4279. 2014. View Article : Google Scholar : PubMed/NCBI |