TGF‑β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review)
- Authors:
- Zhimin Ye
- Yongbin Hu
-
Affiliations: Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan 410006, P.R. China - Published online on: May 18, 2021 https://doi.org/10.3892/ijmm.2021.4965
- Article Number: 132
-
Copyright: © Ye et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H and Wells AU: Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 3:170742017. View Article : Google Scholar : PubMed/NCBI | |
George PM, Spagnolo P, Kreuter M, Altinisik G, Bonifazi M, Martinez FJ, Molyneaux PL, Renzoni EA, Richeldi L, Tomassetti S, et al: Progressive fibrosing interstitial lung disease: Clinical uncertainties, consensus recommendations, and research priorities. Lancet Respir Med. 8:925–934. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP and Thannickal VJ: Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med. 65:56–69. 2019. View Article : Google Scholar : | |
Hutchinson J, Fogarty A, Hubbard R and McKeever T: Global incidence and mortality of idiopathic pulmonary fibrosis: A systematic review. Eur Respir J. 46:795–806. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nalysnyk L, Cid-Ruzafa J, Rotella P and Esser D: Incidence and prevalence of idiopathic pulmonary fibrosis: Review of the literature. Eur Respir Rev. 21:355–361. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park Y, Ahn C and Kim TH: Occupational and environmental risk factors of idiopathic pulmonary fibrosis: A systematic review and meta-analyses. Sci Rep. 11:43182021. View Article : Google Scholar : PubMed/NCBI | |
Lv M, Liu Y, Ma S and Yu Z: Current advances in idiopathic pulmonary fibrosis: The pathogenesis, therapeutic strategies and candidate molecules. Future Med Chem. 11:2595–2620. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hadjicharalambous MR and Lindsay MA: Idiopathic pulmonary fibrosis: Pathogenesis and the emerging role of long non-coding RNAs. Int J Mol Sci. 21:5242020. View Article : Google Scholar : | |
Hewlett JC, Kropski JA and Blackwell TS: Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol. 71-72:112–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND and Zhao YY: New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 292:76–83. 2018. View Article : Google Scholar : PubMed/NCBI | |
Prashanth Goud M, Bale S, Pulivendala G and Godugu C: Therapeutic effects of Nimbolide, an autophagy regulator, in ameliorating pulmonary fibrosis through attenuation of TGF-β1 driven epithelial-to-mesenchymal transition. Int Immunopharmacol. 75:1057552019. View Article : Google Scholar | |
Feng F, Cheng P, Xu S, Li N, Wang H, Zhang Y and Wang W: Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling. Chem Biol Interact. 319:1090242020. View Article : Google Scholar | |
Moustafa EM, Ibrahim SI and Salem FAF: Methylsulfonylmethane inhibits lung fibrosis progression, inflammatory response, and epithelial-mesenchymal transition via the transforming growth factor-Beta 1/SMAD2/3 pathway in rats exposed to both γ-radiation and Bisphenol-A. Toxin Rev. 1–10. 2020. | |
He J, Peng H, Wang M, Liu Y, Guo X, Wang B, Dai L, Cheng X, Meng Z, Yuan L, et al: Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells. Acta Biochim Biophys Sin (Shanghai). 52:810–820. 2020. View Article : Google Scholar | |
Sgalla G, Iovene B, Calvello M, Ori M, Varone F and Richeldi L: Idiopathic pulmonary fibrosis: Pathogenesis and management. Respir Res. 19:322018. View Article : Google Scholar : PubMed/NCBI | |
Kim KK, Sheppard D and Chapman HA: TGF-beta 1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol. 10:a0222932018. View Article : Google Scholar | |
Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, Wiesel P, Chin MT, Topper JN, Perrella MA and Lee ME: Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem. 275:36653–36658. 2000. View Article : Google Scholar : PubMed/NCBI | |
Flanders KC: Smad3 as a mediator of the fibrotic response. Int J Exp Pathol. 85:47–64. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zheng R, Xiong Q, Zuo B, Jiang S, Li F, Lei M, Deng C and Xiong Y: Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells. Cell Biochem Funct. 26:548–556. 2008. View Article : Google Scholar : PubMed/NCBI | |
Roberts AB, Piek E, Bottinger EP, Ashcroft G, Mitchell JB and Flanders KC: Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest. 120(1 Suppl): 43S–47S. 2001. View Article : Google Scholar : PubMed/NCBI | |
Evans RA, Tian YC, Steadman R and Phillips AO: TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res. 282:90–100. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Zhu YJ, Yang X, Guo ZJ, Xu WB and Tian XL: Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation. Acta Pharmacol Sin. 28:382–391. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi T, Liu X, Wen FQ, Kohyama T, Shen L, Wang XQ, Hashimoto M, Mao L, Togo S, Kawasaki S, et al: Smad3 mediates TGF-beta1-induced collagen gel contraction by human lung fibroblasts. Biochem Biophys Res Commun. 339:290–295. 2006. View Article : Google Scholar | |
Deng X, Jin K, Li Y, Gu W, Liu M and Zhou L: Platelet-derived growth factor and transforming growth factor β1 Regulate ARDS-associated lung fibrosis through distinct signaling pathways. Cell Physiol Biochem. 36:937–946. 2015. View Article : Google Scholar | |
Lim MJ, Ahn J, Yi JY, Kim MH, Son AR, Lee SL, Lim DS, Kim SS, Kang MA, Han Y and Song JY: Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2. Exp Cell Res. 326:125–135. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Xie Y, Abel PW, Wei P, Plowman J, Toews ML, Strah H, Siddique A, Bailey KL and Tu Y: TGF-β1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochem Pharmacol. 180:1141722020. View Article : Google Scholar | |
Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, Martinez FJ and Thannickal VJ: NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 15:1077–1081. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fierro-Fernández M, Busnadiego Ó, Sandoval P, Espinosa-Díez C, Blanco-Ruiz E, Rodríguez M, Pian H, Ramos R, López-Cabrera M, García-Bermejo ML and Lamas S: miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep. 16:1358–1377. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo W, Saito S, Sanchez CG, Zhuang Y, Gongora Rosero RE, Shan B, Luo F and Lasky JA: TGF-β1 stimulates HDAC4 nucleus-to-cytoplasm translocation and NADPH oxidase 4-derived reactive oxygen species in normal human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 312:L936–L944. 2017. View Article : Google Scholar | |
Zhang Q, Tu W, Tian K, Han L, Wang Q, Chen P and Zhou X: Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-κB signaling pathways in human fetal lung fibroblasts. J Cell Biochem. 120:93–104. 2019. View Article : Google Scholar | |
Ji H, Tang H, Lin H, Mao J, Gao L, Liu J and Wu T: Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation. Biomed Rep. 2:787–792. 2014. View Article : Google Scholar : PubMed/NCBI | |
Câmara J and Jarai G: Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair. 3:22010. View Article : Google Scholar : PubMed/NCBI | |
Kasai H, Allen JT, Mason RM, Kamimura T and Zhang Z: TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res. 6:562005. View Article : Google Scholar : PubMed/NCBI | |
Li LC, Li DL, Xu L, Mo XT, Cui WH, Zhao P, Zhou WC, Gao J and Li J: High-mobility group box 1 mediates epithelial-to-mesenchymal transition in pulmonary fibrosis involving transforming growth factor-β1/Smad2/3 signaling. J Pharmacol Exp Ther. 354:302–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guan S and Zhou J: CXCR7 attenuates the TGF-β-induced endothelial-to-mesenchymal transition and pulmonary fibrosis. Mol Biosyst. 13:2116–2124. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhou X, Hu R and Dai A: TGF-β1-induced SMAD2/3/4 activation promotes RELM-β transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. Int J Biochem Cell Biol. 105:52–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kolosionek E, Savai R, Ghofrani HA, Weissmann N, Guenther A, Grimminger F, Seeger W, Banat GA, Schermuly RT and Pullamsetti SS: Expression and activity of phosphodiesterase isoforms during epithelial mesenchymal transition: The role of phosphodiesterase 4. Mol Biol Cell. 20:4751–4765. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ramirez A, Ballard EN and Roman J: TGFβ1 controls PPARγ expression, transcriptional potential, and activity, in part, through Smad3 signaling in murine lung fibroblasts. PPAR Res. 2012:3758762012. View Article : Google Scholar | |
Li HH, Cai Q, Wang YP, Liu HR and Huang M: The role of transforming growth factor-β1/connective tissue growth factor signaling pathway in paraquat-induced pulmonary fibrosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 34:484–488. 2016.In Chinese. PubMed/NCBI | |
Zheng X, Qi C, Zhang S, Fang Y and Ning W: TGF-β1 induces Fstl1 via the Smad3-c-Jun pathway in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 313:L240–L251. 2017. View Article : Google Scholar | |
Huang C, Liang Y, Zeng X, Yang X, Xu D, Gou X, Sathiaseelan R, Senavirathna LK, Wang P and Liu L: Long noncoding RNA FENDRR exhibits antifibrotic activity in pulmonary fibrosis. Am J Respir Cell Mol Biol. 62:440–453. 2020. View Article : Google Scholar : | |
Kadoya K, Togo S, Tulafu M, Namba Y, Iwai M, Watanabe J, Okabe T, Jin J, Kodama Y, Kitamura H, et al: Specific features of fibrotic lung fibroblasts highly sensitive to fibrotic processes mediated via TGF-β-ERK5 interaction. Cell Physiol Biochem. 52:822–837. 2019. View Article : Google Scholar | |
Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, Thannickal VJ, Cardoso WV and Lü J: miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 45:287–294. 2011. View Article : Google Scholar : | |
Yang T, Liang Y, Lin Q, Liu J, Luo F, Li X, Zhou H, Zhuang S and Zhang H: miR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts. J Cell Biochem. 114:1336–1342. 2013. View Article : Google Scholar | |
Xiao J, Meng XM, Huang XR, Chung AC, Feng YL, Hui DS, Yu CM, Sung JJ and Lan HY: miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 20:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang Q, Zhou Y, Yang Z and Tan M: Inhibition of miR-182-5p attenuates pulmonary fibrosis via TGF-β/Smad pathway. Hum Exp Toxicol. 39:683–695. 2020. View Article : Google Scholar | |
Kang HR, Lee CG, Homer RJ and Elias JA: Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med. 204:1083–1093. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee D, Bercz LS, Torok MA and Mace TA: Regulation of cellular immunity by activating transcription factor 4. Immunol Lett. 228:24–34. 2020. View Article : Google Scholar : PubMed/NCBI | |
Selvarajah B, Azuelos I, Platé M, Guillotin D, Forty EJ, Contento G, Woodcock HV, Redding M, Taylor A, Brunori G, et al: mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-β1-induced collagen biosynthesis. Sci Signal. 12:eaav30482019. View Article : Google Scholar | |
Woodcock HV, Eley JD, Guillotin D, Platé M, Nanthakumar CB, Martufi M, Peace S, Joberty G, Poeckel D, Good RB, et al: The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 10:62019. View Article : Google Scholar : PubMed/NCBI | |
Cong LH, Li T, Wang H, Wu YN, Wang SP, Zhao YY, Zhang GQ and Duan J: IL-17A-producing T cells exacerbate fine particulate matter-induced lung inflammation and fibrosis by inhibiting PI3K/Akt/mTOR-mediated autophagy. J Cell Mol Med. 24:8532–8544. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang L, Chen H, Kong R and Que J: Endogenous tryptophan metabolite 5-methoxytryptophan inhibits pulmonary fibrosis by downregulating the TGF-β/SMAD3 and PI3K/AKT signaling pathway. Life Sci. 260:1183992020. View Article : Google Scholar | |
Hettiarachchi SU, Li YH, Roy J, Zhang F, Puchulu-Campanella E, Lindeman SD, Srinivasarao M, Tsoyi K, Liang X, Ayaub EA, et al: Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models. Sci Transl Med. 12:eaay37242020. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y and He Z: PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest. 100:801–811. 2020. View Article : Google Scholar : PubMed/NCBI | |
Graves DT and Milovanova TN: Mucosal immunity and the FOXO1 transcription factors. Front Immunol. 10:25302019. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Dong N, Fang X and Wang X: Regulatory mechanisms of TGF-β1-induced fibrogenesis of human alveolar epithelial cells. J Cell Mol Med. 20:2183–2193. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wygrecka M, Zakrzewicz D, Taborski B, Didiasova M, Kwapiszewska G, Preissner KT and Markart P: TGF-β1 induces tissue factor expression in human lung fibroblasts in a PI3K/JNK/Akt-dependent and AP-1-dependent manner. Am J Respir Cell Mol Biol. 47:614–627. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bengal E, Aviram S and Hayek T: p38 MAPK in glucose metabolism of skeletal muscle: Beneficial or harmful? Int J Mol Sci. 21:64802020. View Article : Google Scholar : | |
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
He X and Wang C, Wang H, Li L and Wang C: The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci. 11:9522020. View Article : Google Scholar : PubMed/NCBI | |
Magnelli L, Schiavone N, Staderini F, Biagioni A and Papucci L: MAP kinases pathways in gastric cancer. Int J Mol Sci. 21:28932020. View Article : Google Scholar : | |
Jablonska E, Markart P, Zakrzewicz D, Preissner KT and Wygrecka M: Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts. J Biol Chem. 285:11638–11651. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Zhou XL, Shi YL and Yang J: Roles of p38 MAPK and JNK in TGF-β1-induced human alveolar epithelial to mesenchymal transition. Arch Med Res. 44:93–98. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khalil N, Xu YD, O'Connor R and Duronio V: Proliferation of pulmonary interstitial fibroblasts is mediated by transforming growth factor-beta1-induced release of extracellular fibroblast growth factor-2 and phosphorylation of p38 MAPK and JNK. J Biol Chem. 280:43000–43009. 2005. View Article : Google Scholar | |
Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S and Horie T: Transforming growth factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med. 163:152–157. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Osorio JC, Risquez C, Wang H, Shi Y, Gochuico BR, Morse D, Rosas IO and El-Chemaly S: Transforming growth factor-β1 downregulates vascular endothelial growth factor-D expression in human lung fibroblasts via the Jun NH2-terminal kinase signaling pathway. Mol Med. 20:120–134. 2014. View Article : Google Scholar : PubMed/NCBI | |
van der Velden JL, Wagner DE, Lahue KG, Abdalla ST, Lam YW, Weiss DJ and Janssen-Heininger YMW: TGF-β1-induced deposition of provisional extracellular matrix by tracheal basal cells promotes epithelial-to-mesenchymal transition in a c-Jun NH2-terminal kinase-1-dependent manner. Am J Physiol Lung Cell Mol Physiol. 314:L984–L997. 2018. View Article : Google Scholar | |
Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ and Horowitz JC: Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol. 41:484–493. 2009. View Article : Google Scholar : PubMed/NCBI | |
García-Alvarez J, Ramirez R, Checa M, Nuttall RK, Sampieri CL, Edwards DR, Selman M and Pardo A: Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis. Exp Lung Res. 32:201–214. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gu H, Mickler EA, Cummings OW, Sandusky GE, Weber DJ, Gracon A, Woodruff T, Wilkes DS and Vittal R: Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis. FASEB J. 28:4223–4234. 2014. View Article : Google Scholar : PubMed/NCBI | |
Finlay GA, Thannickal VJ, Fanburg BL and Paulson KE: Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. J Biol Chem. 275:27650–27656. 2000. View Article : Google Scholar : PubMed/NCBI | |
Caraci F, Gili E, Calafiore M, Failla M, La Rosa C, Crimi N, Sortino MA, Nicoletti F, Copani A and Vancheri C: TGF-beta1 targets the GSK-3beta/beta-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacol Res. 57:274–282. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ and Misra S: Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem. 292:10465–10489. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Du Y, Shen Y, He Y, Zhao H and Li Z: TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci (Landmark Ed). 17:2667–2674. 2012. View Article : Google Scholar | |
Lu M, Munger JS, Steadele M, Busald C, Tellier M and Schnapp LM: Integrin alpha8beta1 mediates adhesion to LAP-TGFbeta1. J Cell Sci. 115:4641–4648. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bugter JM, Fenderico N and Maurice MM: Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer. 21:5–21. 2021. View Article : Google Scholar | |
Rapetti-Mauss R, Berenguier C, Allegrini B and Soriani O: Interplay between ion channels and the Wnt/β-catenin signaling pathway in cancers. Front Pharmacol. 11:5250202020. View Article : Google Scholar | |
Söderholm S and Cantù C: The WNT/β-catenin dependent transcription: A tissue-specific business. Wiley Interdiscip Rev Syst Biol Med. Oct 21–2020.Epub ahead of print. View Article : Google Scholar | |
Lu Y, Zhang T, Shan S, Wang S, Bian W, Ren T and Yang D: MiR-124 regulates transforming growth factor-β1 induced differentiation of lung resident mesenchymal stem cells to myofibroblast by repressing Wnt/β-catenin signaling. Dev Biol. 449:115–121. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao P, Mo XT, Zhang Z and Gao J: Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med. 21:1545–1554. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baarsma HA, Engelbertink LH, van Hees LJ, Menzen MH, Meurs H, Timens W, Postma DS, Kerstjens HA and Gosens R: Glycogen synthase kinase-3 (GSK-3) regulates TGF-β1-induced differentiation of pulmonary fibroblasts. Br J Pharmacol. 169:590–603. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wang Y, Pan Q, Su Y, Zhang Z, Han J, Zhu X, Tang C and Hu D: Wnt/β-catenin pathway forms a negative feedback loop during TGF-β1 induced human normal skin fibroblast-to-myofibroblast transition. J Dermatol Sci. 65:38–49. 2012. View Article : Google Scholar | |
Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q, Krishnaveni MS, et al: Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 287:7026–7038. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu J, Chen J, Feng T and Guo Q: MiR-29 mediates TGFβ 1-induced extracellular matrix synthesis through activation of Wnt/β-catenin pathway in human pulmonary fibroblasts. Technol Health Care. 23(Suppl 1): S119–S125. 2015. View Article : Google Scholar | |
Noskovičová N, Heinzelmann K, Burgstaller G, Behr J and Eickelberg O: Cub domain-containing protein 1 negatively regulates TGF-β signaling and myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol. 314:L695–L707. 2018. View Article : Google Scholar | |
Uhal BD, Kim JK, Li X and Molina-Molina M: Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: Autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des. 13:1247–1256. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T and Tu Y: Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 10:6702019. View Article : Google Scholar | |
Yamasaki M, Kang HR, Homer RJ, Chapoval SP, Cho SJ, Lee BJ, Elias JA and Lee CG: P21 regulates TGF-beta1-induced pulmonary responses via a TNF-alpha-signaling pathway. Am J Respir Cell Mol Biol. 38:346–353. 2008. View Article : Google Scholar | |
Yamauchi Y, Kohyama T, Takizawa H, Kamitani S, Desaki M, Takami K, Kawasaki S, Kato J and Nagase T: Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta 1. Exp Lung Res. 36:12–24. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bissonnette EY, Enciso JA and Befus AD: TGF-beta1 inhibits the release of histamine and tumor necrosis factor-alpha from mast cells through an autocrine pathway. Am J Respir Cell Mol Biol. 16:275–282. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Lee JY, Lee CM, Cho WK, Kang MJ, Koff JL, Yoon PO, Chae J, Park HO, Elias JA and Lee CG: Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-β-induced pulmonary fibrosis. J Biol Chem. 287:41991–42000. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bonner JC, Badgett A, Lindroos PM and Osornio-Vargas AR: Transforming growth factor beta 1 downregulates the platelet-derived growth factor alpha-receptor subtype on human lung fibroblasts in vitro. Am J Respir Cell Mol Biol. 13:496–505. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ng B, Dong J, D'Agostino G, Viswanathan S, Widjaja AA, Lim WW, Ko NSJ, Tan J, Chothani SP, Huang B, et al: Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med. 11:eaaw12372019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang J, Zhang Y and Yi Z: Expression of interleukin-11 and its receptor in lung of mice with idiopathic pulmonary fibrosis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 43:1083–1088. 2018.In Chinese. PubMed/NCBI | |
Otsuki T, Hayashi H, Nishimura Y, Hyodo F, Maeda M, Kumagai N, Miura Y, Kusaka M and Uragami K: Dysregulation of autoimmunity caused by silica exposure and alteration of Fas-mediated apoptosis in T lymphocytes derived from silicosis patients. Int J Immunopathol Pharmacol. 24(Suppl): 11S–16S. 2011.PubMed/NCBI | |
Hagimoto N, Kuwano K, Inoshima I, Yoshimi M, Nakamura N, Fujita M, Maeyama T and Hara N: TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol. 168:6470–6478. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Mi L and Wang F: Effect of the alteration of Tribbles homologue 3 expression on epithelial-mesenchymal transition of transforming growth factor β1-induced mouse alveolar epithelial cells through the Wnt/β-catenin signaling pathway. Mol Med Rep. 21:615–622. 2020.PubMed/NCBI | |
Andonegui G, Ni A, Leger C, Kelly MM, Wong JF, Jalloul A and Winston BW: Sequential expression of IGF-IB followed by active TGF-β1 induces synergistic pulmonary fibroproliferation in vivo. Am J Physiol Lung Cell Mol Physiol. 303:L788–L798. 2012. View Article : Google Scholar : PubMed/NCBI | |
Negreros M, Hagood JS, Espinoza CR, Balderas-Martinez YI, Selman M and Pardo A: Transforming growth factor beta 1 induces methylation changes in lung fibroblasts. PLoS One. 14:e02235122019. View Article : Google Scholar : PubMed/NCBI | |
Sanders YY, Liu H, Scruggs AM, Duncan SR, Huang SK and Thannickal VJ: Epigenetic regulation of caveolin-1 gene expression in lung fibroblasts. Am J Respir Cell Mol Biol. 56:50–61. 2017. View Article : Google Scholar : | |
Arsalane K, Dubois CM, Muanza T, Bégin R, Boudreau F, Asselin C and Cantin AM: Transforming growth factor-beta1 is a potent inhibitor of glutathione synthesis in the lung epithelial cell line A549: Transcriptional effect on the GSH rate-limiting enzyme gamma-glutamylcysteine synthetase. Am J Respir Cell Mol Biol. 17:599–607. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jardine H, MacNee W, Donaldson K and Rahman I: Molecular mechanism of transforming growth factor (TGF)-beta1-induced glutathione depletion in alveolar epithelial cells. Involvement of AP-1/ARE and Fra-1. J Biol Chem. 277:21158–21166. 2002. View Article : Google Scholar : PubMed/NCBI | |
Boustani MR, Hertig IA, Maloney EK, Fanburg BL and White AC: Transforming growth factor B1 decreases uptake of glutathione precursor amino acids in bovine pulmonary artery endothelial cells. Endothelium. 5:1–10. 1997. View Article : Google Scholar : PubMed/NCBI | |
Cho SJ and Stout-Delgado HW: Aging and lung disease. Annu Rev Physiol. 82:433–459. 2020. View Article : Google Scholar | |
Wakwaya Y and Brown KK: Idiopathic pulmonary fibrosis: Epidemiology, diagnosis and outcomes. Am J Med Sci. 357:359–369. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abramson MJ, Murambadoro T, Alif SM, Benke GP, Dharmage SC, Glaspole I, Hopkins P, Hoy RF, Klebe S, Moodley Y, et al: Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Australia: Case-control study. Thorax. 75:864–869. 2020. View Article : Google Scholar : PubMed/NCBI | |
Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V and Kreuter M: The therapy of idiopathic pulmonary fibrosis: What is next? Eur Respir Rev. 28:1900212019. View Article : Google Scholar : PubMed/NCBI | |
Amor MS, Rosengarten D, Shitenberg D, Pertzov B, Shostak Y and Kramer MR: Lung transplantation in idiopathic pulmonary fibrosis: Risk factors and outcome. Isr Med Assoc J. 22:741–746. 2020. | |
Yang S, Liu P, Jiang Y, Wang Z, Dai H and Wang C: Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 9:6396572021. View Article : Google Scholar : PubMed/NCBI | |
Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chang X, Tian M, Zhang Q, Gao J, Li S and Sun Y: Nano nickel oxide promotes epithelial-mesenchymal transition through transforming growth factor β1/smads signaling pathway in A549 cells. Environ Toxicol. 35:1308–1317. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rosell-García T, Palomo-Álvarez O and Rodríguez-Pascual F: A hierarchical network of hypoxia-inducible factor and SMAD proteins governs procollagen lysyl hydroxylase 2 induction by hypoxia and transforming growth factor β1. J Biol Chem. 294:14308–14318. 2019. View Article : Google Scholar | |
Ko J, Mills T, Huang J, Chen NY, Mertens TCJ, Collum SD, Lee G, Xiang Y, Han L, Zhou Y, et al: Transforming growth factor β1 alters the 3′-UTR of mRNA to promote lung fibrosis. J Biol Chem. 294:15781–15794. 2019. View Article : Google Scholar : PubMed/NCBI | |
Senavirathna LK, Huang C, Pushparaj S, Xu D and Liu L: Hypoxia and transforming growth factor β1 regulation of long non-coding RNA transcriptomes in human pulmonary fibroblasts. Physiol Rep. 8:e143432020. View Article : Google Scholar | |
Neveu WA, Mills ST, Staitieh BS and Sueblinvong V: TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol. 309:C616–C626. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Han JH, Kim S, Lee H, Kim JR, Lim JH and Woo CH: p90RSK inhibition ameliorates TGF-β1 signaling and pulmonary fibrosis by inhibiting Smad3 transcriptional activity. Cell Physiol Biochem. 54:195–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miyake Y, Sasaki S, Yokoyama T, Chida K, Azuma A, Suda T, Kudoh S, Sakamoto N, Okamoto K, Kobashi G, et al: Occupational and environmental factors and idiopathic pulmonary fibrosis in Japan. Ann Occup Hyg. 49:259–265. 2005.PubMed/NCBI | |
Kim SY, Kang DM, Lee HK, Kim KH and Choi J: Occupational and environmental risk factors for chronic fibrosing idiopathic interstitial pneumonia in South Korea. J Occup Environ Med. 59:e221–e226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Baumgartner KB, Samet JM, Coultas DB, Stidley CA, Hunt WC, Colby TV and Waldron JA: Occupational and environmental risk factors for idiopathic pulmonary fibrosis: A multicenter case-control study. Collaborating centers. Am J Epidemiol. 152:307–315. 2000. View Article : Google Scholar : PubMed/NCBI | |
García-Sancho Figueroa MC, Carrillo G, Pérez-Padilla R, Fernández-Plata MR, Buendía-Roldán I, Vargas MH and Selman M: Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respir Med. 104:305–309. 2010. View Article : Google Scholar | |
Awadalla NJ, Hegazy A, Elmetwally RA and Wahby I: Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Egypt: A multicenter case-control study. Int J Occup Environ Med. 3:107–116. 2012.PubMed/NCBI | |
Koo JW, Myong JP, Yoon HK, Rhee CK, Kim Y, Kim JS, Jo BS, Cho Y, Byun J, Choi M, et al: Occupational exposure and idiopathic pulmonary fibrosis: A multicentre case-control study in Korea. Int J Tuberc Lung Dis. 21:107–112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Paolocci G, Folletti I, Torén K, Ekström M, Dell'Omo M, Muzi G and Murgia N: Occupational risk factors for idiopathic pulmonary fibrosis in Southern Europe: A case-control study. BMC Pulm Med. 18:752018. View Article : Google Scholar : PubMed/NCBI |