Recent advances on the mechanisms of kidney stone formation (Review)
- Authors:
- Zhu Wang
- Ying Zhang
- Jianwen Zhang
- Qiong Deng
- Hui Liang
-
Affiliations: Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China - Published online on: June 11, 2021 https://doi.org/10.3892/ijmm.2021.4982
- Article Number: 149
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Romero V, Akpinar H and Assimos DG: Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev Urol. 12:e86–e96. 2010.PubMed/NCBI | |
Morgan MS and Pearle MS: Medical management of renal stones. BMJ. 352:i522016. View Article : Google Scholar : PubMed/NCBI | |
Zeng G, Mai Z, Xia S, Wang Z, Zhang K, Wang L, Long Y, Ma J, Li Y, Wan SP, et al: Prevalence of kidney stones in China: An ultrasonography based cross-sectional study. BJU Int. 120:109–116. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ziemba JB and Matlaga BR: Epidemiology and economics of nephrolithiasis. Investig Clin Urol. 58:299–306. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eisner BH and Goldfarb DS: A nomogram for the prediction of kidney stone recurrence. J Am Soc Nephrol. 25:2685–2687. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brikowski TH, Lotan Y and Pearle MS: Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA. 105:9841–9846. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abeywickarama B, Ralapanawa U and Chandrajith R: Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka. Environ Geochem Health. 38:1203–1214. 2016. View Article : Google Scholar | |
Wang Z, Zhang JW, Zhang Y, Zhang SP, Hu QY and Liang H: Analyses of long non-coding RNA and mRNA profiling using RNA sequencing in calcium oxalate monohydrate-stimulated renal tubular epithelial cells. Urolithiasis. 47:225–234. 2019. View Article : Google Scholar | |
Parmar MS: Kidney stones. BMJ. 328:1420–1424. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ye Z, Zeng G, Yang H, Li J, Tang K, Wang G, Wang S, Yu Y, Wang Y, Zhang T, et al: The status and characteristics of urinary stone composition in China. BJU Int. 125:801–809. 2020. View Article : Google Scholar | |
Aggarwal KP, Narula S, Kakkar M and Tandon C: Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013:2929532013. View Article : Google Scholar : PubMed/NCBI | |
Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O and Tiselius HG: Kidney stones. Nat Rev Dis Primers. 2:160082016. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Shen L, Cong X, Zhu H, He L and Lu J: Infrared spectroscopic analysis of 5,248 urinary stones from Chinese patients presenting with the first stone episode. Urol Res. 39:339–343. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hamamoto S, Taguchi K and Fujii Y: Molecular mechanism of renal stone formation. Clin Calcium. 21:1481–1487. 2011.In Japanese. PubMed/NCBI | |
Pak CY, Sakhaee K, Moe O, Preminger GM, Poindexter JR, Peterson RD, Pietrow P and Ekeruo W: Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 61:523–527. 2003. View Article : Google Scholar : PubMed/NCBI | |
Carbone A, Al Salhi Y, Tasca A, Palleschi G, Fuschi A, De Nunzio C, Bozzini G, Mazzaferro S and Pastore AL: Obesity and kidney stone disease: A systematic review. Minerva Urol Nefrol. 70:393–400. 2018. View Article : Google Scholar : PubMed/NCBI | |
Devarajan A: Cross-talk between renal lithogenesis and atherosclerosis: An unveiled link between kidney stone formation and cardiovascular diseases. Clin Sci (Lond). 132:615–626. 2018. View Article : Google Scholar | |
Kittanamongkolchai W, Mara KC, Mehta RA, Vaughan LE, Denic A, Knoedler JJ, Enders FT, Lieske JC and Rule AD: Risk of hypertension among first-time symptomatic kidney stone formers. Clin J Am Soc Nephrol. 12:476–482. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rule AD, Bergstralh EJ, Melton LJ III, Li X, Weaver AL and Lieske JC: Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol. 4:804–811. 2009. View Article : Google Scholar : PubMed/NCBI | |
Keddis MT and Rule AD: Nephrolithiasis and loss of kidney function. Curr Opin Nephrol Hypertens. 22:390–396. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dhondup T, Kittanamongkolchai W, Vaughan LE, Mehta RA, Chhina JK, Enders FT, Hickson LJ, Lieske JC and Rule AD: Risk of ESRD and mortality in kidney and bladder stone formers. Am J Kidney Dis. 72:790–797. 2018. View Article : Google Scholar : PubMed/NCBI | |
Voss S, Hesse A, Zimmermann DJ, Sauerbruch T and von Unruh GE: Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: Measurements with the [(13)C2]oxalate absorption test. J Urol. 175:1711–1715. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ha YS, Tchey DU, Kang HW, Kim YJ, Yun SJ, Lee SC and Kim WJ: Phosphaturia as a promising predictor of recurrent stone formation in patients with urolithiasis. Korean J Urol. 51:54–59. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dean C, Kanellos J, Pham H, Gomes M, Oates A, Grover P and Ryall R: Effects of inter-alpha-inhibitor and several of its derivatives on calcium oxalate crystallization in vitro. Clin Sci (Lond). 98:471–480. 2000. View Article : Google Scholar | |
Daudon M, Frochot V, Bazin D and Jungers P: Drug-induced kidney stones and crystalline nephropathy: Pathophysiology, prevention and treatment. Drugs. 78:163–201. 2018. View Article : Google Scholar | |
Rodgers AL: Physicochemical mechanisms of stone formation. Urolithiasis. 45:27–32. 2017. View Article : Google Scholar | |
Thongboonkerd V: Proteomics of crystal-cell interactions: A model for kidney stone research. Cells. 8:10762019. View Article : Google Scholar | |
Wang Z, Li MX, Xu CZ, Zhang Y, Deng Q, Sun R, Hu QY, Zhang SP, Zhang JW and Liang H: Comprehensive study of altered proteomic landscape in proximal renal tubular epithelial cells in response to calcium oxalate monohydrate crystals. BMC Urol. 20:1362020. View Article : Google Scholar : PubMed/NCBI | |
Fong-Ngern K, Sueksakit K and Thongboonkerd V: Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. J Biol Inorg Chem. 21:463–474. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Farell G, Deganello S and Lieske JC: Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol. 14:289–297. 2003. View Article : Google Scholar : PubMed/NCBI | |
Anan G, Yoneyama T, Noro D, Tobisawa Y, Hatakeyama S, Sutoh Yoneyama M, Yamamoto H, Imai A, Iwamura H, Kohada Y, et al: The impact of glycosylation of osteopontin on urinary stone formation. Int J Mol Sci. 21:932019. View Article : Google Scholar | |
Wiener SV, Ho SP and Stoller ML: Beginnings of nephrolithiasis: Insights into the past, present and future of Randall's plaque formation research. Curr Opin Nephrol Hypertens. 27:236–242. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sheng X, Ward MD and Wesson JA: Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol. 16:1904–1908. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ketha H, Singh RJ, Grebe SK, Bergstralh EJ, Rule AD, Lieske JC and Kumar R: Altered calcium and vitamin D homeostasis in first-time calcium kidney stone-formers. PLoS One. 10:e01373502015. View Article : Google Scholar : PubMed/NCBI | |
Vezzoli G, Macrina L, Magni G and Arcidiacono T: Calcium-sensing receptor: Evidence and hypothesis for its role in nephrolithiasis. Urolithiasis. 47:23–33. 2019. View Article : Google Scholar | |
Farell G, Huang E, Kim SY, Horstkorte R and Lieske JC: Modulation of proliferating renal epithelial cell affinity for calcium oxalate monohydrate crystals. J Am Soc Nephrol. 15:3052–3062. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Xue JF, Xu M, Gui BS, Wang FX and Ouyang JM: Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: A high-resolution transmission electron microscopy study on urinary nanocrystallites. Int J Nanomedicine. 9:4399–4409. 2014.PubMed/NCBI | |
Ratkalkar VN and Kleinman JG: Mechanisms of stone formation. Clin Rev Bone Miner Metab. 9:187–197. 2011. View Article : Google Scholar | |
Moe OW, Abate N and Sakhaee K: Pathophysiology of uric acid nephrolithiasis. Endocrinol Metab Clin North Am. 31:895–914. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shekarriz B and Stoller ML: Uric acid nephrolithiasis: Current concepts and controversies. J Urol. 168:1307–1314. 2002. View Article : Google Scholar : PubMed/NCBI | |
Song L and Maalouf NM: Nephrolithiasis. Endotext. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland HJ, Kaltsas G, et al: MDText.com, Inc. South Dartmouth, MA: 2000 | |
Farmanesh S, Chung J, Sosa RD, Kwak JH, Karande P and Rimer JD: Natural promoters of calcium oxalate monohydrate crystallization. J Am Chem Soc. 136:12648–12657. 2014. View Article : Google Scholar : PubMed/NCBI | |
Worcester EM: Urinary calcium oxalate crystal growth inhibitors. J Am Soc Nephrol. 5(Suppl 1): S46–S53. 1994. View Article : Google Scholar : PubMed/NCBI | |
Schepers MS, van der Boom BG, Romijn JC, Schroder FH and Verkoelen CF: Urinary crystallization inhibitors do not prevent crystal binding. J Urol. 167:1844–1847. 2002. View Article : Google Scholar : PubMed/NCBI | |
Khan SR and Kok DJ: Modulators of urinary stone formation. Front Biosci. 9:1450–1482. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hess B, Jordi S, Zipperle L, Ettinger E and Giovanoli R: Citrate determines calcium oxalate crystallization kinetics and crystal morphology-studies in the presence of Tamm-Horsfall protein of a healthy subject and a severely recurrent calcium stone former. Nephrol Dial Transplant. 15:366–374. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cicerello E, Ciaccia M, Cova G and Mangano M: The impact of potassium citrate therapy in the natural course of Medullary Sponge Kidney with associated nephrolithiasis. Arch Ital Urol Androl. 91:102–106. 2019. View Article : Google Scholar | |
Siener R: Dietary treatment of metabolic acidosis in chronic kidney disease. Nutrients. 10:5122018. View Article : Google Scholar : | |
Kim D, Rimer JD and Asplin JR: Hydroxycitrate: A potential new therapy for calcium urolithiasis. Urolithiasis. 47:311–320. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chung J, Granja I, Taylor MG, Mpourmpakis G, Asplin JR and Rimer JD: Molecular modifiers reveal a mechanism of pathological crystal growth inhibition. Nature. 536:446–450. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ryall RL, Harnett RM and Marshall VR: The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta. 112:349–356. 1981. View Article : Google Scholar : PubMed/NCBI | |
Riley JM, Kim H, Averch TD and Kim HJ: Effect of magnesium on calcium and oxalate ion binding. J Endourol. 27:1487–1492. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grases F, Rodriguez A and Costa-Bauza A: Efficacy of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors in urine. J Urol. 194:812–819. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robertson WG: Do 'inhibitors of crystallisation' play any role in the prevention of kidney stones? A critique. Urolithiasis. 45:43–56. 2017. View Article : Google Scholar | |
Randall A: The origin and growth of renal calculi. Ann Surg. 105:1009–1027. 1937. View Article : Google Scholar : PubMed/NCBI | |
Wiener SV, Chen L, Shimotake AR, Kang M, Stoller ML and Ho SP: Novel insights into renal mineralization and stone formation through advanced imaging modalities. Connect Tissue Res. 59:S102–S110. 2018. View Article : Google Scholar | |
Daudon M, Bazin D and Letavernier E: Randall's plaque as the origin of calcium oxalate kidney stones. Urolithiasis. 43(Suppl 1): S5–S11. 2015. View Article : Google Scholar | |
Khan SR, Canales BK and Dominguez-Gutierrez PR: Randall's plaque and calcium oxalate stone formation: Role for immunity and inflammation. Nat Rev Nephrol. 17:417–433. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chung HJ: The role of Randall plaques on kidney stone formation. Transl Androl Urol. 3:251–254. 2014.PubMed/NCBI | |
Bouderlique E, Tang E, Perez J, Coudert A, Bazin D, Verpont MC, Duranton C, Rubera I, Haymann JP, Leftheriotis G, et al: Vitamin D and calcium supplementation accelerates Randall's plaque formation in a murine model. Am J Pathol. 189:2171–2180. 2019. View Article : Google Scholar : PubMed/NCBI | |
Winfree S, Weiler C, Bledsoe SB, Gardner T, Sommer AJ, Evan AP, Lingeman JE, Krambeck AE, Worcester EM, El-Achkar TM and Williams JC Jr: Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque. Urolithiasis. 49:123–135. 2021. View Article : Google Scholar | |
Zhu Z, Huang F, Xia W, Zeng H, Gao M, Li Y, Zeng F, He C, Chen J, Chen Z, et al: Osteogenic differentiation of renal interstitial fibroblasts promoted by lncRNA MALAT1 may partially contribute to Randall's plaque formation. Front Cell Dev Biol. 8:5963632020. View Article : Google Scholar | |
Zhu Z, Cui Y, Huang F, Zeng H, Xia W, Zeng F, He C, Chen J, Chen Z, Chen H and Li Y: Long non-coding RNA H9 promotes osteogenic differentiation of renal interstitial fibroblasts through Wnt-beta-catenin pathway. Mol Cell Biochem. 470:145–155. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, Xia D, Peng E, Chen Z, Sun F, et al: H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine. 50:366–378. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Chandhoke PS and Grampsas SA: Role of sex hormones in experimental calcium oxalate nephrolithiasis. J Am Soc Nephrol. 10(Suppl 14): S376–S380. 1999.PubMed/NCBI | |
Li JY, Zhou T, Gao X, Xu C, Sun Y, Peng Y, Chang Z, Zhang Y, Jiang J, Wang L and Hou J: Testosterone and androgen receptor in human nephrolithiasis. J Urol. 184:2360–2363. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gupta K, Gill GS and Mahajan R: Possible role of elevated serum testosterone in pathogenesis of renal stone formation. Int J Appl Basic Med Res. 6:241–244. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fuster DG, Morard GA, Schneider L, Mattmann C, Lüthi D, Vogt B and Dhayat NA: Association of urinary sex steroid hormones with urinary calcium, oxalate and citrate excretion in kidney stone formers. Nephrol Dial Transplant. Dec 9–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Yoshihara H, Yamaguchi S and Yachiku S: Effect of sex hormones on oxalate-synthesizing enzymes in male and female rat livers. J Urol. 161:668–673. 1999. View Article : Google Scholar : PubMed/NCBI | |
Liang L, Li L, Tian J, Lee SO, Dang Q, Huang CK, Yeh S, Erturk E, Bushinsky D, Chang LS, et al: Androgen receptor enhances kidney stone-CaOx crystal formation via modulation of oxalate biosynthesis & oxidative stress. Mol Endocrinol. 28:1291–1303. 2014. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Fang Z, Liu M, Wang Z, Li L, Ming S, Lu C, Dong H, Zhang W, Wang Q, et al: Testosterone induces renal tubular epithelial cell death through the HIF-1alpha/BNIP3 pathway. J Transl Med. 17:622019. View Article : Google Scholar | |
Changtong C, Peerapen P, Khamchun S, Fong-Ngern K, Chutipongtanate S and Thongboonkerd V: In vitro evidence of the promoting effect of testosterone in kidney stone disease: A proteomics approach and functional validation. J Proteomics. 144:11–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, Bushinsky D, Zeng G and Chang C: Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 10:2752019. View Article : Google Scholar : PubMed/NCBI | |
Sueksakit K and Thongboonkerd V: Protective effects of finasteride against testosterone-induced calcium oxalate crystallization and crystal-cell adhesion. J Biol Inorg Chem. 24:973–983. 2019. View Article : Google Scholar : PubMed/NCBI | |
Peerapen P and Thongboonkerd V: Protective cellular mechanism of estrogen against kidney stone formation: A proteomics approach and functional validation. Proteomics. 19:e19000952019. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Zhao Z, Chou FJ, Zuo L, Liu T, Bushinsky D, Chang C, Zeng G and Yeh S: The protective roles of estrogen receptor β in renal calcium oxalate crystal formation via reducing the liver oxalate biosynthesis and renal oxidative stress-mediated cell injury. Oxid Med Cell Longev. 2019:53050142019. View Article : Google Scholar | |
Loughlin KR: The clinical applications of five-alpha reductase inhibitors. Can J Urol. 28:10584–10588. 2021.PubMed/NCBI | |
Tian H, Chou FJ, Tian J, Zhang Y, You B, Huang CP, Yeh S, Niu Y and Chang C: ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. J Exp Clin Cancer Res. 40:32021. View Article : Google Scholar | |
Hu H, Zhou H and Xu D: A review of the effects and molecular mechanisms of dimethylcurcumin (ASC-J9) on androgen receptor-related diseases. Chem Biol Drug Des. 97:821–835. 2021. View Article : Google Scholar | |
Andy G, John M, Mirna S, Rachita D, Michael K, Maja K, Aseem S and Zeljana B: Controversies in the treatment of androgenetic alopecia: The history of finasteride. Dermatol Ther. 32:e126472019. View Article : Google Scholar | |
Whiteside SA, Razvi H, Dave S, Reid G and Burton JP: The microbiome of the urinary tract-a role beyond infection. Nat Rev Urol. 12:81–90. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bichler KH, Eipper E, Naber K, Braun V, Zimmermann R and Lahme S: Urinary infection stones. Int J Antimicrob Agents. 19:488–498. 2002. View Article : Google Scholar : PubMed/NCBI | |
Espinosa-Ortiz EJ, Eisner BH, Lange D and Gerlach R: Current insights into the mechanisms and management of infection stones. Nat Rev Urol. 16:35–53. 2019. View Article : Google Scholar | |
Marien T and Miller NL: Treatment of the Infected Stone. Urol Clin North Am. 42:459–472. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Cógáin MR, Lieske JC, Vrtiska TJ, Tosh PK and Krambeck AE: Secondarily infected nonstruvite urolithiasis: A prospective evaluation. Urology. 84:1295–1300. 2014. View Article : Google Scholar : PubMed/NCBI | |
Flannigan R, Choy WH, Chew B and Lange D: Renal struvite stones-pathogenesis, microbiology, and management strategies. Nat Rev Urol. 11:333–341. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mehta M, Goldfarb DS and Nazzal L: The role of the microbiome in kidney stone formation. Int J Surg. 36:607–612. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martel J, Peng HH, Young D, Wu CY and Young JD: Of nanobacteria, nanoparticles, biofilms and their role in health and disease: Facts, fancy and future. Nanomedicine (Lond). 9:483–499. 2014. View Article : Google Scholar | |
Wu J, Tao Z, Deng Y, Liu Q, Liu Y, Guan X and Wang X: Calcifying nanoparticles induce cytotoxicity mediated by ROS-JNK signaling pathways. Urolithiasis. 47:125–135. 2019. View Article : Google Scholar | |
Ansari H, Akhavan Sepahi A and Akhavan Sepahi M: Different approaches to detect 'Nanobacteria' in patients with kidney stones: An infectious cause or a subset of life? Urol J. 14:5001–5007. 2017.PubMed/NCBI | |
Kajander EO, Ciftcioglu N, Aho K and Garcia-Cuerpo E: Characteristics of nanobacteria and their possible role in stone formation. Urol Res. 31:47–54. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ciftçioglu N, Björklund M, Kuorikoski K, Bergström K and Kajander EO: Nanobacteria: An infectious cause for kidney stone formation. Kidney Int. 56:1893–1898. 1999. View Article : Google Scholar : PubMed/NCBI | |
Khullar M, Sharma SK, Singh SK, Bajwa P, Shiekh FA, Relan V and Sharma M: Morphological and immunological characteristics of nanobacteria from human renal stones of a north Indian population. Urol Res. 32:190–195. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shiekh FA, Khullar M and Singh SK: Lithogenesis: Induction of renal calcifications by nanobacteria. Urol Res. 34:53–57. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kajander EO and Ciftçioglu N: Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA. 95:8274–8279. 1998. View Article : Google Scholar : PubMed/NCBI | |
Abrol N, Panda A, Kekre NS and Devasia A: Nanobacteria in the pathogenesis of urolithiasis: Myth or reality? Indian J Urol. 31:3–7. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hong X, Wang X, Wang T, Yu C and Li H: Role of nanobacteria in the pathogenesis of kidney stone formation. Am J Transl Res. 8:3227–3234. 2016.PubMed/NCBI | |
Sadaf H, Raza SI and Hassan SW: Role of gut microbiota against calcium oxalate. Microb Pathog. 109:287–291. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ticinesi A, Nouvenne A, Chiussi G, Castaldo G, Guerra A and Meschi T: Calcium oxalate nephrolithiasis and gut microbiota: Not just a gut-kidney axis. A nutritional perspective. Nutrients. 12:5482020. View Article : Google Scholar : | |
Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA, Turroni F, Duranti S, et al: Understanding the gut-kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut. 67:2097–2106. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I, Burk R and Davies KP: Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis. 44:399–407. 2016. View Article : Google Scholar : PubMed/NCBI | |
Falony G: Beyond Oxalobacter: The gut microbiota and kidney stone formation. Gut. 67:2078–2079. 2018. View Article : Google Scholar : PubMed/NCBI | |
Miller AW and Dearing D: The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens. 2:636–652. 2013. View Article : Google Scholar : PubMed/NCBI | |
Worcester EM, Fellner SK, Nakagawa Y and Coe FL: Effect of renal transplantation on serum oxalate and urinary oxalate excretion. Nephron. 67:414–418. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hatch M, Freel RW and Vaziri ND: Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflugers Arch. 426:101–109. 1994. View Article : Google Scholar : PubMed/NCBI | |
Peck AB, Canales BK and Nguyen CQ: Oxalate-degrading microorganisms or oxalate-degrading enzymes: Which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease? Urolithiasis. 44:45–50. 2016. View Article : Google Scholar | |
Knight J, Deora R, Assimos DG and Holmes RP: The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis. 41:187–196. 2013. View Article : Google Scholar : PubMed/NCBI | |
Batagello CA, Monga M and Miller AW: Calcium oxalate urolithiasis: A case of missing microbes? J Endourol. 32:995–1005. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cornelius JG and Peck AB: Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes. J Med Microbiol. 53:249–254. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nikolic-Paterson DJ, Wang S and Lan HY: Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011). 4:34–38. 2014. View Article : Google Scholar | |
Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y and Kohri K: Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: Detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res. 25:2701–2711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Singhto N, Kanlaya R, Nilnumkhum A and Thongboonkerd V: Roles of macrophage exosomes in immune response to calcium oxalate monohydrate crystals. Front Immunol. 9:3162018. View Article : Google Scholar : PubMed/NCBI | |
Singhto N and Thongboonkerd V: Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix. J Proteomics. 185:64–76. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tamura M, Aizawa R, Hori M and Ozaki H: Progressive renal dysfunction and macrophage infiltration in interstitial fibrosis in an adenine-induced tubulointerstitial nephritis mouse model. Histochem Cell Biol. 131:483–490. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J and Khan SR: Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol. 195:1143–1151. 2016. View Article : Google Scholar : | |
Sintiprungrat K, Singhto N and Thongboonkerd V: Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Mol Biosyst. 12:879–889. 2016. View Article : Google Scholar : PubMed/NCBI | |
Histiocytosis syndromes in children. Writing Group of the Histiocyte Society. Lancet. 1:208–209. 1987.PubMed/NCBI | |
Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y, Itoh Y, Tozawa K, Hayashi Y and Kohri K: Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: Detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res. 24:908–924. 2009. View Article : Google Scholar | |
Vervaet BA, Verhulst A, Dauwe SE, De Broe ME and D'Haese PC: An active renal crystal clearance mechanism in rat and man. Kidney Int. 75:41–51. 2009. View Article : Google Scholar | |
Dominguez-Gutierrez PR, Kusmartsev S, Canales BK and Khan SR: Calcium oxalate differentiates human monocytes into inflammatory M1 macrophages. Front Immunol. 9:18632018. View Article : Google Scholar : PubMed/NCBI | |
Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R, Mizuno K, Tozawa K, Kohri K and Yasui T: M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep. 6:351672016. View Article : Google Scholar : PubMed/NCBI | |
Dominguez-Gutierrez PR, Kwenda EP, Khan SR and Canales BK: Immunotherapy for stone disease. Curr Opin Urol. 30:183–189. 2020. View Article : Google Scholar : PubMed/NCBI |