Autologous cell therapy in diabetes‑associated critical limb ischemia: From basic studies to clinical outcomes (Review)
- Authors:
- Alessandra Magenta
- Maria Cristina Florio
- Massimo Ruggeri
- Sergio Furgiuele
-
Affiliations: Experimental Immunology Laboratory, IDI‑IRCCS, I‑00167 Rome, Italy, Laboratory of Cardiovascular Science, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA, Department of Vascular Surgery, San Camillo de Lellis Hospital, I‑02100 Rieti, Italy, Swiss Stem Cell Foundation, 6900 Lugano, Switzerland - Published online on: July 13, 2021 https://doi.org/10.3892/ijmm.2021.5006
- Article Number: 173
This article is mentioned in:
Abstract
Fowkes FGR, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ, Mensah GA and Criqui MH: Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet. 382:1329–1340. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cooke JP and Losordo DW: Modulating the vascular response to limb ischemia: Angiogenic and cell therapies. Circ Res. 116:1561–1578. 2015. View Article : Google Scholar : PubMed/NCBI | |
Criqui MH and Aboyans V: Epidemiology of peripheral artery disease. Circ Res. 116:1509–1526. 2015. View Article : Google Scholar : PubMed/NCBI | |
Teraa M, Conte MS, Moll FL and Verhaar MC: Critical limb ischemia: Current trends and future directions. J Am Heart Assoc. 5:e0029382016. View Article : Google Scholar : PubMed/NCBI | |
Reinecke H, Unrath M, Freisinger E, Bunzemeier H, Meyborg M, Lüders F, Gebauer K, Roeder N, Berger K and Malyar NM: Peripheral arterial disease and critical limb ischaemia: Still poor outcomes and lack of guideline adherence. Eur Heart J. 36:932–938. 2015. View Article : Google Scholar : PubMed/NCBI | |
Freisinger E, Malyar NM, Reinecke H and Lawall H: Impact of diabetes on outcome in critical limb ischemia with tissue loss: A large-scaled routine data analysis. Cardiovasc Diabetol. 16:412017. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Tie G, Wang S, Tutto A, DeMarco N, Khair L, Fazzio TG and Messina LM: Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun. 9:332018. View Article : Google Scholar : PubMed/NCBI | |
Rigato M, Monami M and Fadini GP: Autologous cell therapy for peripheral arterial disease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res. 120:1326–1340. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qadura M, Terenzi DC, Verma S, Al-Omran M and Hess DA: Concise review: Cell therapy for critical limb ischemia: An integrated review of preclinical and clinical studies. Stem Cells. 36:161–171. 2018. View Article : Google Scholar | |
Dubský M, Jirkovská A, Bem R, Nemcová A, Fejfarová V and Jude EB: Cell therapy of critical limb ischemia in diabetic patients-State of art. Diabetes Res Clin Pract. 126:263–271. 2017. View Article : Google Scholar | |
Dubský M, Jirkovská A, Bem R, Fejfarova V, Pagacova L, Sixta B, Varga M, Langkramer S, Sykova E and Jude EB: Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Res Clin Pract. 29:369–376. 2013. | |
Weck M, Slesaczeck T, Rietzsch H, Münch D, Nanning T, Paetzold H, Florek HJ, Barthel A, Weiss N and Bornstein S: Noninvasive management of the diabetic foot with critical limb ischemia: Current options and future perspectives. Ther Adv Endocrinol Metab. 2:247–255. 2011. View Article : Google Scholar | |
Parikh PP, Liu ZJ and Velazquez OC: A molecular and clinical review of stem cell therapy in critical limb ischemia. Stem Cell Int. 2017:37508292017. | |
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP and Hedrick MH: Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–228. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj and Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8:315–317. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murray IR, Chahla J, Safran MR, Krych AJ, Saris DBF, Caplan AI, LaPrade RF, Cell Therapies Communication and Expert Group: International expert consensus on a cell therapy communication tool: DOSES. J Bone Joint Surg Am. 101:904–911. 2019. View Article : Google Scholar : PubMed/NCBI | |
Silvestre JS, Smadja DM and Levy BI: Postischemic revascularization: From cellular and molecular mechanisms to clinical applications. Physiol Rev. 93:1743–1802. 2013. View Article : Google Scholar : PubMed/NCBI | |
Verfaillie C, Blakolmer K and McGlave P: Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma. J Exp Med. 172:509–602. 1990. View Article : Google Scholar : PubMed/NCBI | |
Finney MR, Greco NJ, Haynesworth SE, Martin JM, Hedrick DP, Swan JZ, Winter DG, Kadereit S, Joseph ME, Fu P, et al: Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant. 12:585–593. 2005. View Article : Google Scholar | |
Xiang Y, Zheng Q, Jia BB, Huang GP, Xu YL, Wang JF and Pan ZJ: Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. J Zhejiang Univ Sci B. 8:136–146. 2007. View Article : Google Scholar : PubMed/NCBI | |
Veronesi F, Giavaresi G, Tschon M, Borsari V, Nicoli Aldini N and Fini M: Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease. Stem Cells Dev. 22:181–192. 2013. View Article : Google Scholar | |
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM and Dominici M: Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med. 13:1862015. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Ding Y, Zhang Y, Tse HF and Lian Q: Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplant. 23:1045–1059. 2014. View Article : Google Scholar | |
Spees JL, Lee RH and Gregory CA: Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 7:1252016. View Article : Google Scholar : PubMed/NCBI | |
Liew A and O'Brien T: Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther. 3:282012. View Article : Google Scholar : PubMed/NCBI | |
Najar M, Krayem M, Merimi M, Burny A, Meuleman N, Bron D, Raicevic G and Lagneaux L: Insights into inflammatory priming of mesenchymal stromal cells: Functional biological impacts. Inflamm Res. 67:467–477. 2018. View Article : Google Scholar : PubMed/NCBI | |
Naji A, Suganuma N, Espagnolle N, Yagyu KI, Baba N, Sensebé L and Deschaseaux F: Rationale for determining the functional potency of mesenchymal stem cells in preventing regulated cell death for therapeutic use. Stem Cells Transl Med. 6:713–719. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Xie N, Li W, Yuan B, Shi Y and Wang Y: Immunobiology of mesenchymal stem cells. Cell Death Differ. 21:216–225. 2014. View Article : Google Scholar : | |
Kusuma GD, Carthew J, Lim R and Frith JE: Effect of the micro-environment on mesenchymal stem cell paracrine signaling: Opportunities to engineer the therapeutic effect. Stem Cells Dev. 26:617–631. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim N and Cho SG: Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications. Int J Hematol. 103:129–137. 2016. View Article : Google Scholar | |
Hoffmann J, Glassford AJ, Doyle TC, Robbins RC, Schrepfer S and Pelletier MP: Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemia. Thorac Cardiovasc Surg. 58:136–142. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S and Epstein SE: Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 109:1543–1549. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ben-Mordechai T, Holbova R, Landa-Rouben N, Harel-Adar T, Feinberg MS, Abd Elrahman I, Blum G, Epstein FH, Silman Z, Cohen S and Leor J: Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol. 62:1890–1901. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pinto AR, Godwin JW and Rosenthal NA: Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res. 13:705–714. 2014. View Article : Google Scholar : PubMed/NCBI | |
Forbes SJ and Rosenthal N: Preparing the ground for tissue regeneration: From mechanism to therapy. Nat Med. 20:857–869. 2014. View Article : Google Scholar : PubMed/NCBI | |
Julier Z, Park AJ, Briquez PS and Martino MM: Promoting tissue regeneration by modulating the immune system. Acta Biomater. 53:13–28. 2017. View Article : Google Scholar : PubMed/NCBI | |
Naik S, Larsen SB, Cowley CJ and Fuchs E: Two to tango: Dialog between immunity and stem cells in health and disease. Cell. 175:908–920. 2018. View Article : Google Scholar : PubMed/NCBI | |
Anton K, Banerjee D and Glod J: Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One. 7:e350362012. View Article : Google Scholar : PubMed/NCBI | |
Faulknor RA, Olekson MA, Ekwueme EC, Krzyszczyk P, Freeman JW and Berthiaume F: Hypoxia impairs mesenchymal stromal cell-induced macrophage M1 to M2 transition. Technology (Singap World Sci). 5:81–86. 2017. | |
Kajiguchi M, Kondo T, Izawa H, Kobayashi M, Yamamoto K, Shintani S, Numaguchi Y, Naoe T, Takamatsu J, Komori K and Murohara T: Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ J. 71:196–201. 2007. View Article : Google Scholar : PubMed/NCBI | |
Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, Saito Y, Uemura S, Suzuki H, Fukumoto S, et al: Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells [therapeutic angiogenesis by cell transplantation (TACT) trial] in patients with chronic limb ischemia. Am Heart J. 156:1010–1018. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, et al: Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial. Lancet. 360:427–435. 2002. View Article : Google Scholar : PubMed/NCBI | |
Di Trapani M, Bassi G, Midolo M, Gatti A, Kamga PT, Cassaro A, Carusone R, Adamo A and Krampera M: Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep. 6:241202016. View Article : Google Scholar : PubMed/NCBI | |
Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki H, Mori Y, Iba O, Tateishi E, et al: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 104:1046–1052. 2001. View Article : Google Scholar : PubMed/NCBI | |
Qin SL, Li TS, Takahashi M and Hamano K: In vitro assessment of the effect of interleukin-1beta on angiogenic potential of bone marrow cells. Circ J. 70:1195–1199. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhao RC and Tredget EE: Concise review: Bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cell. 28:905–915. 2010. | |
Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T and Kubota Y: Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood. 117:5264–5272. 2011. View Article : Google Scholar : PubMed/NCBI | |
Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M and Isner JM: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 85:221–228. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang ZX, Li D, Cao JX, Liu YS, Wang M, Zhang XY, Li JL, Wang HB, Liu JL and Xu BL: Efficacy of autologous bone marrow mononuclear cell therapy in patients with peripheral arterial disease. J Atheroscler Thromb. 21:1183–1196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Powell RJ, Comerota AJ, Berceli SA, Guzman R, Henry TD, Tzeng E, Velazquez O, Marston WA, Bartel RL, Longcore A, et al: Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg. 54:1032–1041. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K and Gimble JM: Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy. 15:641–648. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guillaume-Jugnot P, Daumas A, Magalon J, Sautereau N, Veran J, Magalon G, Sabatier F and Granel B: State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients. Curr Res Transl Med. 64:35–42. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ong WK and Sugii S: Adipose-derived stem cells: Fatty potentials for therapy. Int J Biochem Cell Biol. 45:1083–1086. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Nguyen A, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR and Widgerow AD: Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. J Plast Reconstr Aesthetic Surg. 69:180–188. 2016. View Article : Google Scholar | |
Parker AM and Katz AJ: Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther. 6:567–578. 2006. View Article : Google Scholar : PubMed/NCBI | |
Park YB, Ha CW, Rhim JH and Lee HJ: Stem cell therapy for articular cartilage repair: Review of the entity of cell populations used and the result of the clinical application of each entity. Am J Sports Med. 46:2540–2552. 2018. View Article : Google Scholar | |
Strong AL, Cederna PS, Rubin JP, Coleman SR and Levi B: The current state of fat grafting: A review of harvesting, processing, and injection techniques. Plast Reconstr Surg. 136:897–912. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S, Mendez AJ, Ricordi C, Raffaini M, Tremolada C and Ventura C: A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 22:2063–2077. 2013. View Article : Google Scholar | |
Harada Y, Yamamoto Y, Tsujimoto S, Matsugami H, Yoshida A and Hisatome I: Transplantation of freshly isolated adipose tissue-derived regenerative cells enhances angiogenesis in a murine model of hind limb ischemia. Biomed Res. 34:23–29. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV and March KL: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 109:1292–1298. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Kim H, Cho H, Bae Y, Suh K and Jung J: Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem. 20:867–876. 2007. View Article : Google Scholar : PubMed/NCBI | |
Navarro A, Marín S, Riol N, Carbonell-Uberos F and Miñana MD: Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties. Stem Cell Res Ther. 5:502014. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Feng J, Liu K, Zhou S and Lu F: Early macrophage infiltration improves fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment. Plast Reconstr Surg. 141:376–386. 2018. View Article : Google Scholar | |
Dong Z, Peng Z, Chang Q and Lu F: The survival condition and immunoregulatory function of adipose stromal vascular fraction (SVF) in the early stage of nonvascularized adipose transplantation. PLoS One. 8:e803642013. View Article : Google Scholar : PubMed/NCBI | |
Spaltro G, Straino S, Gambini E, Bassetti B, Persico L, Zoli S, Zanobini M, Capogrossi MC, Spirito R, Quarti C and Pompilio G: Characterization of the pall celeris system as a point-of-care device for therapeutic angiogenesis. Cytotherapy. 17:1302–1313. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rennert RC, Sorkin M, Januszyk M, Duscher D, Kosaraju R, Chung MT, Lennon J, Radiya-Dixit A, Raghvendra S, Maan ZN, et al: Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations. Stem Cell Res Ther. 5:792014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Tan J, Martino MM and Lui KO: Regulatory T-cells: Potential regulator of tissue repair and regeneration. Front Immunol. 9:5852018. View Article : Google Scholar : PubMed/NCBI | |
Aurora AB and Olson EN: Immune modulation of stem cells and regeneration. Cell Stem Cell. 15:14–25. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spiller KL and Koh TJ: Macrophage-based therapeutic strategies in regenerative medicine. Adv Drug Deliv Rev. 122:74–83. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yang Y, Yang Z, Li T and Chen F: Snapshot: Targeting macrophages as a candidate for tissue regeneration. Curr Issues Mol Biol. 29:37–48. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tauber AI: Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol. 4:897–901. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y and Han ZC: Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost. 98:1335–1342. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, Mellor H and Martin P: Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 37:e977862018. View Article : Google Scholar : PubMed/NCBI | |
Moriya J, Minamino T, Tateno K, Shimizu N, Kuwabara Y, Sato Y, Saito Y and Komuro I: Long-term outcome of therapeutic neovascularization using peripheral blood mononuclear cells for limb ischemia. Circ Cardiovasc Interv. 2:245–254. 2009. View Article : Google Scholar : PubMed/NCBI | |
Krishnasamy K, Limbourg A, Kapanadze T, Gamrekelashvili J, Beger C, Häger C, Lozanovski VJ, Falk CS, Napp LC, Bauersachs J, et al: Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia. Nat Commun. 8:9522017. View Article : Google Scholar : PubMed/NCBI | |
Beer L, Zimmermann M, Mitterbauer A, Ellinger A, Gruber F, Narzt MS, Zellner M, Gyöngyösi M, Madlener S, Simader E, et al: Analysis of the secretome of apoptotic peripheral blood mononuclear cells: Impact of released proteins and exosomes for tissue regeneration. Sci Rep. 5:166622015. View Article : Google Scholar : PubMed/NCBI | |
Blomgran P, Blomgran R, Ernerudh J and Aspenberg P: A possible link between loading, inflammation and healing: Immune cell populations during tendon healing in the rat. Sci Rep. 6:298242016. View Article : Google Scholar : PubMed/NCBI | |
Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, Gastens MH, Quast T, Negrean M, Stirban OA, et al: Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract. 66:384–393. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tateno K, Minamino T, Toko H, Akazawa H, Shimizu N, Takeda S, Kunieda T, Miyauchi H, Oyama T, Matsuura K, et al: Critical roles of muscle-secreted angiogenic factors in therapeutic neovascularization. Circ Res. 98:1194–1202. 2006. View Article : Google Scholar : PubMed/NCBI | |
De Angelis B, Gentile P, Orlandi F, Bocchini I, Di Pasquali C, Agovino A, Gizzi C, Patrizi F, Scioli MG, Orlandi A and Cervelli V: Limb rescue: A new autologous-peripheral blood mononuclear cells technology in critical limb ischemia and chronic ulcers. Tissue Eng Part C Methods. 21:423–435. 2015. View Article : Google Scholar | |
Persiani F, Paolini A, Camilli D, Mascellari L, Platone A, Magenta A and Furgiuele S: Peripheral blood mononuclear cells therapy for treatment of lower limb ischemia in diabetic patients: A single-center experience. Ann Vasc Surg. 53:190–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mutirangura P, Ruangsetakit C, Wongwanit C, Chinsakchai K, Porat Y, Belleli A and Czeiger D: Enhancing limb salvage by non-mobilized peripheral blood angiogenic cell precursors therapy in patients with critical limb ischemia. J Med Assoc Thail. 92:320–327. 2009. | |
Liotta F, Annunziato F, Castellani S, Boddi M, Alterini B, Castellini G, Mazzanti B, Cosmi L, Acquafresca M, Bartalesi F, et al: Therapeutic efficacy of autologous non-mobilized enriched circulating endothelial progenitors in patients with critical limb ischemia-the SCELTA trial. Circ J. 82:1688–1698. 2018. View Article : Google Scholar : PubMed/NCBI | |
Arras M, Ito WD, Scholz D, Winkler B, Schaper J and Schaper W: Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 101:40–50. 1998. View Article : Google Scholar : PubMed/NCBI | |
Anghelina M, Krishnan P, Moldovan L and Moldovan NI: Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: Conversion of cell columns into fibrovascular bundles. Am J Pathol. 168:529–541. 2006. View Article : Google Scholar : PubMed/NCBI | |
Capoccia BJ, Gregory AD and Link DC: Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashion. J Leukoc Biol. 84:760–768. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schaper J, König R, Franz D and Schaper W: The endothelial surface of growing coronary collateral arteries. Intimal margination and diapedesis of monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Histol. 370:193–205. 1976. View Article : Google Scholar : PubMed/NCBI | |
Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J and Schaper W: Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch. 436:257–270. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bergmann CE, Hoefer IE, Meder B, Roth H, van Royen N, Breit SM, Jost MM, Aharinejad S, Hartmann S and Buschmann IR: Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. J Leukoc Biol. 80:59–65. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ito WD, Arras M, Winkler B, Scholz D, Schaper J and Schaper W: Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res. 80:829–837. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW and Ruhrberg C: Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 116:829–840. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barnett FH, Rosenfeld M, Wood M, Kiosses WB, Usui Y, Marchetti V, Aguilar E and Friedlander M: Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 6:366592016. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wu C, Yang Q, Gao J, Li L, Yang D and Luo L: Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity. 44:1162–1176. 2016. View Article : Google Scholar : PubMed/NCBI | |
Baer C, Squadrito ML, Iruela-Arispe ML and De Palma M: Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches. Exp Cell Res. 319:1626–1634. 2013. View Article : Google Scholar | |
Minutti CM, Knipper JA, Allen JE and Zaiss DMW: Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol. 61:3–11. 2017. View Article : Google Scholar | |
Ding J, Lei L, Liu S, Zhang Y, Yu Z, Su Y and Ma X: Macrophages are necessary for skin regeneration during tissue expansion. J Transl Med. 17:362019. View Article : Google Scholar : PubMed/NCBI | |
Krzyszczyk P, Schloss R, Palmer A and Berthiaume F: The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 9:4192018. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kimball A, Schaller M, Joshi A, Davis FM, den Dekker A, Boniakowski A, Bermick J, Obi A, Moore B, Henke PK, et al: Ly6C Hi blood monocyte/macrophage drive chronic inflammation and impair wound healing in diabetes mellitus. Arterioscler Thromb Vasc Biol. 38:1102–1114. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL and Gallagher KA: Macrophage-mediated inflammation in normal and diabetic wound healing. J Immunol. 199:17–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Awad O, Dedkov EI, Jiao C, Bloomer S, Tomanek RJ and Schatteman GC: Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler Thromb Vasc Biol. 26:758–764. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rodero MP, Licata F, Poupel L, Hamon P, Khosrotehrani K, Combadiere C and Boissonnas A: In vivo imaging reveals a pioneer wave of monocyte recruitment into mouse skin wounds. PLoS One. 9:e1082122014. View Article : Google Scholar : PubMed/NCBI | |
Willenborg S and Eming SA: Macrophages-sensors and effectors coordinating skin damage and repair. J Dtsch Dermatol Ges. 12:214–221. 2014. | |
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Van Weel V, Toes RE, Seghers L, Deckers MM, de Vries MR, Eilers PH, Sipkens J, Schepers A, Eefting D, van Hinsbergh VW, et al: Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscler Thromb Vasc Biol. 27:2310–2318. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hellingman AA, Zwaginga JJ, Van Beem RT; TeRM/Smart Mix Consortium; Hamming JF, Fibbe WE, Quax PH and Geutskens SB: T-cell-pre-stimulated monocytes promote neovascularisation in a murine hind limb ischaemia model. Eur J Vasc Endovasc Surg. 41:418–428. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stabile E, Burnett MS, Watkins C, Kinnaird T, Bachis A, la Sala A, Miller JM, Shou M, Epstein SE and Fuchs S: Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation. 108:205–210. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stabile E, Kinnaird T, La Sala A, Hanson SK, Watkins C, Campia U, Shou M, Zbinden S, Fuchs S, Kornfeld H, et al: CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation. 113:118–124. 2006. View Article : Google Scholar | |
Zouggari Y, Ait-Oufella H, Waeckel L, Vilar J, Loinard C, Cochain C, Récalde A, Duriez M, Levy BI, Lutgens E, et al: Regulatory T cells modulate postischemic neovascularization. Circulation. 120:1415–1425. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Schlereth SL, Park EY, Emami-Naeini P, Chauhan SK and Dana R: A novel pro-angiogenic function for interferon-Y-secreting natural killer cells. Invest Ophthalmol Vis Sci. 55:2885–2892. 2014. View Article : Google Scholar : PubMed/NCBI | |
Leung OM, Li J, Li X, Chan VW, Yang KY, Ku M, Ji L, Sun H, Waldmann H, Tian XY, et al: Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep. 24:1610–1626. 2018. View Article : Google Scholar : PubMed/NCBI | |
Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C and Mathis D: A special population of regulatory T cells potentiates muscle repair. Cell. 155:1282–1295. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ingram DA, Caplice NM and Yoder MC: Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 106:1525–1531. 2005. View Article : Google Scholar : PubMed/NCBI | |
Basile DP and Yoder MC: Circulating and tissue resident endothelial progenitor cells. J Cell Physiol. 229:10–16. 2014. | |
Rehman J, Li J, Orschell CM and March KL: Peripheral blood 'endothelial progenitor cells' are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 107:1164–1169. 2003. View Article : Google Scholar : PubMed/NCBI | |
Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, et al: CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res. 97:314–322. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rookmaaker MB, Verhaar MC, Loomans CJ, Verloop R, Peters E, Westerweel PE, Murohara T, Staal FJ, van Zonneveld AJ, Koolwijk P, et al: CD34+cells home, proliferate, and participate in capillary formation, and in combination with CD34-cells enhance tube formation in a 3-dimensional matrix. Arterioscler Thromb Vasc Biol. 25:1843–1850. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dong Z, Pan T, Fang Y, Wei Z, Gu S, Fang G, Liu Y, Luo Y, Liu H, Zhang T, et al: Purified CD34+cells versus peripheral blood mononuclear cells in the treatment of angiitis-induced no-option critical limb ischaemia: 12-Month results of a prospective randomised single-blinded non-inferiority trial. EBioMedicine. 35:46–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, Bolego C, Cignarella A, Avogaro A and Fadini GP: Bone marrow macrophages contribute to diabetic stem cell mobilopathy by producing oncostatin M. Diabetes. 64:2957–2968. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fadini GP, Albiero M, Vigili de Kreutzenberg S, Boscaro E, Cappellari R, Marescotti M, Poncina N, Agostini C and Avogaro A: Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care. 36:943–949. 2013. View Article : Google Scholar : | |
Fadini GP, Spinetti G, Santopaolo M and Madeddu P: Impaired regeneration contributes to poor outcomes in diabetic peripheral artery disease. Arterioscler Thromb Vasc Biol. 40:34–44. 2020. View Article : Google Scholar | |
Loomans CJM, De Koning EJP, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ and van Zonneveld AJ: Endothelial progenitor cell dysfunction: A novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 53:195–199. 2004. View Article : Google Scholar | |
Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP and Gurtner GC: Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 106:2781–2786. 2002. View Article : Google Scholar : PubMed/NCBI | |
Facchiano F, Lentini A, Fogliano V, Mancarella S, Rossi C, Facchiano A and Capogrossi MC: Sugar-induced modification of fibroblast growth factor 2 reduces its angiogenic activity in vivo. Am J Pathol. 161:531–541. 2002. View Article : Google Scholar : PubMed/NCBI | |
Di Stefano V, Cencioni C, Zaccagnini G, Magenta A, Capogrossi MC and Martelli F: p66ShcA modulates oxidative stress and survival of endothelial progenitor cells in response to high glucose. Cardiovasc Res. 82:421–429. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jarajapu YP, Hazra S, Segal M, Li Calzi S, Jadhao C, Qian K, Mitter SK, Raizada MK, Boulton ME and Grant MB: Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms. PLoS One. 9:e939652014. View Article : Google Scholar : PubMed/NCBI | |
Tchaikovski V, Olieslagers S, Böhmer FD and Waltenberger J: Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes. Circulation. 120:150–159. 2009. View Article : Google Scholar : PubMed/NCBI | |
Torres-Castro I, Arroyo-Camarena ÚD, Martínez-Reyes CP, Gómez-Arauz AY, Dueñas-Andrade Y, Hernández-Ruiz J, Béjar YL, Zaga-Clavellina V, Morales-Montor J, Terrazas LI, et al: Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett. 176:81–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, Bhasker V, Gordillo GM, Sen CK and Roy S: Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 5:e95392010. View Article : Google Scholar : PubMed/NCBI | |
Bannon P, Wood S, Restivo T, Campbell L, Hardman MJ and Mace KA: Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Dis Model Mech. 6:1434–1447. 2013.PubMed/NCBI | |
Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK and Chazaud B: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 204:1057–1069. 2007. View Article : Google Scholar : PubMed/NCBI | |
Di Pardo A, Cappello E, Pepe G, Marracino F, Carrieri V, Maglione V and Pompeo F: P-0717-Infusion of autologous-peripheral blood mononuclear cells: A new approach for limb salvage in patients with diabetes. In: Proceedings of the International Diabetes Federation 2017 Congress; Abu Dhabi. 2017 | |
Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G and Odorisio T: Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 21:545–553. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kornicka K, Houston J and Marycz K: Dysfunction of mesenchymal stem cells isolated from metabolic syndrome and type 2 diabetic patients as result of oxidative stress and autophagy may limit their potential therapeutic use. Stem Cell Rev. 14:337–345. 2018. View Article : Google Scholar : | |
Inoue O, Usui S, Takashima SI, Nomura A, Yamaguchi K, Takeda Y, Goten C, Hamaoka T, Ootsuji H, Murai H, et al: Diabetes impairs the angiogenic capacity of human adipose-derived stem cells by reducing the CD271+ subpopulation in adipose tissue. Biochem Biophys Res Commun. 517:369–375. 2019. View Article : Google Scholar : PubMed/NCBI | |
Benoit E, O'donnell TF and Patel AN: Safety and efficacy of autologous cell therapy in critical limb ischemia: A systematic review. Cell Transplant. 22:545–562. 2013. View Article : Google Scholar | |
Liew A, Bhattacharya V, Shaw J and Stansby G: Cell therapy for critical limb ischemia: A meta-analysis of randomized controlled trials. Angiology. 67:444–455. 2016. View Article : Google Scholar | |
Jiang X, Zhang H and Teng M: Effectiveness of autologous stem cell therapy for the treatment of lower extremity ulcers: A systematic review and meta-analysis. Medicine (Baltimore). 95:e27162016. View Article : Google Scholar | |
Ai M, Yan CF, Xia FC, Zhou SL, He J and Li CP: Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis. Cytotherapy. 18:712–724. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peeters Weem SM, Teraa M, De Borst GJ, Verhaar MC and Moll FL: Bone marrow derived cell therapy in critical limb ischemia: A meta-analysis of randomized placebo controlled trials. Eur J Vasc Endovasc Surg. 50:775–783. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang SK, Green LA, Motaganahalli RL, Wilson MG, Fajardo A and Murphy MP: Rationale and design of the MarrowStim PAD Kit for the treatment of critical limb ischemia in subjects with severe peripheral arterial disease (MOBILE) trial investigating autologous bone marrow cell therapy for critical limb ischemia. J Vasc Surg. 65:1850–1857.e2. 2017. View Article : Google Scholar | |
Lehalle B, Jan P and Stoltz JF: Diabetic patients on Rutherford's stage 5 is the best indication of stem cell therapy in peripheral artery disease: A retrospective study on 367 patients. J Cell Immunother. 4:18–21. 2018. View Article : Google Scholar | |
Shu X, Shu S, Tang S, Yang L, Liu D, Li K, Dong Z, Ma Z, Zhu Z and Din J: Efficiency of stem cell based therapy in the treatment of diabetic foot ulcer: A meta-analysis. Endocr J. 65:403–413. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Dardik A, Fang K, Huang R and Gu Y: Meta-analysis on the treatment of diabetic foot ulcers with autologous stem cells. Stem Cell Res Ther. 8:2282017. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Chen D, Liu G and Ran X: Autologous stem cell therapy for peripheral arterial disease: A systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 10:1402019. View Article : Google Scholar : PubMed/NCBI | |
Hao C, Shintani S, Shimizu Y, Kondo K, Ishii M, Wu H and Murohara T: Therapeutic angiogenesis by autologous adipose-derived regenerative cells: Comparison with bone marrow mononuclear cells. Am J Physiol Heart Circ Physiol. 307:H869–H879. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, et al: Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: A pilot study. Circ J. 76:1750–1760. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, et al: Phase I trial: The use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 16:245–257. 2014. View Article : Google Scholar : PubMed/NCBI | |
Darinskas A, Paskevicius M, Apanavicius G, Vilkevicius G, Labanauskas L, Ichim TE and Rimdeika R: Stromal vascular fraction cells for the treatment of critical limb ischemia: A pilot study. J Transl Med. 15:1432017. View Article : Google Scholar : PubMed/NCBI | |
Moon KC, Chung HY, Han SK, Jeong SH and Dhong ES: Possibility of injecting adipose-derived stromal vascular fraction cells to accelerate microcirculation in ischemic diabetic feet: A pilot study. Int J Stem Cells. 12:107–113. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lonardi R, Leone N, Gennai S, Trevisi Borsari G, Covic T and Silingardi R: Autologous micro-fragmented adipose tissue for the treatment of diabetic foot minor amputations: A randomized controlled single-center clinical trial (MiFrAADiF). Stem Cell Res Ther. 10:2232019. View Article : Google Scholar : PubMed/NCBI | |
Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A, van der Tweel I, Doevendans PA, Mali WP, Moll FL and Verhaar MC: Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: The randomized, double-blind, placebo-controlled rejuvenating endothelial progenitor cells via transcutaneous intra-arterial supplementation (JUVENTAS) trial. Circulation. 131:851–860. 2015. View Article : Google Scholar : PubMed/NCBI | |
Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schlüter M, Tonn T, Seeger F, Dimmeler S, Lindhoff-Last E and Zeiher AM; PROVASA Investigators: Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 4:26–37. 2011. View Article : Google Scholar : PubMed/NCBI | |
Molavi B, Zafarghandi MR, Aminizadeh E, Hosseini SE, Mirzayi H, Arab L, Baharvand H and Aghdami N: Safety and efficacy of repeated bone marrow mononuclear cell therapy in patients with critical limb ischemia in a pilot randomized controlled trial. Arch Iran Med. 19:388–396. 2016.PubMed/NCBI | |
Kang WC, Oh PC, Lee K, Ahn T and Byun K: Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model. Korean J Physiol Pharmacol. 20:657–667. 2016. View Article : Google Scholar : PubMed/NCBI | |
Beugels J, De Munter JPJM, Van Der Hulst R, Kramer BW and Wolters ECH: Efficacy of different doses of human autologous adult bone marrow stem cell transplantation on angiogenesis in an immune deficient rat model with hind limb ischemia. J Stem Cells Res Dev Ther. 5:1–6. 2019. View Article : Google Scholar | |
Kolvenbach R, Kreissig C, Cagiannos C, Afifi R and Schmaltz E: Intraoperative adjunctive stem cell treatment in patients with critical limb ischemia using a novel point-of-care device. Ann Vasc Surg. 24:367–372. 2010. View Article : Google Scholar | |
Furgiuele S: Trattamento combinato della arteriopatia periferica al IV stadio mediante rivascolarizzazione endovascolare e terapia cellulare rigenerativa. Ital J Vasc Endovasc Surg. 23:672016. | |
Shiraki T, Iida O, Takahara M, Soga Y, Yamauchi Y, Hirano K, Kawasaki D, Fujihara M, Utsunomiya M, Tazaki J, et al: Predictors of delayed wound healing after endovascular therapy of isolated infrapopliteal lesions underlying critical limb ischemia in patients with high prevalence of diabetes mellitus and hemodialysis. Eur J Vasc Endovasc Surg. 49:565–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Okazaki J, Matsuda D, Tanaka K, Ishida M, Kuma S, Morisaki K, Furuyama T and Maehara Y: Analysis of wound healing time and wound-free period as outcomes after surgical and endovascular revascularization for critical lower limb ischemia. J Vasc Surg. 67:817–825. 2018. View Article : Google Scholar | |
Robinson WP, Loretz L, Hanesian C, Flahive J, Bostrom J, Lunig N, Schanzer A and Messina L: Society for vascular surgery wound, ischemia, foot infection (WIfI) score correlates with the intensity of multimodal limb treatment and patient-centered outcomes in patients with threatened limbs managed in a limb preservation center. J Vasc Surg. 66:488–498.e2. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reed GW, Salehi N, Giglou PR, Kafa R, Malik U, Maier M and Shishehbor MH: Time to wound healing and major adverse limb events in patients with critical limb ischemia treated with endovascular revascularization. Ann Vasc Surg. 36:190–198. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vagnozzi RJ, Maillet M, Sargent MA, Khalil H, Johansen AKZ, Schwanekamp JA, York AJ, Huang V, Nahrendorf M, Sadayappan S and Molkentin JD: An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 577:405–409. 2020. View Article : Google Scholar : | |
Dort J, Fabre P, Molina T and Dumont NA: Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells Int. 2019:47614272019. View Article : Google Scholar : PubMed/NCBI | |
Chisari E, Rehak L, Khan WS and Maffulli N: The role of the immune system in tendon healing: A systematic review. Br Med Bull. 133:49–64. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M and Van Badiavas E: Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 24:1635–1647. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C and Wang Y: Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 13:492015. View Article : Google Scholar : PubMed/NCBI | |
Baldari S, Di Rocco G, Magenta A, Picozza M and Toietta G: Extracellular vesicles-encapsulated MicroRNA-125b produced in genetically modified mesenchymal stromal cells inhibits hepatocellular carcinoma cell proliferation. Cells. 8:15602019. View Article : Google Scholar | |
Woodell-May JE, Tan ML, King WJ, Swift MJ, Welch ZR, Murphy MP and McKale JM: Characterization of the cellular output of a point-of-care device and the implications for addressing critical limb ischemia. Biores Open Access. 4:417–424. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sugaya H, Yoshioka T, Kato T, Taniguchi Y, Kumagai H, Hyodo K, Ohneda O, Yamazaki M and Mishima H: Comparative analysis of cellular and growth factor composition in bone marrow aspirate concentrate and platelet-rich plasma. Bone Marrow Res. 2018:15498262018. View Article : Google Scholar : PubMed/NCBI | |
O'Connor SL, Sepulveda CA, Kaur I, Sumari RD and McMannis JD: Characterization of BioSafe SEPAX manufactured stem cell intended for cardiac cell therapy. Blood. 110:40642007. View Article : Google Scholar |