Dysbiosis and liver diseases (Review)
- Authors:
- Hiroki Nishikawa
- Shinya Fukunishi
- Akira Asai
- Keisuke Yokohama
- Hideko Ohama
- Shuhei Nishiguchi
- Kazuhide Higuchi
-
Affiliations: The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569‑8686, Japan, Department of Internal Medicine, Kano General Hospital, Osaka 531‑0041, Japan - Published online on: July 29, 2021 https://doi.org/10.3892/ijmm.2021.5016
- Article Number: 183
This article is mentioned in:
Abstract
Cani PD: Human gut microbiome: Hopes, threats and promises. Gut. 67:1716–1725. 2018. View Article : Google Scholar | |
Albhaisi SAM, Bajaj JS and Sanyal AJ: Role of gut microbiota in liver disease. Am J Physiol Gastrointest Liver Physiol. 318:G84–G98. 2020. View Article : Google Scholar | |
Gomaa EZ: Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek. 113:2019–2040. 2020. View Article : Google Scholar | |
Cox AJ, West NP and Cripps AW: Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 3:207–215. 2015. View Article : Google Scholar | |
Schriefer AE, Cliften PF, Hibberd MC, Sawyer C, Brown-Kennerly V, Burcea L, Klotz E, Crosby SD, Gordon JI and Head RD: A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities. J Microbiol Methods. 154:6–13. 2018. View Article : Google Scholar | |
Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC and Theberge CR: Gut microbiome: Profound implications for diet and disease. Nutrients. 11:16132019. View Article : Google Scholar | |
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F and Osawa R: Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 16:902016. View Article : Google Scholar | |
Bolte LA, Vich Vila A, Imhann F, Collij V, Gacesa R, Peters V, Wijmenga C, Kurilshikov A, Campmans-Kuijpers MJE, Fu J, et al: Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut. 70:1287–1298. 2021. View Article : Google Scholar | |
Koliarakis I, Messaritakis I, Nikolouzakis TK, Hamilos G, Souglakos J and Tsiaoussis J: Oral bacteria and intestinal dysbiosis in colorectal cancer. Int J Mol Sci. 20:41462019. View Article : Google Scholar | |
Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, Meng L, Xin Y and Jiang X: Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism. 117:1547122021. View Article : Google Scholar | |
El-Salhy M, Hatlebakk JG and Hausken T: Diet in irritable bowel syndrome (IBS): Interaction with gut microbiota and gut hormones. Nutrients. 11:18242019. View Article : Google Scholar | |
Li DY and Tang WHW: Gut microbiota and atherosclerosis. Curr Atheroscler Rep. 19:392017. View Article : Google Scholar | |
Ahmad AF, Dwivedi G, O'Gara F, Caparros-Martin J and Ward NC: The gut microbiome and cardiovascular disease: Current knowledge and clinical potential. Am J Physiol Heart Circ Physiol. 317:H923–H938. 2019. View Article : Google Scholar | |
McKenzie C, Tan J, Macia L and Mackay CR: The nutrition-gut microbiome-physiology axis and allergic diseases. Immunol Rev. 278:277–295. 2017. View Article : Google Scholar | |
Hughes HK, Rose D and Ashwood P: The gut microbiota and dysbiosis in autism spectrum disorders. Curr Neurol Neurosci Rep. 18:812018. View Article : Google Scholar | |
Sanchez JMS, DePaula-Silva AB, Libbey JE and Fujinami RS: Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol. 1083792020.Online ahead of print. View Article : Google Scholar | |
Zindel J and Kubes P: DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 15:493–518. 2020. View Article : Google Scholar | |
Puche JE, Saiman Y and Friedman SL: Hepatic stellate cells and liver fibrosis. Compr Physiol. 3:1473–1492. 2013. View Article : Google Scholar | |
Barry AE, Baldeosingh R, Lamm R, Patel K, Zhang K, Dominguez DA, Kirton KJ, Shah AP and Dang H: Hepatic stellate cells and hepatocarcinogenesis. Front Cell Dev Biol. 8:7092020. View Article : Google Scholar | |
Ju C and Tacke F: Hepatic macrophages in homeostasis and liver diseases: From pathogenesis to novel therapeutic strategies. Cell Mol Immunol. 13:316–327. 2016. View Article : Google Scholar | |
Aly AM, Adel A, El-Gendy AO, Essam TM and Aziz RK: Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog. 8:422016. View Article : Google Scholar | |
Preveden T, Scarpellini E, Milić N, Luzza F and Abenavoli L: Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol. 11:813–819. 2017. View Article : Google Scholar | |
Heidrich B, Vital M, Plumeier I, Döscher N, Kahl S, Kirschner J, Ziegert S, Solbach P, Lenzen H, Potthoff A, et al: Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver Int. 38:50–58. 2018. View Article : Google Scholar | |
Inoue T, Nakayama J, Moriya K, Kawaratani H, Momoda R, Ito K, Iio E, Nojiri S, Fujiwara K, Yoneda M, et al: Gut dysbiosis associated with hepatitis C virus infection. Clin Infect Dis. 67:869–877. 2018. View Article : Google Scholar | |
Trépo C, Chan HL and Lok A: Hepatitis B virus infection. Lancet. 384:2053–2063. 2014. View Article : Google Scholar | |
Batsis ID, Wasuwanich P and Karnsakul WW: The management of hepatitis B and hepatitis C in children. Minerva Pediatr. 71:59–75. 2019. | |
Yang R, Xu Y, Dai Z, Lin X and Wang H: the immunologic role of gut microbiota in patients with chronic HBV infection. J Immunol Res. 2018:23619632018. View Article : Google Scholar | |
Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, Ni YH, Tseng HT, Wu D, Lu X, et al: Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci USA. 112:2175–2180. 2015. View Article : Google Scholar | |
Xu M, Wang B, Fu Y, Chen Y, Yang F, Lu H, Chen Y, Xu J and Li L: Changes of fecal Bifidobacterium species in adult patients with hepatitis B virus-induced chronic liver disease. Microb Ecol. 63:304–313. 2012. View Article : Google Scholar | |
Lu H, Wu Z, Xu W, Yang J, Chen Y and Li L: Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol. 61:693–703. 2011. View Article : Google Scholar | |
Wei X, Yan X, Zou D, Yang Z, Wang X, Liu W, Wang S, Li X, Han J, Huang L and Yuan J: Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol. 13:1752013. View Article : Google Scholar | |
Zeng Y, Chen S, Fu Y, Wu W, Chen T, Chen J, Yang B and Ou Q: Gut microbiota dysbiosis in patients with hepatitis B virus-induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. J Viral Hepat. 27:143–155. 2020. View Article : Google Scholar | |
Czaja AJ: Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol. 25:6579–6606. 2019. View Article : Google Scholar | |
Bogdanos DP and Sakkas LI: Enterococcus gallinarum as a component of the autoinfectome: The gut-liver-autoimmune rheumatic disease axis is alive and kicking. Mediterr J Rheumatol. 29:187–189. 2018. View Article : Google Scholar | |
Manfredo Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E, Greiling T, Ruff W, et al: Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science. 359:1156–1161. 2018. View Article : Google Scholar | |
Wei Y, Li Y, Yan L, Sun C, Miao Q, Wang Q, Xiao X, Lian M, Li B, Chen Y, et al: Alterations of gut microbiome in autoimmune hepatitis. Gut. 69:569–577. 2020. View Article : Google Scholar | |
Liwinski T, Casar C, Ruehlemann MC, Bang C, Sebode M, Hohenester S, Denk G, Lieb W, Lohse AW, Franke A and Schramm C: A disease-specific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis. Aliment Pharmacol Ther. 51:1417–1428. 2020. View Article : Google Scholar | |
Kido M, Watanabe N, Okazaki T, Akamatsu T, Tanaka J, Saga K, Nishio A, Honjo T and Chiba T: Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology. 135:1333–1343. 2008. View Article : Google Scholar | |
Ikeda A, Aoki N, Kido M, Iwamoto S, Nishiura H, Maruoka R, Chiba T and Watanabe N: Progression of autoimmune hepatitis is mediated by IL-18-producing dendritic cells and hepatic CXCL9 expression in mice. Hepatology. 60:224–236. 2014. View Article : Google Scholar | |
Lleo A, Wang GQ, Gershwin ME and Hirschfield GM: Primary biliary cholangitis. Lancet. 396:1915–1926. 2020. View Article : Google Scholar | |
Lleo A, Leung PSC, Hirschfield GM and Gershwin EM: The pathogenesis of primary biliary cholangitis: A comprehensive review. Semin Liver Dis. 40:34–48. 2020. View Article : Google Scholar | |
Gulamhusein AF and Hirschfield GM: Primary biliary cholangitis: Pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol. 17:93–110. 2020. View Article : Google Scholar | |
Harada K, Tsuneyama K, Sudo Y, Masuda S and Nakanuma Y: Molecular identification of bacterial 16S ribosomal RNA gene in liver tissue of primary biliary cirrhosis: Is Propionibacterium acnes involved in granuloma formation? Hepatology. 33:530–536. 2001. View Article : Google Scholar | |
Tang R, Wei Y, Li Y, Chen W, Chen H, Wang Q, Yang F, Miao Q, Xiao X, Zhang H, et al: Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 67:534–541. 2018. View Article : Google Scholar | |
Furukawa M, Moriya K, Nakayama J, Inoue T, Momoda R, Kawaratani H, Namisaki T, Sato S, Douhara A, Kaji K, et al: Gut dysbiosis associated with clinical prognosis of patients with primary biliary cholangitis. Hepatol Res. 50:840–852. 2020. View Article : Google Scholar | |
Buchholz BM, Lykoudis PM, Ravikumar R, Pollok JM and Fusai GK: Role of colectomy in preventing recurrent primary sclerosing cholangitis in liver transplant recipients. World J Gastroenterol. 24:3171–3180. 2018. View Article : Google Scholar | |
Shah A, Crawford D, Burger D, Martin N, Walker M, Talley NJ, Tallis C, Jones M, Stuart K, Keely S, et al: Effects of antibiotic therapy in primary sclerosing cholangitis with and without inflammatory bowel disease: A systematic review and meta-analysis. Semin Liver Dis. 39:432–441. 2019. View Article : Google Scholar | |
Little R, Wine E, Kamath BM, Griffiths AM and Ricciuto A: Gut microbiome in primary sclerosing cholangitis: A review. World J Gastroenterol. 26:2768–2780. 2020. View Article : Google Scholar | |
Prokopič M and Beuers U: Management of primary sclerosing cholangitis and its complications: An algorithmic approach. Hepatol Int. 15:6–20. 2021. View Article : Google Scholar | |
Nakamoto N, Sasaki N, Aoki R, Miyamoto K, Suda W, Teratani T, Suzuki T, Koda Y, Chu PS, Taniki N, et al: Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol. 4:492–503. 2019. View Article : Google Scholar | |
Yasuda K, Takeuchi Y and Hirota K: The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 41:283–297. 2019. View Article : Google Scholar | |
Bajaj JS: Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol. 16:235–246. 2019. View Article : Google Scholar | |
Kobayashi M, Asai A, Ito I, Suzuki S, Higuchi K and Suzuki F: Short-term alcohol abstinence improves antibacterial defenses of chronic alcohol-consuming mice against gut bacteria-associated sepsis caused by Enterococcus faecalis oral infection. Am J Pathol. 187:1998–2007. 2017. View Article : Google Scholar | |
Hartmann P, Seebauer CT and Schnabl B: Alcoholic liver disease: The gut microbiome and liver cross talk. Alcohol Clin Exp Res. 39:763–775. 2015. View Article : Google Scholar | |
Elamin EE, Masclee AA, Dekker J and Jonkers DM: Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev. 71:483–499. 2013. View Article : Google Scholar | |
Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS, Alexeev DG, Taraskina AY, et al: Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome. 5:1412017. View Article : Google Scholar | |
Szabo G: Gut-liver axis in alcoholic liver disease. Gastroenterology. 148:30–36. 2014. View Article : Google Scholar | |
Xie G, Zhong W, Zheng X, Li Q, Qiu Y, Li H, Chen H, Zhou Z and Jia W: Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J Proteome Res. 12:3297–3306. 2013. View Article : Google Scholar | |
Adachi Y, Moore LE, Bradford BU, Gao W and Thurman RG: Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology. 108:218–224. 1995. View Article : Google Scholar | |
Younossi ZM, Marchesini G, Pinto-Cortez H and Petta S: Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Implications for liver transplantation. Transplantation. 103:22–27. 2019. View Article : Google Scholar | |
Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J and Bugianesi E: Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 15:11–20. 2018. View Article : Google Scholar | |
Nishikawa H and Osaki Y: Non-B, non-C hepatocellular carcinoma (Review). Int J Oncol. 43:1333–1342. 2013. View Article : Google Scholar | |
Chakraborti CK: New-found link between microbiota and obesity. World J Gastrointest Pathophysiol. 6:110–119. 2015. View Article : Google Scholar | |
Leung C, Rivera L, Furness JB and Angus PW: The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 13:412–425. 2016. View Article : Google Scholar | |
Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, Kitamura N, Toda K, Kaneko T, Horie Y, et al: Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 55:415–424. 2006. View Article : Google Scholar | |
Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M and Wallace M: Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 47:571–579. 2007. View Article : Google Scholar | |
Friedman J: The long road to leptin. J Clin Invest. 126:4727–4734. 2016. View Article : Google Scholar | |
Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, Kato S, Mawatari H, Shibata W, Kitani H, et al: Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 16:44–54. 2012. View Article : Google Scholar | |
Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD and Gill SR: Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology. 57:601–609. 2013. View Article : Google Scholar | |
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007. View Article : Google Scholar | |
Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, Okada Y, Kurihara C, Irie R, Yokoyama H, et al: Free cholesterol accumulation in hepatic stellate cells: Mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology. 59:154–169. 2014. View Article : Google Scholar | |
Gäbele E, Dostert K, Hofmann C, Wiest R, Schölmerich J, Hellerbrand C and Obermeier F: DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol. 55:1391–1399. 2011. View Article : Google Scholar | |
Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, Takei H, Muto A, Nittono H, Ridlon JM, et al: Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol. 58:949–955. 2013. View Article : Google Scholar | |
Nakanishi K, Kaji K, Kitade M, Kubo T, Furukawa M, Saikawa S, Shimozato N, Sato S, Seki K, Kawaratani H, et al: Exogenous administration of low-dose lipopolysaccharide potentiates liver fibrosis in a choline-deficient l-amino-acid-defined diet-induced murine steatohepatitis model. Int J Mol Sci. 20:27242019. View Article : Google Scholar | |
Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, et al: Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 21:504–516. 2012. View Article : Google Scholar | |
Riese DJ II and Cullum RL: Epiregulin: Roles in normal physiology and cancer. Semin Cell Dev Biol. 28:49–56. 2014. View Article : Google Scholar | |
Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, et al: Alterations of the human gut microbiome in liver cirrhosis. Nature. 513:59–64. 2014. View Article : Google Scholar | |
U-King-Im JM, Yu E, Bartlett E, Soobrah R and Kucharczyk W: Acute hyperammonemic encephalopathy in adults: Imaging findings. Am J Neuroradiol. 32:413–418. 2011. View Article : Google Scholar | |
Bjerring PN, Eefsen M, Hansen BA and Larsen FS: The brain in acute liver failure. A tortuous path from hyperammonemia to cerebral edema. Metab Brain Dis. 24:5–14. 2009. View Article : Google Scholar | |
Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N, Yuri Y, Hasegawa K, Nakano C, Nishimura T, et al: Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle. 8:915–925. 2017. View Article : Google Scholar | |
Nishikawa H, Enomoto H, Nishiguchi S and Iijima H: Liver cirrhosis and sarcopenia from the viewpoint of dysbiosis. Int J Mol Sci. 21:52542020. View Article : Google Scholar | |
Nishikawa H, Shiraki M, Hiramatsu A, Moriya K, Hino K and Nishiguchi S: Japan society of hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res. 46:951–963. 2016. View Article : Google Scholar | |
Jayakumar AR, Tong XY, Curtis KM, Ruiz-Cordero R, Abreu MT and Norenberg MD: Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy. J Neurochem. 128:890–903. 2014. View Article : Google Scholar | |
Jayakumar AR, Rama Rao KV and Norenberg MD: Neuroinflammation in hepatic encephalopathy: Mechanistic aspects. J Clin Exp Hepatol. 5(Suppl 1): S21–S28. 2015. View Article : Google Scholar | |
Kang DJ, Betrapally NS, Ghosh SA, Sartor RB, Hylemon PB, Gillevet PM, Sanyal AJ, Heuman DM, Carl D, Zhou H, et al: Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice. Hepatology. 64:1232–1248. 2016. View Article : Google Scholar | |
Steib CJ, Hartmann AC, v Hesler C, Benesic A, Hennenberg M, Bilzer M and Gerbes AL: Intraperitoneal LPS amplifies portal hypertension in rat liver fibrosis. Lab Invest. 90:1024–1032. 2010. View Article : Google Scholar | |
Wiest R, Lawson M and Geuking M: Pathological bacterial translocation in liver cirrhosis. J Hepatol. 60:197–209. 2014. View Article : Google Scholar | |
Labenz C, Huber Y, Kalliga E, Nagel M, Ruckes C, Straub BK, Galle PR, Wörns MA, Anstee QM, Schuppan D and Schattenberg JM: Predictors of advanced fibrosis in non-cirrhotic non-alcoholic fatty liver disease in Germany. Aliment Pharmacol Ther. 48:1109–1116. 2018. View Article : Google Scholar | |
Loo TM, Kamachi F, Watanabe Y, Yoshimoto S, Kanda H, Arai Y, Nakajima-Takagi Y, Iwama A, Koga T, Sugimoto Y, et al: Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 7:522–538. 2017. View Article : Google Scholar | |
Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et al: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar | |
He S and Sharpless NE: Senescence in health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar | |
Vernot JP: Senescence-associated pro-inflammatory cytokines and tumor cell plasticity. Front Mol Biosci. 7:632020. View Article : Google Scholar | |
Puri P, Daita K, Joyce A, Mirshahi F, Santhekadur PK, Cazanave S, Luketic VA, Siddiqui MS, Boyett S, Min HK, et al: The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology. 67:534–548. 2018. View Article : Google Scholar | |
Yamada S, Takashina Y, Watanabe M, Nagamine R, Saito Y, Kamada N and Saito H: Bile acid metabolism regulated by the gut microbiota promotes non-alcoholic steatohepatitis-associated hepatocellular carcinoma in mice. Oncotarget. 9:9925–9939. 2018. View Article : Google Scholar | |
Sajjad A, Mottershead M, Syn WK, Jones R, Smith S and Nwokolo CU: Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 22:291–299. 2005. View Article : Google Scholar | |
Kitagawa R, Kon K, Uchiyama A, Arai K, Yamashina S, Kuwahara-Arai K, Kirikae T, Ueno T and Ikejima K: Rifaximin prevents ethanol-induced liver injury in obese KK-Ay mice through modulation of small intestinal microbiota signature. Am J Physiol Gastrointest Liver Physiol. 317:G707–G715. 2019. View Article : Google Scholar | |
Kim SS, Eun JW, Cho HJ, Song DS, Kim CW, Kim YS, Lee SW, Kim YK, Yang J, Choi J, et al: Microbiome as a potential diagnostic and predictive biomarker in severe alcoholic hepatitis. Aliment Pharmacol Ther. 53:540–551. 2021. | |
Jørgensen SF, Macpherson ME, Bjørnetrø T, Holm K, Kummen M, Rashidi A, Michelsen AE, Lekva T, Halvorsen B, Trøseid M, et al: Rifaximin alters gut microbiota profile, but does not affect systemic inflammation-a randomized controlled trial in common variable immunodeficiency. Sci Rep. 9:1672019. View Article : Google Scholar | |
Kaji K, Takaya H, Saikawa S, Furukawa M, Sato S, Kawaratani H, Kitade M, Moriya K, Namisaki T, Akahane T, et al: Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity. World J Gastroenterol. 23:8355–8366. 2017. View Article : Google Scholar | |
Hijová E, Bertková I and Štofilová J: Dietary fibre as prebiotics in nutrition. Cent Eur J Public Health. 27:251–255. 2019. View Article : Google Scholar | |
Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, et al: Fecal micro-biota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 66:806–815. 2017. View Article : Google Scholar | |
Kondo S, Xiao JZ, Satoh T, Odamaki T, Takahashi S, Sugahara H, Yaeshima T, Iwatsuki K, Kamei A and Abe K: Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem. 74:1656–1661. 2010. View Article : Google Scholar | |
Minami J, Kondo S, Yanagisawa N, Odamaki T, Xiao JZ, Abe F, Nakajima S, Hamamoto Y, Saitoh S and Shimoda T: Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. J Nutr Sci. 4:e172015. View Article : Google Scholar | |
Kondo S, Kamei A, Xiao JZ, Iwatsuki K and Abe K: Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: A DNA microarray analysis. Benef Microbes. 4:247–251. 2013. View Article : Google Scholar | |
Armstrong LE and Guo GL: Role of FXR in liver inflammation during nonalcoholic steatohepatitis. Curr Pharmacol Rep. 3:92–100. 2017. View Article : Google Scholar | |
Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, et al: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 21:159–165. 2015. View Article : Google Scholar | |
Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, et al: Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 6:101662015. View Article : Google Scholar | |
Kumar M, Verma V, Nagpal R, Kumar A, Gautam SK, Behare PV, Grover CR and Aggarwal PK: Effect of probiotic fermented milk and chlorophyllin on gene expressions and genotoxicity during AFB1-induced hepatocellular carcinoma. Gene. 490:54–59. 2011. View Article : Google Scholar | |
van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, et al: Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 368:407–415. 2013. View Article : Google Scholar | |
Cammarota G, Ianiro G and Gasbarrini A: Fecal microbiota transplantation for the treatment of Clostridium difficile infection: A systematic review. J Clin Gastroenterol. 48:693–702. 2014. View Article : Google Scholar | |
Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M, Alani M, Bakow B, Curran P, McKenney J, Tisch A, et al: Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: A randomized trial. Ann Intern Med. 165:609–616. 2016. View Article : Google Scholar | |
Liu R, Kang JD, Sartor RB, Sikaroodi M, Fagan A, Gavis EA, Zhou H, Hylemon PB, Herzog JW, Li X, et al: Neuroinflammation in murine cirrhosis is dependent on the gut microbiome and is attenuated by fecal transplant. Hepatology. 71:611–626. 2020. View Article : Google Scholar | |
Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, et al: Fecal micro-biota transplant from a rational stool donor improves hepatic encephalopathy: A randomized clinical trial. Hepatology. 66:1727–1738. 2017. View Article : Google Scholar |