1
|
Kobiyama K and Ley K: Atherosclerosis.
Circ Res. 123:1118–1120. 2018. View Article : Google Scholar
|
2
|
Libby P, Bornfeldt KE and Tall AR:
Atherosclerosis: Successes, surprises, and future challenges. Circ
Res. 118:531–534. 2016. View Article : Google Scholar
|
3
|
Baldrighi M, Mallat Z and Li X: NLRP3
inflammasome pathways in atherosclerosis. Atherosclerosis.
267:127–138. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Paramel Varghese G, Folkersen L,
Strawbridge RJ, Halvorsen B, Yndestad A, Ranheim T, Krohg-Sørensen
K, Skjelland M, Espevik T, Aukrust P, et al: NLRP3 inflammasome
expression and activation in human atherosclerosis. J Am Heart
Assoc. 5:e0030312016. View Article : Google Scholar :
|
5
|
Jiang C and Jiang L, Li Q, Liu X, Zhang T,
Dong L, Liu T, Liu L, Hu G, Sun X and Jiang L: Acrolein induces
NLRP3 inflammasome-mediated pyroptosis and suppresses migration via
ROS-dependent autophagy in vascular endothelial cells. Toxicology.
410:26–40. 2018. View Article : Google Scholar
|
6
|
Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M,
Meng Q, Zhou B, Leng Y and Xia ZY: NLRP3 inflammasome
activation-mediated pyroptosis aggravates myocardial
ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev.
2017:97432802017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sutterwala FS, Haasken S and Cassel SL:
Mechanism of NLRP3 inflammasome activation. Ann NY Acad Sci.
1319:82–95. 2014. View Article : Google Scholar
|
8
|
Jia C, Zhang J, Chen H, Zhuge Y, Chen H,
Qian F, Zhou K, Niu C, Wang F, Qiu H, et al: Endothelial cell
pyroptosis plays an important role in Kawasaki disease via
HMGB1/RAGE/cathespin B signaling pathway and NLRP3 inflammasome
activation. Cell Death Dis. 10:7782019. View Article : Google Scholar
|
9
|
Li P, Zhong X, Li J, Liu H, Ma X, He R and
Zhao Y: MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated
endothelial cell pyroptosis through FOXO3 down-regulation in
atherosclerosis. Biochem Biophys Res Commun. 503:2833–2840. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zahid A, Li B, Kombe AJK, Jin T and Tao J:
Pharmacological Inhibitors of the NLRP3 Inflammasome. Front
Immunol. 10:25382019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang L, Yuan M, Zhang L, Wu B and Sun X:
Adiponectin alleviates NLRP3-inflammasome-mediated pyroptosis of
aortic endothelial cells by inhibiting FoxO4 in arteriosclerosis.
Biochem Biophys Res Commun. 514:266–272. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu Y, Wang H, Liu N, Du J, Lan X, Qi X,
Zhuang C, Sun T, Li Y and Yu J: Oxymatrine protects neonatal rat
against hypoxic-ischemic brain damage via PI3K/Akt/GSK3β pathway.
Life Sci. 254:1164442020. View Article : Google Scholar
|
13
|
Liang J, Chang B, Huang M, Huang W, Ma W,
Liu Y, Tai W, Long Y and Lu Y: Oxymatrine prevents synovial
inflammation and migration via blocking NF-κB activation in
rheumatoid fibroblast-like synoviocytes. Int Immunopharmacol.
55:105–111. 2018. View Article : Google Scholar
|
14
|
Zhang YY, Yi M and Huang YP: Oxymatrine
ameliorates doxorubicin-induced cardiotoxicity in rats. Cell
Physiol Biochem. 43:626–635. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hu ST, Tang Y, Shen YF, Ao HH, Bai J, Wang
YL and Yang YJ: Protective effect of oxymatrine on chronic rat
heart failure. J Physiol Sci. 61:363–372. 2011. View Article : Google Scholar
|
16
|
Yang Y, Chen S, Tao L, Gan S, Luo H, Xu Y
and Shen X: Inhibitory effects of oxymatrine on
transdifferentiation of neonatal rat cardiac fibroblasts to
myofibroblasts induced by aldosterone via Keap1/Nrf2 signaling
pathways in vitro. Med Sci Monit. 25:5375–5388. 2019. View Article : Google Scholar
|
17
|
Huang XY and Chen CX: Effect of
oxymatrine, the active component from Radix Sophorae flavescentis
(Kushen), on ventricular remodeling in spontaneously hypertensive
rats. Phytomedicine. 20:202–212. 2013. View Article : Google Scholar
|
18
|
Wu B, Yue H, Zhou GH, Zhu YY, Wu TH, Wen
JF, Cho KW and Jin SN: Protective effects of oxymatrine on
homocysteine-induced endothelial injury: Involvement of
mitochondria-dependent apoptosis and Akt-eNOS-NO signaling
pathways. Eur J Pharmacol. 864:1727172019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Zhang Y, Tang J, Zhao S, Li C,
Huang YP and Yi M: Oxymatrine inhibits homocysteine-mediated
autophagy via MIF/mTOR signaling in human umbilical vein
endothelial cells. Cell Physiol Biochem. 45:1893–1903. 2018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Khatana C, Saini NK, Chakrabarti S, Saini
V, Sharma A, Saini RV and Saini AK: Mechanistic insights into the
oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med
Cell Longev. 2020:52453082020. View Article : Google Scholar :
|
21
|
Kitada M, Ogura Y and Koya D: The
protective role of Sirt1 in vascular tissue: Its relationship to
vascular aging and atherosclerosis. Aging (Albany NY). 8:2290–2307.
2016. View Article : Google Scholar
|
22
|
Zhang MJ, Zhou Y, Chen L, Wang X, Long CY,
Pi Y, Gao CY, Li JC and Zhang LL: SIRT1 improves VSMC functions in
atherosclerosis. Prog Biophys Mol Biol. 121:11–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stein S and Matter CM: Protective roles of
SIRT1 in atherosclerosis. Cell Cycle. 10:640–647. 2011. View Article : Google Scholar
|
24
|
Lazaro I, Lopez-Sanz L, Bernal S, Oguiza
A, Recio C, Melgar A, Jimenez-Castilla L, Egido J, Madrigal-Matute
J and Gomez-Guerrero C: Nrf2 activation provides atheroprotection
in diabetic mice through concerted upregulation of antioxidant,
anti-inflammatory, and autophagy mechanisms. Front Pharmacol.
9:8192018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mimura J and Itoh K: Role of Nrf2 in the
pathogenesis of atherosclerosis. Free Radic Biol Med. 88:221–232.
2015. View Article : Google Scholar
|
26
|
Gao Z, Sui J, Fan R, Qu W, Dong X and Sun
D: Emodin protects against acute pancreatitis-associated lung
injury by inhibiting NLPR3 inflammasome activation via Nrf2/HO-1
signaling. Drug Des Devel Ther. 14:1971–1982. 2020. View Article : Google Scholar :
|
27
|
Hou Y, Wang Y, He Q, Li L, Xie H, Zhao Y
and Zhao J: Nrf2 inhibits NLRP3 inflammasome activation through
regulating Trx1/TXNIP complex in cerebral ischemia reperfusion
injury. Behav Brain Res. 336:32–39. 2018. View Article : Google Scholar
|
28
|
Xu H, Chen GF, Ma YS, Zhang HW, Zhou Y,
Liu GH, Chen DY, Ping J, Liu YH, Mou X and Fu D: Hepatic proteomic
changes and Sirt1/AMPK signaling activation by oxymatrine treatment
in rats with non-alcoholic steatosis. Front Pharmacol. 11:2162020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou S, Qiao B, Chu X and Kong Q:
Oxymatrine attenuates cognitive deficits through SIRT1-mediated
autophagy in ischemic stroke. J Neuroimmunol. 323:136–142. 2018.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhu Z, Li J and Zhang X: Salidroside
protects against ox-LDL-induced endothelial injury by enhancing
autophagy mediated by SIRT1-FoxO1 pathway. BMC Complement Altern
Med. 19:1112019. View Article : Google Scholar :
|
31
|
Edlich F: BCL-2 proteins and apoptosis:
Recent insights and unknowns. Biochem Biophys Res Commun.
500:26–34. 2018. View Article : Google Scholar
|
32
|
Grebe A, Hoss F and Latz E: NLRP3
inflammasome and the IL-1 pathway in atherosclerosis. Circ Res.
122:1722–1740. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Esteban-Fernández de Ávila B,
Ramírez-Herrera DE, Campuzano S, Angsantikul P, Zhang L and Wang J:
Nanomotor-enabled pH-responsive intracellular delivery of
caspase-3: Toward rapid cell apoptosis. CS Nano. 11:5367–5374.
2017.
|
34
|
Dubois-Deruy E, Peugnet V, Turkieh A and
Pinet F: Oxidative stress in cardiovascular diseases. Antioxidants
(Basel). 9:8642020. View Article : Google Scholar
|
35
|
Li Y, Wang P, Yang X, Wang W, Zhang J, He
Y, Zhang W, Jing T, Wang B and Lin R: SIRT1 inhibits inflammatory
response partly through regulation of NLRP3 inflammasome in
vascular endothelial cells. Mol Immunol. 77:148–156. 2016.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Falk E: Pathogenesis of atherosclerosis. J
Am Coll Cardiol. 47(Suppl 8): C7–C12. 2006. View Article : Google Scholar
|
37
|
Lan X, Zhao J, Zhang Y, Chen Y, Liu Y and
Xu F: Oxymatrine exerts organ- and tissue-protective effects by
regulating inflammation, oxidative stress, apoptosis, and fibrosis:
From bench to bedside. Pharmacol Res. 151:1045412020. View Article : Google Scholar
|
38
|
King KL and Cidlowski JA: Cell cycle
regulation and apoptosis. Annu Rev Physiol. 60:601–617. 1998.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Bäck M, Yurdagul A Jr, Tabas I, Öörni K
and Kovanen PT: Inflammation and its resolution in atherosclerosis:
Mediators and therapeutic opportunities. Nat Rev Cardiol.
16:389–406. 2019.PubMed/NCBI
|
40
|
Nasonov EL and Popkova TV:
Atherosclerosis: Perspectives of anti-inflammatory therapy. Ter
Arkh. 90:4–12. 2018.
|
41
|
Hoseini Z, Sepahvand F, Rashidi B,
Sahebkar A, Masoudifar A and Mirzaei H: NLRP3 inflammasome: Its
regulation and involvement in atherosclerosis. J Cell Physiol.
233:2116–2132. 2018. View Article : Google Scholar
|
42
|
Dong P, Ji X, Han W and Han H: Oxymatrine
exhibits anti-neuroinflammatory effects on Aβ142-induced
primary microglia cells by inhibiting NF-κB and MAPK signaling
pathways. Int Immunopharmacol. 74:1056862019. View Article : Google Scholar
|
43
|
Jiang Y, Sang W, Wang C, Lu H, Zhang T,
Wang Z, Liu Y, Xue B, Xue S, Cai Z, et al: Oxymatrine exerts
protective effects on osteoarthritis via modulating chondrocyte
homoeostasis and suppressing osteoclastogenesis. J Cell Mol Med.
22:3941–3954. 2018. View Article : Google Scholar :
|
44
|
Bellezza I, Giambanco I, Minelli A and
Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress.
Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chen QM and Maltagliati AJ: Nrf2 at the
heart of oxidative stress and cardiac protection. Physiol Genomics.
50:77–97. 2018. View Article : Google Scholar :
|
46
|
Chen XJ, Wu WJ, Zhou Q, Jie JP, Chen X,
Wang F and Gong XH: Advanced glycation end-products induce
oxidative stress through the Sirt1/Nrf2 axis by interacting with
the receptor of AGEs under diabetic conditions. J Cell Biochem. Oct
15–2018.Epub ahead of print. View Article : Google Scholar
|
47
|
Zhang B, Zhai M, Li B, Liu Z, Li K, Jiang
L, Zhang M, Yi W, Yang J, Yi D, et al: Honokiol ameliorates
myocardial ischemia/reperfusion injury in type 1 diabetic rats by
reducing oxidative stress and apoptosis through activating the
SIRT1-Nrf2 signaling pathway. Oxid Med Cell Longev.
2018:31598012018.
|
48
|
Arioz BI, Tastan B, Tarakcioglu E, Tufekci
KU, Olcum M, Ersoy N, Bagriyanik A, Genc K and Genc S: Melatonin
attenuates LPS-induced acute depressive-like behaviors and
microglial NLRP3 inflammasome activation through the SIRT1/Nrf2
pathway. Front Immunol. 10:15112019. View Article : Google Scholar :
|
49
|
Yin Y, Wu X, Peng B, Zou H, Li S, Wang J
and Cao J: Curcumin improves necrotising microscopic colitis and
cell pyroptosis by activating SIRT1/NRF2 and inhibiting the TLR4
signalling pathway in newborn rats. Innate Immun. 26:609–617. 2020.
View Article : Google Scholar
|
50
|
Zhang S, Jiang L, Che F, Lu Y, Xie Z and
Wang H: Arctigenin attenuates ischemic stroke via SIRT1-dependent
inhibition of NLRP3 inflammasome. Biochem Biophys Res Commun.
493:821–826. 2017. View Article : Google Scholar : PubMed/NCBI
|